
Dealing with Uncertainty in Early Software Architecture

Naeem Esfahani
Computer Science Dept.
George Mason University
nesfaha2@gmu.edu

Kaveh Razavi
Computer Science Dept.
George Mason University
srazavi2@gmu.edu

Sam Malek
Computer Science Dept.
George Mason University

smalek@gmu.edu

1. MOTIVATION
A software system’s early architecture is the set of prin-

cipal decisions made at the outset of a software engineering
project. Early architecture encompasses choices at applica-
tion, system, and hardware level that could have an impact
on the software system’s properties.1 A common practice is
to carefully assess the system’s early architecture for its abil-
ity to satisfy functional and non-functional requirements, as
well as other stakeholder concerns, such as cost and time to
delivery.

Early architectural decisions are crucial, as they determine
the scope of capabilities and options that can be exercised
later in the system’s life cycle. Given the crucial impact
of early architectural decisions on the system’s properties,
changing them in subsequent phases of the engineering pro-
cess are often both difficult and costly. At the same time,
making such decisions is a complex task mired with lots of
uncertainty. Getting them “wrong” poses a risk to any soft-
ware engineering project.

One of the major thrusts of the software engineering re-
search has been to transform the process of making such
decisions from an art form exercised successfully by a se-
lect few to a repeatable process guided through scientific
reasoning and formal analysis. A few notable examples in-
clude ATAM [4], CBAM [10], and ArchDesigner [1]. Such
efforts have not aimed to replace the engineer’s experience
and knowledge, but to rather augment it through provision-
ing of appropriate methods and tools.

While great strides have been made on this front, the ex-
isting architecture decision-making approaches do not pro-
vide a quantitative method of dealing with uncertainty [8].
In fact, there is no quantitative method of even comparing
two architectures under uncertainty, let alone selecting the
“right” architecture from the many possible candidates in
such circumstances [1, 8].

2. NEW IDEA
In this paper, we provide an overview of GuideArch, a

quantitative framework aimed at guiding the exploration of
architectural solution space under uncertainty. It allows the
architect to make informed decisions using imperfect infor-
mation. This alleviates the architect from manually sifting
through an often large solution space, and instead allows
her to focus on the decisions that are critical to the system’s
success.

1While our definition of “early architecture” is rather broad,
and could incorporate decisions dealing with hardware, sys-
tem, and software, our focus is mainly on those impacting
the software.

Unlike any existing approach [1, 4, 10], GuideArch explic-
itly represents the inherent uncertainty in the knowledge and
incorporates that in the analysis. It enables an incremen-
tal method of making and refining architectural decisions
throughout the engineering process. As the rough estimates
in the early stages give way to precise estimates in the later
stages, GuideArch allows the architect to refine the models
and explore other suitable alternatives.

GuideArch employs fuzzy mathematical methods [14] to
reason about uncertainty. We have devised a novel fuzzy
operator that forms the foundation for quantitative com-
parison of architectural candidates under uncertainty. The
fuzzy operator is then used to develop advanced analysis
techniques, including optimization and ranking of architec-
tures, and identification of critical design decisions.

Our research is motivated by the fact that precisely speci-
fying the effect of architectural decisions on goals (e.g., func-
tional or non-functional requirements) is difficult, particu-
larly in early phases of engineering. This observation is also
corroborated by other researchers and practitioners [1, 10].
As a result, the process of making early architectural choices
is a risky proposition mired with uncertainty.

Previous approaches (e.g., [1, 10]) that support the pro-
cess of making decisions and optimizing the system’s archi-
tecture ignore these challenges, hampering their adoption in
real-world risk-averse domains. We collectively refer to these
as the traditional approaches. We illustrate their shortcom-
ing using a problem in which the objective is to choose from
a pool of 16 candidate architectures, such that Cost and
Battery Usage are minimized.

