A report on

UT=-Plag "1.0

University of Tehran's Plagiarism Detection Software

Naeem Esfahani

Misagh Bagherian

August, 2005

F

UT-Plag ™ .

Abstract

Nowadays it’s the age of digital content and as you know digital content is for copying.
Quotation, revision, plagiarism, and file sharing all create copies. Easy access to the web has
led to increased potential for students cheating on assignments by plagiarizing others” work.
Overlap detection tools are easy to use and accurate in plagiarism detection, so they can be an
excellent deterrent to plagiarism. Consider a large collection of documents submitted to an
online submission system in a conference or a course management system. Because of the
nature of online submission systems, certainly there’re some plagiarized documents which
some are foolishly plagiarized thoroughly from another document and some are shrewdly
plagiarized from different parts of different documents. We want to design and implement
UT-Plag as a plagiarism detection software that in future will be a part of UTCM!. Now our
system is similar to MOSS?, a widely used plagiarism detection software at Berkeley. The
results are included at the end of this report. There you can visit our future plan to enhance
UT-Plag.

1 Introduction

1-1 What's plagiarism?

This is the first question that naturally comes to mind. What's plagiarism? What do we
want to detect? Some important definitions that are acceptable in our work come in the
following. Plagiarism refers to:

e The use of another's ideas, information, language, or writing, when done without
proper acknowledgment of the original source [1].

e Buying a paper from a research service or term paper mill [2].
¢ Turning in another student's work without that student's knowledge [2].
e Copying a paper from a source text without proper acknowledgment [2].

e Copying materials from a source text, supplying proper documentation, but leaving out
quotation marks [2].

e Paraphrasing materials from a source text without appropriate documentation [2].
In our domain specific problem in UTCM, plagiarism means submission of others” work

into this course management system. As we said before this plagiarized version could be a
foolishly thorough copy or a shrewdly reordered and changed one.

1 University of Tehran Course Management system
2 Measure Of Software Similarity

Naeem Esfahani - Misagh Bagherian © 2005

F

UT-Plag ™ .

1-2 Plagiarism Detection

Now we want to investigate the reasons that led us to design and implement such a
system. Being teacher assistants for about two years, we found that plagiarism is growing
rapidly among students. Now they are so skilled in plagiarism. Usually they form colonies
in which each one performs one assignment and all of them hand in others work. The most
important concern is that they occasionally hand in full copies. They usually glue different
parts of their friends works and internet articles, then shuffle the paragraphs and at last
insert a little of their self opinions. In large collection of documents it's so hard to detect
such kinds of plagiarized documents manually without aid of any software tool. Thus,
students plagiarize and most of plagiarized works won’t be detected. This is a dangerous
issue that causes growth in digital plagiarism. We don’t have any statistics about
plagiarism in University of Tehran, or even in Iran. But here we mention some statistics
from the CAI® which is till June, 2005 [3].

e On most campuses, 70% of students admit to some cheating. Close to one-quarter of the
participating students admitted to serious test cheating in the past year and half
admitted to one or more instances of serious cheating on written assignments.

e Academic honor codes effectively reduce cheating. Surveys conducted in 1990, 1995,
and 1999, involving over 12,000 students on 48 different campuses, demonstrate the
impact of honor codes and student involvement in the control of academic dishonesty.
Serious test cheating on campuses with honor codes is typically 1/3 to 1/2 lower than
the level on campuses that do not have honor codes. The level of serious cheating on
written assignments is 1/4 to 1/3 lower.

o Internet plagiarism is a growing concern on all campuses as students struggle to
understand what constitutes acceptable use of the Internet. In the absence of clear
direction from faculty, most students have concluded that 'cut & paste' plagiarism -
using a sentence or two (or more) from different sources on the Internet and weaving
this information together into a paper without appropriate citation - is not a serious
issue. While 10% of students admitted to engaging in such behavior in 1999, almost 40%
admit to doing so in the Assessment Project surveys. A majority of students (77%)
believe such cheating is not a very serious issue.

