
On the Role of Architectural Styles in Improving the

Adaptation Support of Middleware Platforms

Naeem Esfahani and Sam Malek

Department of Computer Science

George Mason University

{nesfaha2, smalek}@gmu.edu

Abstract. Modern middleware platforms provide the applications deployed on

top of them with facilities for their adaptation. However, the level of adaptation

support provided by the state-of-the-art middleware solutions is often limited to

dynamically loading and off-loading of software components. Therefore, it is

left to the application developers to handle the details of change such that the

system’s consistency is not jeopardized. In this paper, we present an approach

that addresses the current shortcomings by utilizing the information encoded in

a software system’s architectural style. This information drives the development

of adaptation patterns, which could be employed to enhance the adaptation

support in middleware platforms. The patterns specify both the exact sequence

of changes and the time at which those changes need to occur.

Keywords: Middleware, Adaptation Patterns, Architectural Styles

1 Introduction

The unrelenting pattern of growth in size and complexity of software systems that we

have witnessed over the past few decades is likely to continue well into the

foreseeable future. As software engineers have developed new techniques to address

the complexity associated with the construction of modern-day software systems, an

equally pressing need has risen for mechanisms that automate and simplify the

management and modification of software systems after they are deployed, i.e.,

during run-time. This has called for the development of self-* (self-configuring, self-

healing, self-optimizing, etc.) systems. However, the construction of such systems has

been shown to be significantly more challenging than traditional, relatively more

static and predictable, software systems.

Previous studies have shown that a promising approach to resolve the challenges of

constructing complex software systems is to employ the principles of software

architecture [7,8]. Software architectures provide abstractions for representing the

structure, behavior, and key properties of a software system. They are described in

terms of software components (computational elements), connectors (interaction

elements), and their configurations. A given software architectural style (e.g.,

publish-subscribe, peer-to-peer, pipe-and-filter, client-server) further refines a

vocabulary of component and connector types and a set of constraints on how

instances of those types may be combined in a system [1].

Software architecture has also been shown to provide an appropriate level of

abstraction and generality to deal with the complexity of dynamic adaptation of

software systems [3]. This observation has led to research on architecture-based

adaptation, which is the process of reasoning about and adapting a system’s software

at the architectural level [3,6].

Architecture-based adaptation is often realized via the run-time facilities provided

by an implementation platform, i.e., middleware. Unfortunately, the level of

adaptation support provided by most state-of-the-art middleware solutions is limited

to dynamically loading and offloading of software components. They do not consider

the state or dependency among the system’s software components. This is driven by

the fact that, in the general case, component dependency relationships are application

specific, and cannot be predicted a priori by the middleware designers.

The lack of advanced adaptation management and coordination facilities in the

existing platforms forces the application developers to implement them on their own.

Unfortunately, the status quo places significant burden on the application developers.

The developers have to spend a significant amount of time understanding the

underlying details of a middleware platform, before they can develop the required

adaptation facilities. As a result, the theoretical advances [4,10] for consistent and

sound adaptation of a software system remain untapped, and the application

developers rely on the rudimentary adaptation capabilities that the existing

middlewares provide by default.

In this paper, we present an approach that attempts to alleviate these shortcomings.

The approach relies on the information encoded in a software system’s architectural

style. More specifically, an underlying insight guiding our research is that a software

system’s architectural style reveals a lot about the dependency relationships among

the system’s software components. This information is utilized to identify adaptation

patterns, which determine the recurring sequence of changes that need to occur for

adapting a software system built according to a given style. An adaptation pattern

ensures that the system is not left in an inconsistent state and the application’s

functionality is not jeopardized. We have realized the adaptation patterns on top of an

existing middleware platform, called Prism-MW [5].

The paper is organized as follows. Section 2 provides the required background,

while Section 3 motivates the work by summarizing the problems with existing

approaches. Section 4 describes our overall approach. Section 5 describes the

extraction of an adaptation pattern from a given architectural style. Section 6 provides

an overview of the application of patterns in improving the capabilities of an existing

middleware. Finally, the paper concludes.

2 Background and Related Work

For exposition purposes, we are going to use a simple application intended for routing

incoming cargo to a set of warehouses. This application was first presented in the

seminal work on architecture-based adaptation [6]. We have reproduced its

architecture in Fig. 1a. The architectural style of this application is C2 [9]. A

software system built in the C2 style consists of layers, where request events travel

upward, while notification events travel downward. Events that are received are

evaluated to determine if the component needs to process them.