In our research, early architecture is defined simply as a
set of decisions. For instance, an architect of a mobile appli-
cation may face several architectural decisions: the architec-
tural style of the application, the technique for locating the
device, the data persistence mechanism, and so on. For each
decision she may have several alternatives, e.g., in the case
of style, the architect may be able to choose from pipe-and-
filter or client-server style. A candidate architecture results
from selecting a viable alternative for each and every de-
cision. While this is a rather simplified way of looking at
the notion of architecture, we believe it is expressive enough
to capture the essence of architectural decision-making prob-
lem. Conventionally one associates an architectural diagram
as the kind of artifact an architect deals with, however, in
effect, such a diagram is nothing more than a collection of
decisions. Moreover, often at the early architecting phase,
an architect does not have an architectural model of the
system. It is the high-level decisions made early on that
manifest themselves in the form of constructs comprising
the architectural model in the later stages of software devel-



Figure 1: Assessing architectural candidates: (a) 16
candidate architecture in a cost vs. battery usage
trade-off, (b) simple additive approach to resolve the
trade-offs, and (c) cost vs. battery usage under un-
certainty, where each rectangle represents the space
of values that an architecture may take.

opment lifecycle.
The traditional approaches assume that the architect is

able to precisely specify the impact of candidate architec-
tures on properties of interest. If that was the case, then
one could visualize the situation as in Figure 1a. Here, for
the sake of clarity, the values for Cost and Battery Usage are
normalized between 0 and 1. Assuming both properties have
the same level of importance, to compare the 16 candidates,
for each architecture we first sum up the values obtained in
the two properties. Figure 1b achieves just that, as it shows
the overall value for the candidate architectures. In this
space, architectures can be compared with one another. For
example, we can see that A13 is the best architecture, as it
obtains the smallest total value.2 It is also possible for sev-
eral architectures to obtain the same value, in which case the
architect would need to provide a prioritization scheme, such
that more emphasis is placed on certain properties. How-
ever, for clarity we do not consider such cases here. While
the aforementioned approach is theoretically sound, it is not
useful in practice, as it does not incorporate the underly-
ing uncertainty in the impact of architectural decisions on
properties of interest.

The complexity of incorporating uncertainty in the anal-
ysis is shown in Figure 1c. Here, the architect’s uncertainty
is represented in terms of range of impact that an archi-
tectural candidate may have on the properties of interest.
For example, the impact of a given architecture on Battery
Usage is no longer a single number, but rather a range of
values. As a result, each architectural candidate may obtain
a value anywhere within the area occupied by the corre-
sponding rectangle. Clearly, comparing two architectures
with overlapping rectangles is difficult. It is not clear how
the rectangles in Figure 1c can be transformed to a space
where the trade-off analysis can be performed.

To gain a better appreciation for the complexity of this
problem consider that the simple example used in Figure 1
consists of only 16 architectural candidates and 2 properties
of interest, but a typical software system often consists of
many more candidates and properties. Manually exploring
such a large space is a big burden. Incorporating uncertainty

2For Battery Usage and Cost, lower values are preferred;
hence, they are simply added together. For properties that
higher values are preferred (e.g., reliability) we subtract the
value of the property from the total value. Therefore, even
in those cases, a smaller total value is preferred.

into the analysis makes a problem that is already challeng-
ing so overwhelmingly complex that a manual assessment
without the appropriate tools becomes impossible.

3. APPROACH
We accept uncertainty as a natural component of archi-

tecting a software system, particularly in the early phases of
engineering. Our objective is not to eliminate uncertainty,
but to provide quantitative techniques and tools for making
informed decisions in such circumstances. This section first
describes the scope of our research, followed by an intuitive
description of our approach.

3.1 Definition and Scope of Uncertainty
Before delving into the approach, it is important to clar-

ify what we mean by uncertainty. The scope of uncertainty
dealt with in our paper has to do with not knowing the
exact impact of architectural alternatives on properties of
interest, i.e., not being able to precisely specify the impact
as a crisp value. However, there are other sources of uncer-
tainty in early architecting that are not tackled in our work.
Consider for instance the uncertainty introduced by the fol-
lowing questions: Have all of the properties of concern been
elicited? Have all of the decisions and alternatives been iden-
tified? While the ability to answer such questions is clearly
crucial, they fall outside the scope of our research.