o Faculties are reluctant to take action against suspected cheaters. In Assessment project
surveys involving almost 10,000 faculty in the last three years, 44% of those who were
aware of student cheating in their course in the last three years, have never reported a
student for cheating to the appropriate campus authority. Students suggest that
cheating is higher in courses where it is well known that faculty members are likely to
ignore cheating.

o Longitudinal comparisons show significant increases in serious test/examination
cheating and unpermitted student collaboration. For example, the number of students
self-reporting instances of unpermitted collaboration at nine medium to large state
universities increased from 11% in a 1963 survey to 49% in 1993. This trend seems to be

3 Center for Academic Integrity

Naeem Esfahani - Misagh Bagherian © 2005 ‘

F

UT-Plag ™ .

continuing: between 1990 and 1995, instances of unpermitted collaboration at 31 small
to medium schools increased from 30% to 38%.

o Studies of 18,000 students at 61 schools, conducted in the last four years, suggest
cheating is also a significant problem in high school - over 70% of respondents at public
and parochial schools admitted to one or more instances of serious test cheating and
over 60% admitted to some form of plagiarism. Slightly less than half of the
respondents from private schools admitted similar behaviors. About half of all students
admitted they had engaged in some level of plagiarism using the Internet.

So according to these statistics we should think about a deterrent solution. Our solution is
UT-Plag. This version (1.0) of UT-Plag does not support detection of plagiarism from the
World Wide Web. But it will be feasible in future versions. It's a crucial concern. If you

don’t know the reason visit following tools that students use to plagiarize their work from
the World Wide Web:

e http://fastpapers.com/

e http://schoolsucks.com/

e http://www.collegetermpapers.com/
e http:/ /research-essays.com/

e http://antiessays.com/

e http://123helpme.com/

o etc.

So to treat all students consistently, investigate their work fairly, and enable convenient
and fair electronic submission systems like UTCM we should detect plagiarism precisely
by some powerful software like UT-Plag.

1-3 Main Problems

In the process of detecting plagiarism there’re some important problems. The first problem
is that we want to detect partial copies. We don’t want to just find the exact match. As we
said above shuffling is a popular approach for shrewd students to escape from detection of
their plagiarized work.

Another problem is the accuracy of our method. Our software should be able to
detect plagiarized documents accurately. False positiveness and false negativeness should
be as minimized as possible. As you know it has a destructive effect if our software detects
an innocent student’s document as a plagiarized version of others’ ones.

There is one more problem and that’s the efficiency of our software. We should
design and implement software with reasonable efficiency. It's so awful to wait for a long
time to find out that there are some plagiarisms in the submitted collection or not.

As we mentioned before including web data is another difficult issue. We plan to
add this feature to our system in future releases.

Naeem Esfahani - Misagh Bagherian © 2005

F

UT-Plag ™ .

|
2 UT-Plag in Details

As we said before, UT-Plag 1.0 is mostly based on MOSS [4], a widely used plagiarism
detection software. Here in this section we’ll report some basic features of our software.

2-1 Desirable Properties

As a global rule every plagiarism detection method should meet these three properties [5]:

1. Whitespace insensitivity
In matching text files, matches should be unaffected by such things as extra whitespace,
capitalization, punctuation, etc. In other domains the notion of what strings should be
equal is different—for example, in matching software text it is desirable to make
matching insensitive to variable names.

2. Noise suppression
Discovering short matches is uninteresting. Any match must be large enough to imply
that the material has been copied and is not simply a common word or idiom of the
language in which documents are written.

3. Position independence
Coarse-grained permutation of the contents of a document (e.g., scrambling the order of
paragraphs) should not affect the set of discovered matches. Adding to a document
should not affect the set of matches in the original portion of the new document.
Removing part of a document should not affect the set of matches in the portion that
remains.