In Fig. 2, the Ports, Vehicles, and Warehouses components are abstract data types

(ADTs) that keep track of the state of shipping ports, transportation vehicles, and

goods warehouses, respectively. The Telemetry component determines when cargo

arrives at a port, and tracks the cargo from the time it is routed until it is delivered to

the warehouse. The Port Artist, Vehicle Artist, and Warehouse Artist components are

responsible for graphically depicting the state of their respective ADTs to the end-

user. The Router component provides the end-user’s last selected port, vehicle, and

warehouse. The Graphics component renders the drawing requests sent from the

artists using the Java AWT graphics package.

2.1 Challenges of Architecture-Based Adaptation

Typically, middleware support for architecture-based adaptation is realized in the

form of adding, removing, and replacing software components. However, such

changes could jeopardize the functionality of a software system, as they could leave

the system in an inconsistent state. For instance, consider a scenario where we would

like to replace the Warehouses component. Such capability may be realized by

removing the old Warehouses and adding a new instance of it [6]. This solution,

however, ignores the other components, such as Telemetry, which depend on the

Warehouses for delivering their services.

Let us assume the end-user makes a “Route Warehouse” request using the

Graphics component. Fig. 1b shows the interactions (events/messages) that would

result in response to this request. If such a request is made while Warehouses

component is being updated, and thus temporarily unavailable, it is processed by the

Router and Warehouse Artist, but not the new Warehouses component. The effect of

Fig. 1. Cargo-routing application: a) its C2 architecture; and b) a transaction for the cargo-

routing application and the corresponding component dependencies.

this may manifest itself in the form of functional failure: the new Warehouses

component may not receive event 3, resulting in the system to never respond to the

user (i.e., events 4-7 do not occur).

At first blush it may seem that buffering events intended for Warehouses

component would solve the problem. However, buffering by itself cannot address

consistency issues that may arise. Consider the situation in which Warehouses

component is replaced after it has replied with event 4, but before receiving event 5.

In this case, it is possible for the old component to process request 3, and the new

component to process request 5, assuming it is buffered for later processing.

However, this may violate the component’s interaction protocol (i.e., event 5 can be

processed only after event 3 has, which would not be the case with the newly installed

component). Since the new component may not have the correct state, the system may

become inconsistent.

2.2 Change Management Model

A generally applicable solution to this problem was proposed by Kramer and Magee’s

seminal model of dynamic change management [3], which provides a separation of

structural concerns from application concerns. Their work also identifies two possible

states for a software component during the adaptation process. Each state defines how

a component behaves during the corresponding phase of adaptation:

• Active: A component can start, receive, and process transactions.

• Passive: A component in this state will continue to receive and process

transactions, but will not initiate any new transactions.

Quiescence is defined as the required property to adapt a component [4].

Quiescence implies that a component (1) is not currently involved in a transaction, (2)

will not start any new transactions, and (3) no transactions have been or will be

initiated by other components that require service from this node.

Based on this change management model, Gomaa and Hussein [2] suggest the

development of reconfiguration patterns for software product lines. However, their

approach does not consider transitive dependencies and their implications.

3 Research Problem

It is typically left to the application developers to implement the required change

management and coordination facilities mentioned above. These facilities would

provide the logic that ensures the system’s consistency during adaptation (i.e., the

order in which the various components are activated and passivated).

The implementation of these facilities is a major burden on the application

developers for the following reasons: (1) Identifying the component dependencies:

Determining the changes that need to occur in the system to place a software

component in a particular adaptation state (i.e., active, passive) depends on the

component dependencies. However, identifying transitive dependencies requires

understanding the details of the application logic, which defeats the purpose of

treating components as black boxes and adapting a system at the architectural level.

(2) High complexity: Realizing such facilities requires the development of complex

state management and coordination logic. (3) Lack of reuse: Since each component

has its own unique set of dependencies on other components, one component’s state

management logic cannot be easily reused by other software components that may

need to be updated at run-time. (4) High coupling: Since the state management logic

depends on the component dependency relationships, the resulting software is very

fragile. That is as soon as the software evolves (e.g., components change the way they

interact and use one another), the state management logic needs to be modified.