3.2 Representing Uncertainty in Alternatives
Instead of modeling the anticipated impact of an archi-

tectural alternative on the system’s properties as a point
estimate, we represent it as a range of values. Specifying
the impact in terms of a range is aligned with the way hu-
mans in general conceptualize uncertainty and provides an
intuitive method of modeling the architect’s knowledge.

The range of impact may be estimated in a number of
ways, including the data available from similar designs in
other systems, architect’s prior knowledge, prototype or early
simulations of the system, manufacturer specification, sci-
entific publication, etc. For instance, based on a combi-
nation of manufacturer specification and prior experience
with smartphones, the architect may estimate that Location
Finding using GPS has 10µJ of anticipated battery usage,
with 8µJ and 14µJ in optimistic and pessimistic situations,
respectively.

While there are other elaborate methods of representing
uncertainty, such as probability distribution, our experience
suggests that such representations are not very useful in this
setting. Probability distribution is useful for representing
uncertainty due to error or noise in the behavior of a phe-
nomenon (e.g., data collected from a sensor). But uncer-
tainty in architecting is often due to lack of knowledge, and
not variability. We note, however, that if such models of
uncertainty are available, the range could be derived using
the techniques described in [5].

The key contribution of GuideArch is the ability to pro-
vide quantitative analysis of the trade-offs given such loose
specifications. We achieve this by representing the uncertain
parameters as fuzzy numbers. A fuzzy number is founded on
the concept of fuzzy set [13]. In a fuzzy set, the elements
have a degree of membership. Degree of membership is a
value between zero and one: a value of zero indicates the
element is certainly not a member of the set, a value of one
indicates it is certainly a member, and a value in between
indicates the extent of certainty it is a member. Fuzzy math



Figure 2: Uncertainty modeled as fuzzy values using
possibility theory: (a) the fuzzy values for Cost and
Battery usage, (b) their summation to determine
the architecture’s total value, and (c) the total value
for three hypothetical architectures.

is grounded in possibility theory [13], which provides an al-
ternative interpretation of uncertainty to that of probability
theory. A common misconception is that fuzzy math is im-
precise. On the contrary, fuzzy math, just like probability,
provides a precise and sound method of dealing with uncer-
tainty.

We assign the possibility of 1 to the anticipated value,
and possibility of 0 to the optimistic and pessimistic, re-
spectively. We use “∧”, “<”, “>” to represent anticipated,
optimistic, and pessimistic, respectively. We let the possi-
bility to decrease linearly from the anticipated to the opti-
mistic and pessimistic points. Thus, the effect of each design
alternative on each property is modeled as a triangular fuzzy
value [14]. For instance, Figure 2a depicts the fuzzy values
corresponding to the range of Cost (P1) and Battery Usage
(P2) for an architectural candidate. Due to uncertainty, the
actual value of the property may be anywhere in that range.

3.3 Calculating Uncertainty in a Candidate
Given the fuzzy impact of alternatives on properties, we

can quantify the overall value of a given architecture. Sim-
ilar to the approach used to transform Figure 1a to Fig-
ure 1b, we transform the candidate solutions in Figure 1c
to a scalar space, such that they can be compared with one
another. The total value for an architecture Arch can be
calculated as fuzzy summation [9] of the impact of alterna-
tives on the properties. When fuzzy numbers are summed
up, the pessimistic, anticipated, and optimistic values are
added independently of each other to arrive at a new fuzzy
value. For instance, adding fuzzy values for Cost and Bat-
tery Usage in Figure 2a results in the fuzzy value shown
in Figure 2b, which represents the total value of the corre-
sponding architecture Arch.3 Since an architecture with a
lower value is preferred, we call the situation in which the
actual value is between anticipated and pessimistic the neg-
ative consequence of uncertainty (risk), and the situation in

3The fuzzy summation used here is defined in [9], which has
proven to produce another proper possibility distribution.

which the actual value is between anticipated and optimistic
the positive consequence of uncertainty (opportunity).