2-2 k-grams

A k-gram is a contiguous substring of length k. Divide a document into k-grams, where k is
a parameter chosen by the user. For example, Figure 1(c) contains all the 5-grams of the
string of characters in Figure 1(b). Note that there are almost as many k-grams as there are
characters in the document, as every position in the document (except for the last k — 1
positions) marks the beginning of a k-gram. Now hash each k-gram and select some subset
of these hashes to be the document’s fingerprints. In all practical approaches, the set of
fingerprints is a small subset of the set of all k-gram hashes. A fingerprint also contains
positional information, which we do not show, describing the document and the location
within that document that the fingerprint came from. If the hash function is chosen so that
the probability of collisions is very small, then whenever two documents share one or more
fingerprints, it is extremely likely that they share a k-gram as well. For efficiency, only a
subset of the hashes should be retained as the document’s fingerprints. In next sections
we’ll introduce our method of selecting fingerprints and compare it to some other methods.

(5]

Naeem Esfahani - Misagh Bagherian © 2005 ‘

F

UT-Plag ™ .

A do run run run, a 4do run run
(a) Some text from [7].

adorunrunrunadorunrun
i) The text with irrelevant features removed.

adoru dorun orunr runru Unrun nrunr runru
unrun nruna runad unado nador adoru dorun
OTUNT runru unrun

() The sequence of 5-grams derived from the text.

TPOTZ 42 17 98 50 17 98 8 88 &7 39 77 T 42
17 28
id) A hypothetical sequence of hashes of the 3-grams.

72 8 88 72
(&) The sequence of hashes selected using 0 mod 4.

Figure 1: Finger printing some sample text [5]

Here you can see that using k-grams provides “Noise suppression”. When you choose k as
the size of the atomic view of a document it means that each string match with size less
than k would be ignored and could not be considered as a fingerprint. UT-Plag uses this
approach and thus it will support “Noise suppression “. “Whitespace insensitivity” and
“Position independence” both have been considered in UT-Plag. Later we’ll discuss the
algorithm in detail.

2-3 Karp-Robin String Matching [5]

Karp and Rabin’s algorithm is one of the earliest version of substring matching techniques
based on k-grams. Precisely we can say that the main goal of this algorithm is to find
occurrences of a particular string s of length k within a much longer string like a document.
The idea is to compare hashes of all k-grams in the long string with the hash of s. But to
accomplish this we need to propose a “rolling” hash function. The question that may be
popped to mind by now is this: What's a rolling hash function? If the hash for the i+1st k-
gram is computed quickly (O (1)) from the hash of the i” k-gram, we say that the hash
function is a rolling hash function. In our problem we treat a k-gram as a k-digit number in
base b. In UT-Plag 1.0 we’'ve used Java’s hash function that has a rolling behavior as Karp-
Rabin’s algorithm suggests. Having C,...C, as a k-gram (k-digit number in base b),

H(C,...C,) is its hash value that is computed according to following hash function:

k—1 k—2
c1 % b + o % b ¥ ...+ cr—_1 * b+ cn

Naeem Esfahani - Misagh Bagherian © 2005

F

UT-Plag ™ .

But as we mentioned above, according to Karp-Rabin’s algorithm we need a hash function
with rolling behavior to compute hash values as quickly as possible. Following shows the
rolling behavior of suggested hash function:

Hco...cpqp1) = (H(er...cx) — 1 * b}‘_l‘) # b+ Crpo1

Since b*"' is a constant, this allows each subsequent hash to be computed from the
previous one with only two additions and two multiplications. Further, this identity holds
when addition and multiplication are modulo some value (e.g., the size of the largest
representable integer), so this method works well with standard machine arithmetic. As an
aside, this rolling hash function has a weakness. Because the values of the C, are relatively

small integers, doing the addition last means that the last character only affects a few of the
low-order bits of the hash. A better hash function would have each character C, potentially

affect all of the hash’s bits. As noted in [5], it is easy to fix this by multiplying the entire
hash of the first k-gram by an additional b and then switching the order of the multiply and
add in the incremental step:

H(cz...cxp1)=((H'(c1...c6) —er *bk:] + cpy1) kb

Therefore, now we wish to compare all pairs of k-grams in the collection of documents. All-
to-all nature of this comparison is the major difficulty. For example consider the problem of
all-to-all matching on ASCII text. Using 4-bit integer hash values for each k-gram will
eventuate to an index infrastructure much longer than the original document. A well
known solution to this problem is “Fingerprinting”.