Traditionally, one method of reducing complexity and increasing the developer’s

productivity is to employ middlewares. The middleware engineers develop the

frequently needed intra-component facilities (e.g., data marshalling, remote method

invocation, service discovery), and provide them as reusable modules to any

applications developed on top of the middleware. Unfortunately, employing the same

approach in the context of adaptation is not feasible, since it needs inter-component

analysis and the middleware designers cannot predict a priori which software

components will be deployed on top of a middleware, how they will be configured,

and what will be their dependencies. Therefore, modern middleware platforms do not

provide change management facilities beyond simple dynamic addition and removal

of components. This is precisely the research problem that we have aimed to solve in

this paper through the use of knowledge embedded in architectural styles and the

capabilities of a unique style aware middleware.

4 Approach

In light of the challenges mentioned above, currently three methods of adapting a

software system are employed: (1) Query the component itself to provide information

about its dependency relationships. This relates to the 1
st
 problem in Section 3, i.e.,

violates the black-box treatment of components. Moreover, it hinders reusability of

components developed in this manner. (2) Yank the old component and replace it

with a new one. As exemplified using the Cargo Routing application in Section 2.1,

this approach could leave the sytem in an inconsistent state. (3) Bring down

(Passivate) the entire system before adapting it, and restart it afterwards. This

approach clearly results in severe disruption in system’s execution.

We propose a new approach that builds on the existing models of dynamic change

management (recall Section 2). The key underlying insight guiding our research is

that a software system’s architectural style could reveal the dependency relationships

among the components of a given system, even if the components are indirectly

connected to one another. The dependency relationships are critical when adapting a

software system, as they determine the impact of change on the system [4,10].

We use the rules and constraints of an architectural style to infer the component

dependencies for any software system built according to that style. An example of this

can be seen in Fig. 1a. In a C2 software system it is generally true that components in

lower layer depend on components in higher layer. As a concrete example, take

Warehouse Artist that depends on Warehouses.

The component dependencies are in turn used to determine a reusable sequence of

changes that need to occur for placing a component in the appropriate adaptation

state. Such a recurring sequence of changes, which are coordinated among the

system’s architectural constructs (e.g., components, connectors) is called an

adaptation pattern. An adaptation pattern provides a template for making changes to a

software system built according to a given style without jeopardizing its consistency.

An adaptation pattern for a given style is guaranteed to be generally applicable for

systems built according to that style, since (1) quiescence is guaranteed to be

reachable [4], and (2) applications built according to the style exhibit similar

dependency relationships among their components.

5 Style-Driven Adaptation Patterns

In this section we describe the process of extracting adaptation patterns from an

architectural style. For this purpose we have chosen the C2 style [9]. Note that while

the overall approach is generally applicable to any style, the details of the patterns,

their accuracy, and level of disruption due to adaptation directly depend on the

characteristics of the style. The styles with rich properties and rules inevitably result

in more interesting and effective patterns.

During normal operation a C2Component is Waiting to receive asynchronous

request event from an associated C2Connector. If the event is not intended for the

component, it returns to the Waiting state. Otherwise, it starts Processing the request

and additional request and notification events are generated as needed. After the

Processing has completed and the appropriate events are sent, the component returns

to the Waiting state.

Adaptation of a software system requires its constituents (e.g., components,

connectors) to coordinate the changes that need to occur. It is the responsibility of the

adaptation module to track the adaptation state (e.g., active, passive) of the

component and neighboring architectural constructs. This recurring coordination

Fig. 2. Partial state chart of C2 adaptation pattern: A C2Component that is being adapted.

constitutes the adaptation pattern for an architectural construct in a given style.

An adaptation pattern may be expressed using statechart models (Fig. 2). Each

pattern contains one or more statecharts that define the sequence of steps a component

goes through during the adaptation process. In essence, each statechart describes the

run-time behavior of a component type (e.g., Client in Client-Server, Publisher in

Publish-Subscribe) provisioned by a style during the adaptation process.