3.4 Comparing Candidate Architectures
Fuzzy summation allows us to transform the multi-

dimensional problem into a single scalar value, but since
the scalar value itself is fuzzy, comparing the architectural
solutions remains a challenge. When comparing two fuzzy
numbers, the one with the“better” range is superior. We say
the fuzzy value of one architecture is better than another if
it has a: (C1) smaller anticipated value, (C2) larger posi-
tive consequence of uncertainty, and (C3) smaller negative
consequence of uncertainty [7].

Figure 2c shows the total value of the properties for three
hypothetical architectures (A, B, and C ), which are rep-
resented as fuzzy values. Using Figure 2c we describe two
possible scenarios that may occur in comparing architectures
this way. The first scenario occurs when a given architec-
ture is inferior to others with respect to all three criteria. For
instance, in Figure 2c, architecture A is inferior to architec-
tures B and C with respect to all three criteria. The second
scenario occurs when there are trade-offs. For instance, ar-
chitectures B and C present a trade-off, as architecture B is
superior to architecture C with respect to C2 and C3, and
inferior with respect to C1. Such trade-offs can be resolved
by giving weights to each criteria (i.e., W1, W2, and W3).

Figure 3 shows a snapshot of the graphing facility in
GuideArch tool, which is used for analysis of architecture
space. Each double sided arrow (i.e., l) depicts the fuzzy
total value (recall Figure 2b) for a candidate architecture.
For a given candidate Arch, the lower side of the arrow
(i.e., ↓) depicts Arch<, while the upper side of the arrow
(i.e., ↑) and the middle of the arrow (i.e., −) depict Arch>

and Arch∧, respectively.
Architects can use this facility to depict the total fuzzy

values of the candidate architectures side-by-side for further
analysis. This achieves the goal of Figure 2c with much less
clutter. For instance, by showing candidates #1 and #4
(which are ranked 1st and 1406th respectively) side-by-side,
we can observe that candidate #4 has a lower anticipated
value compared to candidate #1. However, since candidate

Figure 3: A snapshot of GuideArch’s graphing fa-
cility, which is used to compare the candidate ar-
chitectures side-by-side. By analyzing candidates,
the architect will gain a better understanding of the
architectural space.



#1 has a better range of uncertainty compared to candidate
#4, it has a better rank.

Note that traditional approaches, that do not consider
uncertainty in their analysis, would only consider the antic-
ipated value and select candidate #4 over candidate #1 as
a better architecture. By looking at these differences, the
architect gains a better understanding of the architectural
trade-offs under uncertainty. GuideArch facilitates this pro-
cess by allowing the architect to select each arrow and look
at the detailed information about the corresponding archi-
tecture (not shown here due to space limitations).

Interested reader can access GuideArch at http://mason.
gmu.edu/~nesfaha2/Projects/GuideArch/About.htm.

4. RELATED WORK
Making architectural decisions is a problem that has been

studied from both design-time and run-time perspectives.
The uncertainty issues in the latter have been mainly re-
searched in the area of autonomic computing [6]. Here we
discuss only those targeted at design-time, since that has
been the focus of our work.

ArchDesigner [1] is an approach to find an optimal ar-
chitecture that meets conflicting stakeholders’ quality goals.
CBAM [10] is a quantitative approach for economic mod-
eling of software engineering decisions, which builds upon
ATAM [4]. CBAM provides the cost and benefit of differ-
ent architectural candidates. ArcheOpterix [2] is a tool for
optimizing an embedded system’s architecture. It uses evo-
lutionary algorithms for multi-objective optimization of such
systems. While many of these approaches acknowledge the
challenges posed by uncertainty, none addresses it explicitly
and via a mathematical framework.

Palladio [3] uses information about components compris-
ing the architecture to derive analytical models and simu-
late the system’s performance. Random variables are used
to specify uncertainty in service demands and iterations.
Meedeniya et al. [11] estimate the reliability of a given
software architecture by combining reliability of its ele-
ments (expressed as probability distributions) using Monte
Carlo simulation. These approaches are complementary to
GuideArch, as they could be used to specify the range of
performance and reliability, respectively. Unlike GuideArch,
however, neither considers ranges of possible behaviors for
different architectures.