3 Fingerprints

Fingerprinting means that we reduce the set of hash values of a
document in order to have a smaller logical representation of that
document. In our terminology we refer to these selected hash
values as fingerprints of the document. But a new problem has
been arisen: How to select document fingerprints?

Here we’ll briefly investigate some different approaches to select
document fingerprints.

e Select every i” hash value of a document
A simple but incorrect strategy is to select every i” hash of a document, but this is not
robust against reordering, insertions and deletions. In fact, prepending one character to
a file shifts the positions of all k-grams by one, which means the modified file shares
none of its fingerprints with the original. Thus, any effective algorithm for choosing the
fingerprints to represent a document cannot rely on the position of the fingerprints
within the document.

Naeem Esfahani - Misagh Bagherian © 2005 ‘nl

F

4

Now, we'll discuss about details of winnowing as a
fingerprinting algorithm. From [5] we mention an
upper bound on the performance of winnowing,
expressed as a trade-off between the number of
fingerprints that must be selected and the shortest
match that we are guaranteed to detect. Winnowing
guarantees to find substring matches that satisfy
two properties:

UT-Plag ™ .

Select all hashes of a document that are 0 mod p [6]

In this way fingerprints are chosen independent of their position, and if two documents
share a hash value that is 0 mod p it is selected in both documents. Some commercial
systems use this technique, but it needs some improvements to work well. However
this approach is a popular method of document fingerprinting.

Select n smallest hashes of all k-grams of a document

By fixing the number of hashes per document, the system would be more scalable as
large documents have the same number of fingerprints as small documents. This idea
was later used to show that it was possible to cluster documents on the Web by
similarity. The price for a fixed-size fingerprint set is that only near-copies of entire
documents could be detected. Documents of vastly different size could not be
meaningfully compared; for example, the fingerprints of a paragraph would probably
contain no fingerprints of the book that the paragraph came from. Choosing hashes 0
mod p, on the other hand, generates variable size sets of fingerprints for documents but
guarantees that all representative fingerprints for a paragraph would also be selected
for the book. These two different approaches could be classified to fingerprinting as
being able to detect only “resemblance” between documents or also being able to detect
“containment” between documents.

Winnowing [5]

In each window select the minimum hash value. If there is more than one hash with the
minimum value, select the rightmost occurrence. Now save all selected hashes as the
fingerprints of the document.

We've used Winnowing in UT-Plag 1.0. So we'll discuss this method in details in the
next section.

Winnowing

¢ Greater than t (guarantee threshold)
¢ Not smaller than k (noise threshold)

The constants t and k < t are chosen by the user. We avoid matching strings below the noise
threshold by considering only hashes of k-grams. The larger k is, the more confident we can
be that matches between documents are not coincidental. On the other hand, larger values

Naeem Esfahani - Misagh Bagherian © 2005 ‘

F

UT-Plag ™ .

of k also limit the sensitivity to reordering of document contents, as we cannot detect the
relocation of any substring of length less than k. Thus, it is important to choose k to be the
minimum value that eliminates coincidental matches. Figures 3(a)-(d) are reproduced from
Figure 1 for convenience and show a sequence of hashes of 5-grams derived from some
sample text.

Given a sequence of hashes I, ...h,, if n > t — k, then at least one of the i, must be chosen to

guarantee detection of all matches of length at least t. This suggests the following simple
approach. Let the window size be w = t — k + 1. Consider the sequence of hashes h,h, ...h

n

that represents a document. Each position 1 < i <n — w + 1 in this sequence defines a
window of hashes I,...hi+w—1. To maintain the guarantee it is necessary to select one
hash value from every window to be a fingerprint of the document (Figure 2). (This is also
sufficient [5]) In UT-Plag 1.0 we have used the following strategy as works well in MOSS, a
practical and widely used plagiarism detection software:

1: tlk

1 1

-—k—

Figure 2: Window size to maintain the guarantee

Definition 1: Winnowing

In each window select the minimum hash value. If there is more than one hash with the
minimum value, select the rightmost occurrence. Now save all selected hashes as the
fingerprints of the document.