The adaptation process requires a component that is to be updated to satisfy the

quiescence property. The statechart in Fig. 2 presents the transitions that take an

Active C2Component that is being adapted to satisfy the quiescence property. When

in the Active state, the component processes any received events. The first step toward

quiescing the component can take one of three paths. Let us first consider the scenario

where the component has no bottom connector (i.e., no other component depend on

it). In this case, either the component is currently processing or waiting (idle). If the

component is waiting, then it simply transitions to Quiescent. If the component is

processing, it starts Quiescing Itself, and waits. When the processing has completed, it

transitions to Quiescent.

If the component has a bottom connector (i.e., other components depend on it),

then the component sends a Passivate request to the bottom connector to passivate the

dependent components. Once an ACK reply is received from the bottom connector,

the component gets Quiescent if it is waiting, and starts Quiescing Itself if it is

processing. In the latter case, the component eventually transitions to the Quiescent

when the component has completed the work.

The pattern described above, while simple, codify the structural rules and

constraints of C2 style into reusable logic that allows for consistent adaptation of any

C2 software system. Due to space constraints we have just shown the adaptation

patterns for the component being adapted.

6 Style-Aware Adaptation

We have leveraged the style-driven adaptation patterns described above to provide

advanced run-time adaptation facilities in Prism-MW [5]. Prism-MW is an

architectural middleware, which supports architectural abstractions by providing

implementation-level modules (e.g., classes) for representing each architectural

element, with operations for creating, manipulating, and destroying the element.

These abstractions enable direct mapping between a system’s software architectural

model and its implementation. Prism-MW’s core functionality provides the necessary

support for developing arbitrarily complex applications, as long as one relies on the

provided default facilities (e.g., event scheduling, dispatching, and routing). The

developer can extend the core functionality as needed. Prism-MW provides three key

capabilities that we have relied on to realize the proposed approach. It provides

support for (1) basic architecture-level dynamism, (2) multiple architectural styles,

and (3) architectural reflection. By codifying the adaptation patterns in Prism-MW,

we have been able to provide significantly more advanced adaptation capabilities than

that is currently offered by other middleware platforms.

7 Conclusion

Most state-of-the-art middleware solutions provide rudimentary support for dynamic

adaptation of software systems. They lack the ability to handle the implications of

replacing a software component. Therefore, the application developers are burdened

with the responsibility of managing the adaptation process at the application-level.

We have developed a new approach that addresses the current shortcomings. It

leverages the rules and characteristics of an architectural style to determine adaptation

patterns for software systems built according to that style. These patterns specify the

required sequence of actions to put a software component in a state that can be

adapted without jeopardizing the software system’s consistency, and hence its

functionality. In our future work, we plan to develop a catalog of adaptation patterns

for commonly employed architectural styles. Such a catalog would be of great interest

to both the software engineering and middleware community. We also plan to include

the new patterns in the adaptation support of Prism-MW.

Acknowledgments. This work is partially supported by grant CCF-0820060 from the

National Science Foundation.

References

1. Fielding, R.: Architectural Styles and the Design of Network-based Software

Architectures. Doctoral Thesis #AAI9980887 Univ. of California Irvine (2000).

2. Gomaa, H., Hussein, M.: Software reconfiguration patterns for dynamic evolution of

software architectures. Working IEEE/IFIP Conference on Software Architecture. pp. 79-

88 (2004).
3. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. Int'l Conf on

Software Engineering. pp. 259-268, Minneapolis, MN (2007).

4. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change

Management. IEEE Trans. Softw. Eng. 16, 11, 1293-1306 (1990).

5. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A Style-Aware Architectural Middleware

for Resource-Constrained, Distributed Systems. IEEE Trans. Softw. Eng. 31, 3, 256-272
(2005).

6. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution.

Int'l Conf on Software Engineering. pp. 177-186, Kyoto, Japan (1998).

7. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. Softw. Eng.

Notes. 17, 4, 40-52 (1992).

8. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline.

Prentice-Hall, Inc. (1996).

9. Taylor, R.N., Medvidovic, N., et al.: A component- and message-based architectural style

for GUI software. Int'l Conf on Software Engineering. pp. 295-304, Seattle, Washington

(1995).

10. Vandewoude, Y., Ebraert, P., Berbers, Y., D'Hondt, T.: Tranquility: A Low Disruptive
Alternative to Quiescence for Ensuring Safe Dynamic Updates. IEEE Trans. Softw. Eng.

33, 12, 856-868 (2007).