Noppen et al. [12] use design tree to navigate in the design
space, which may include imperfect information. However,
they assume that the number of alternatives for given de-
sign decisions of each step is very small. GuideArch, on the
other hand, focuses on a single design step with large num-
ber of alternatives. In that sense, our work is orthogonal
and complementary to their work.

5. CONCLUSION
In any software project, early architectural decisions rep-

resent some of the most crucial decisions engineers ever
make. Yet there is a lack of techniques and tools for
helping the engineers make those decisions. We presented
GuideArch, a novel framework that guides the engineers in
making the best choices possible under uncertainty.

One area of future work is to extend the current model
from a unified stakeholder perspective to a multiple stake-
holder perspective. We currently assume all stakeholders
have agreed on the impact of alternatives on properties
and their priorities. However, this may not always be the

case, presenting GuideArch with yet another source of un-
certainty. Future work also includes extending GuideArch
to deal with the other types of uncertainty discussed in Sec-
tion 3.1. Moreover, GuideArch currently represents uncer-
tainty as a triangular fuzzy value, which is not only the most
widely used fuzzification approach, but also universally ap-
plicable. However, in our future work, we also plan to ex-
periment with alternative representations (e.g., trapezoidal
and Gaussian) that seem to offer some unique trade-offs.

6. REFERENCES
[1] Al-Naeem, T., Gorton, I., Babar, M. A., Rabhi, F.,

and Benatallah, B. A quality-driven systematic
approach for architecting distributed software
applications. In Int’l Conf. on Software Engineering
(St. Louis, Missouri, May 2005), pp. 244–253.

[2] Aleti, A., Bjornander, S., Grunske, L., and Meedeniya,
I. ArcheOpterix: an extendable tool for architecture
optimization of AADL models. In ICSE Workshop on
Model-Based Methodologies for Pervasive and
Embedded Software (Vancouver - Canada, May 2009),
pp. 61–71.

[3] Becker, S., Koziolek, H., and Reussner, R. The
palladio component model for model-driven
performance prediction. J. Syst. Softw. 82, 1 (Jan.
2009), 3–22.

[4] Clements, P., Kazman, R., and Klein, M. Evaluating
Software Architectures: Methods and Case Studies.
Addison-Wesley Professional, Nov. 2001.

[5] Dubois, D., Prade, H., and Sandri, S. On
possibility/probability transformations. In IFSA
Conference (Seoul, Korea, July 1993).

[6] Esfahani, N., Kouroshfar, E., and Malek, S. Taming
uncertainty in Self-Adaptive software. In Int’l Symp.
on the Foundations of Software Engineering (Szeged,
Hungary, Sept. 2011), pp. 234–244.

[7] Facchinetti, G., and Ghiselli Ricci, R. A
characterization of a general class of ranking functions
on triangular fuzzy numbers. Fuzzy Sets and Systems
146, 2 (Sept. 2004), 297–312.

[8] Garlan, D. Software engineering in an uncertain world.
In FSE/SDP Wrkshp. on the Future of Software
Engineering Research (Santa Fe, New Mexico, Nov.
2010), pp. 125–128.

[9] Kaufmann, A., and Gupta, M. M. Fuzzy mathematical
models in engineering and management science.
North-Holland, 1988.

[10] Kazman, R., Asundi, J., and Klein, M. Quantifying
the costs and benefits of architectural decisions. In
Int’l Conf on Software Engineering (Toronto, Canada,
May 2001), pp. 297–306.

[11] Meedeniya, I., Moser, I., Aleti, A., and Grunske, L.
Architecture-based reliability evaluation under
uncertainty. In Int’l Conf on the Quality of Software
Architectures (Boulder, CO, June 2011), pp. 85–94.

[12] Noppen, J., van den Broek, P., and Aksit, M. Software
development with imperfect information. Soft Comput.
12, 1 (Aug. 2007), 3–28.

[13] Zadeh, L. A. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets Syst. 100 (June 1999), 9–34.

[14] Zimmermann, H. Fuzzy Set Theory and its
Applications (4th Edition), 4th ed. Springer, Oct.
2001.