Figure 3(e) gives the windows of length four for the sequence of hashes in Figure 3(d). Each
hash that is selected is shown in boldface (but only once, in the window that first selects
that hash). The intuition behind choosing the minimum hash is that the minimum hash in
one window is very likely to remain the minimum hash in adjacent windows, since the
odds are that the minimum of w random numbers is smaller than one additional random
number. Thus, many overlapping windows select the same hash, and the number of
fingerprints selected is far smaller than the number of windows while still maintaining the
guarantee. Figure 3(f) shows the set of fingerprints selected by winnowing in the example.
In many applications it is useful to record not only the fingerprints of a document, but also
the position of the fingerprints in the document. For example, we need positional
information to show the matching substrings in a user interface. In version 1.0 of UT-Plag
we use an integer number to show the offset of found match in the document. An efficient
implementation of winnowing also needs to retain the position of the most recently
selected fingerprint. Figure 3(f) shows the set of [fingerprint, position] pairs for this
example (in this figure the first position is numbered 0, but in UT-Plag 1.0 we used 1 to
indicate the first offset).

Naeem Esfahani - Misagh Bagherian © 2005 ‘nl

F

UT-Plag ™ -

A do run run run, a do run run
{a) Some text.

adorunrunrunadocrunrun
{b) The text with irrelevant features removed.

adoru dorun orunr runru Unrun nrunr runru
unrun nruna runad unado nador adoru dorun
OTUNr runru unrun

ic) The sequence of 5-grams derived from the text.

77 74 42 17 98 50 17 98 8 88 &7 39 77 74 42
17 98
(d) A hypothetical sequence of hashes of the 5-grams.

(77, 74, 42, 17) (74, 42, 17, 98)
(42, 17, 98, 50O} {17, 98, 50, 17)
(98, GO, 17, 98) {50, 17, 98, 8
(17, =28, 8, 88) (98, &, B8, &7)
(8, 88, &7, 29) iea, &7, 39, 77)
(67, 39, 77, 74) (39, 77, 74, 42)
(77, 74, 4z, 17) (T4, 42, 17, 98)
ie) Windows of hashes of length 4.

17 17 8 39 17
(f) Fingerprints selected by winnowing.

[17,31 [17,61 [8&,8] [39,111 [17,15]
iz) Fingerprints paired with 0-base positional information.

Figure 3: Winnowing sample text

To avoid the notational complexity of indexing all hashes with their position in the global
sequence of hashes of k-grams of a document, we suppress most explicit references to the
position of k-grams in documents in our presentation. But now in UT-Plag 1.0 there’s no
graphical user interface to highlight the matches.

4-1 Expected Density

Definition 2: Expected Density

The density of a fingerprinting algorithm is the expected fraction of fingerprints selected
from among all the hash values computed, given random input.

Naeem Esfahani - Misagh Bagherian © 2005 ‘nl

F

UT-Plag ™ .

Now (from [5]) we mention the analysis about the density of winnowing, which gives the
trade-off between the guarantee threshold and the number of fingerprints required.
Consider the function C that maps the position of each selected fingerprint to the position
of the first (leftmost) window that selected it in the sequence of all windows for a
document. We say we are charging the cost of saving the fingerprint to the indicated
window. The charge function is monotonic increasing that is, if p and g are the positions of
two selected fingerprints and p < g, then C(p) < C(g).

To proceed further recall that the sequence of hashes we are winnowing is random. We
assume that the space of hash values is very large so that we can safely ignore the
possibility that there is a tie for the minimum value for any small window size. Consider an
indicator random variable Xi that is one iff the i” window Wi is charged. Consider the
adjacent window to the left IV, ,. The two intervals overlap except at the leftmost and
rightmost positions. Their union is an interval of length w+1. Consider the position p
containing the smallest hash in that union interval. Any window that includes p selects 11,

as a fingerprint. There are three cases [5]:

1. If p =i — 1, the leftmost position in the union, then IV,_, selects it. Since p € W,, we
know W, must select a hash in another position, 4. This hash is charged to IV, since
W, selected it, W, did not select it, and the charge function is monotonic
increasing. Thus in this case, Xi = 1.

2. If p=i+ w — 1, the rightmost position in the union interval, then IV, selects it. IV,

must be charged for it, as Wi is also the very leftmost interval to contain p. Again,
Xi=1.

3. If p is in any other position in the union interval, both W,_, and IV, select it. No
matter who is charged for it, it won't be W,, since W, is further left and also
selected it. Thus in this case, Xi = 0.

The first two cases happen with probability 1 / (w + 1), and so the expected value of Xi is
2/ (w + 1). Recall that the sum of the expected values is the expected value of the sum, even
if the random variables are not independent. The total expected number of intervals
charged, and therefore the total number of fingerprints selected, is just this value times the
document length. Thus the density is d =2 /(w + 1).

Now we compare the 0 mod p algorithm and Winnowing at the same density. That is, we
takep=1/d=(w+ 1) /2. For a string of length t = w + k — 1 consider the event that the 0
mod p algorithm fails to select any fingerprint at all within it. (Recall that winnowing would
never fail to do so.) We now compute the probability of this event for one given string.

Naeem Esfahani - Misagh Bagherian © 2005

F

UT-Plag ™ .

Please note that for two overlapping such strings these events are not independent. Thus
the probability we compute is not a good estimate for the fraction of all such substrings of a
text that do not have a fingerprint selected using the 0 mod p algorithm. Again we assume

independent uniformly distributed hash values. Also we assume large w. Thus, the
probability that the guarantee fails in a given sequence of text of length ¢, i.e. that no hash
in a given sequence of w hashes is 0 mod p, is

' w —2w
(1-d)" = (1 - ui 1) ~ e = e TTH ~ 13.5%.

4-2 Robust Winnowing

Winnowing, however, has a different problem. In low-entropy strings there are many equal
hash values, and thus many ties for the minimum hash in a given window. To be truly
local and independent of global position, it is necessary to take, say, the rightmost such
hash in the winnowing window. But in the extreme case, say a long string of 0’s with only
one k-gram, nearly every single hash is selected, because there is only a single k-gram
filling the entire winnowing window and at each step of the algorithm we must choose the
rightmost copy —which is a new copy in every window. There is, however, an easy fix for
this problem. In UT-Plag we've used the refined version of winnowing as follows [5]:

Definition 3: Robust Winnowing

In each window select the minimum hash value. If possible break ties by selecting the
same hash as the window one position to the left. If not, select the rightmost minimal
hash. Save all selected hashes as the fingerprints of the document.

Robust winnowing attempts to break ties by preferring a hash that has already been chosen
by a previous window. This is no longer a local algorithm, but one easily observes that for
any two matching substrings of length t = w + k — 1 we guarantee to select the same hash
value and so the match is still found; we simply no longer guarantee that these fingerprints
are in the same relative position in the substrings. However, the two fingerprints are close,
within distance w — 1. This technique reduces the density on a string such as “0000 . . . ”
from asymptotically 1 to just 1/w, one fingerprint selected per window-length.

Naeem Esfahani - Misagh Bagherian © 2005

F

UT-Plag ™ .

4-3 Engine Basic Source Code

Figure 4 shows the pseudocode of MOSS and UT-Plag 1.0 engine. We've implemented this
engine pseudocode. We don't prefer to explain more about this pseudocode here. If you
want to learn more about it read this pseudocode and its comments exactly.

wold winnow({int w s#*window =ize¥®”) |

7« cilrcular buffer implementing window of =ize w

hash_t hiw];

for (int i=0; i<w; ++1i) h[i] = INT_HAX;
int r = 0; < window right end

int min = 0;: v index of minimum hash

S Bt the end of sach iteration. min hold=s the
s« pozition of the rightmost minimal hash in the
S current window., recordi(x) is= called only the
S filrs=t time an instance of =% is selected a= the
¢ rightmost minimal hash of a window.

vhile {(true) {

r=(r+ 1) & w; 7« zhift the window by one
h{r] = next_hash(); -~ and add one newv hash
1f {min ==) {

<« The previous minimum 1= no longer in this
S window . Scan h leftward starting from r
s« for the rightmost minimal hash. Hote min
S z=tarts with the index of the rightmost
< hash.
for{int i=(r-l+widw; il=r: i={i-14w)ifw)

if (h[i] ¢ himin]) min = 1i;
record({h[min]. global_posinin. . wi):

el=z=e {
S Otherwise, the previous mininum is =till 1in
¢ thi=s window. Compare against the new walue
s« and update min if necessarv.
if (hlzr] <= hlmin]) { -~ (=)
min = r;
recordi{h[{min]. global_pos(min, ¥, w)):

Figure 4: Pseudocode of UT-Plag 1.0 engine

4-4 Clustering the Results

We've one more feature that it's not yet supported in MOSS
and most other well known systems. We cluster the results.
We show the results in some distinct groups in which there's
at least one document. If there're more than one document in
a output cluster in means that probably these documents are
plagiarized version of each other. This was a very nice
suggestion from Dr. Farhad Oroumchian.

Naeem Esfahani - Misagh Bagherian © 2005

F

UT-Plag ™ -

Our main goal was to understand the results easier. We start with original documents as
individual clusters. Then we merge the two most similar clusters into one cluster and
repeat this till the highest similarity between clusters drop below a threshold like S. We
used vector space (ltc-ltc) to compute the similarity between the centroids of two clusters.

5 Future Works

UT-Plag is in its early stage. It's so young. We prepared version 1.0 of UT-Plag for final
project of Intelligent Information Retrieval course in University of Tehran. But for future
we plan to enhance it and add some helpful features. Followings are some of these future
works:

* Design a graphical user interface that lets the user submit a collection of documents
into system and view its results properly.

* Design some front end units to support some other widely used file types rather
than plain text.

* Design some front end units to support some widely used programming languages
files like Java, C/C++, Verilog HDL, Prolog, etc.

* Use some other information retrieval techniques to enhance UT-Plag, like signature
extraction using 0 mod p techniques.

6 Conclusion

We have presented winnowing, a document fingerprinting algorithm that is both efficient
and guarantees that matches of a certain length are detected. We have also presented the
specific features of UT-Plag 1.0 and finally discussed our extra feature rather than MOSS
and our future plan to enhance UT-Plag. Our engines pseudocode is also included in above

pages.

Naeem Esfahani - Misagh Bagherian © 2005 13 ‘

F

UT-Plag ™ -

7 Acknowledgements
Here we wish to thank Dr. Oroumchian for familiarizing us with information retrieval
topics and his good suggestions to develop such a system. We should also thank MOSS

designers for publishing most important topics about their widely used plagiarism
detection software.

8 References

[1] http:/ /en.wikipedia.org/wiki/Plagiarism, visited on 6/24/2005.

[21 Wilhoit.S, “Helping students avoid plagiarism”, College Teaching, 1994, 42(4), 161-165.

[3] “The Center For Academic Integrity, CAI Research”, Retrieved on 6/24 /2005 from:
http:/ /www.academicintegrity.org/cai_research.asp

[4] http:/ /www.cs.berkeley.edu/~aiken/moss.html, visited on 8/2/2005

[3] S.Schlemier et. al., “Winnowing: Local Algorithms for Document Fingerprinting”,
Retrieved on 6/24/2005 from:
http:/ /theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf

[6] Raphael. A. Finkel et. al., “Signature extraction for overlap detection in documents”,
Retrieved on 8/2/2005 from:
http:/ / crpit.com/confpapers/CRPITV4Finkel. pdf

Naeem Esfahani - Misagh Bagherian © 2005

F
UT-Plag ™. University of Tehran’s Plagiarism Detection Software
"

About Authors

Naeem Esfahani

B.Sc. undergraduate student in computer engineering,
University of Tehran (Year 4 : 2005)

Homepage: http:/ /khorshid.ut.ac.ir/~naeem
Email: noceme A@T acim.org

Misagh Bagherian

B.Sc. undergraduate student in computer engineering,
University of Tehran (Year 4 : 2005)

Homepage: http:/ /khorshid.ut.ac.ir/~misagh
Email: misagh.bagherian A@T gmail.com

Naeem Esfahani - Misagh Bagherian © 2005

