
Content-Adaptive Display Power Saving in Internet Mobile
Streaming

Yao Liu1, Mengbai Xiao2, Ming Zhang2, Xin Li3, Mian Dong4,
Zhan Ma5, Zhenhua Li6, Songqing Chen2

1SUNY Binghamton 2George Mason University
yaoliu@cs.binghamton.edu {mxiao3, mzhang8,sqchen}@gmu.edu

3Samsung Telecommunications America 4AT International, Inc.
x.li@samsung.com dongmian@gmail.com

5Nanjing University 6Tsinghua University
zhan.ma@gmail.com lizhenhua1983@tsinghua.edu.cn

ABSTRACT

Backlight scaling is a technique proposed to reduce the dis-
play panel power consumption by strategically dimming the
backlight. However, for Internet streaming to mobile de-
vices, a computationally intensive luminance compensation
step must be performed in combination with backlight scal-
ing to maintain the perceived appearance of video frames.
This step, if done by the CPU, could easily offset the power
savings via backlight dimming. Furthermore, computing the
backlight scaling values requires per-frame luminance infor-
mation, which is typically too energy intensive to compute
on mobile devices.

In this paper, we propose Content-Adaptive Display
(CAD) for Internet mobile streaming. CAD uses the mobile
device’s GPU rather than the CPU to perform luminance
compensation at reduced power consumption. Backlight
scaling schedule is computed using a more efficient dynamic
programming algorithm than existing work. We implement
CAD within an Android app and use a Monsoon power me-
ter to measure the real power consumption. Experiments
are conducted on more than 470 randomly selected YouTube
videos, and results show that CAD can effectively produce
power savings.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications

General Terms

Algorithm, Experimentation, Measurement

Keywords

Internet Mobile Streaming, LCD, Display, Power Saving,
Backlight Scaling
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
NOSSDAV’15, March 18-20, 2015, Portland, OR, USA
Copyright 2015 ACM 978-1-4503-3352-8/15/03 $15.00
http://dx.doi.org/10.1145/2736084.2736087.

1. INTRODUCTION
Video streaming on mobile devices is limited by the bat-

tery capacity. According to Carroll and Heiser, the display
subsystem is responsible for about 38% to 68% of the to-
tal power consumption during video playback [4]. However,
unlike the wireless network interface cards (WNICs), whose
power consumption can be reduced by putting them into
low power sleep mode for as long as possible, mobile dis-
play panels cannot be put into sleep mode and must be kept
active throughout the video playback.

To save power consumed by Liquid-Crystal Displays
(LCD), backlight scaling has been proposed. This technique
reduces power consumption by dimming the display back-
light. Meanwhile, the brightness perceived by the human eye
is maintained by increasing the affected image’s luminance.
By simultaneously scaling the backlight and increasing the
luminance of the image, the original image can be rendered
with little distortion.

However, implementing the backlight scaling strategy
with luminance compensation to save power during video
playback is challenging. First, backlight scaling values must
be determined subject to the following constraints: (i) To
maintain image fidelity, the backlight level cannot be lower
than a point determined by the brightness characteristics
of an image. This constraint requires that the maximum
pixel luminance of every frame be computed, which can be
both time and energy intensive; (ii) It is infeasible to adjust
the backlight level for every frame because the display hard-
ware takes time to perform the adjustment; and (iii) Large
inter-frame backlight variation can cause flickering effects,
constraining the range of such adjustments. Second, lumi-
nance compensation must be performed for every pixel in
every video frame. Thus, increasing the luminance for the
entire frame of a high resolution video on a high resolution
display could consume tens of millions of CPU cycles. While
a powerful CPU could complete this task in real time, the
corresponding power consumption overhead could offset the
power saved by dimming the backlight. Therefore, previ-
ous studies often suggested these tasks should be performed
offline using extra computing resources [6, 12], making back-
light scaling hardly practical.

In this paper, we propose a Content-Adaptive Display
(CAD) power saving mechanism for reducing display power
consumption during Internet mobile streaming sessions. In-

stead of using the CPU, CAD uses the OpenGL ES API to
interface with the Graphics Processing Unit (GPU) on mo-
bile devices to adjust pixel luminance during video streaming
playback, allowing a net power savings in combination with
the backlight scaling strategy. Furthermore, CAD employs
a dynamic programming approach for determining backlight
scaling assignments, which has a lower complexity than ex-
isting algorithms. The per-frame luminance information re-
quired by the dynamic programming algorithm is computed
offline using external computing resources.

To evaluate the effectiveness of CAD, we implement it
within a mobile video player application (app) on the An-
droid platform. During video playback, the mobile app sets
the backlight according to the backlight scaling assignment
and simultaneously compensates the brightness by increas-
ing pixel luminance through GPU computations. We ran-
domly select more than 470 YouTube videos to evaluate
CAD. A Monsoon power meter is used for real measure-
ments of power consumption. Results show that with CAD,
our video player app can save power for 67.3% videos with
negligible (up to 5%) pixel distortion, and 83.4% videos if
10% pixel distortion is allowed. For more than 44% of the
videos in our study, CAD can achieve more than 500 mW
of power savings.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses background and some related work. We
present the design of our Content-Adaptive Display power
saving mechanism in Section 3. The implementation is de-
scribed in Section 4, and the evaluation is discussed in Sec-
tion 5. We make concluding remarks in Section 6.

2. BACKGROUND AND RELATED WORK
Previous studies have pointed out that the backlight of

an LCD display dominates the energy consumption of the
display subsystem [4, 14]. Therefore, power can be saved
if we reduce the backlight brightness level of the LCD dis-
play. However, simply dimming the backlight can lead to
image distortion, which is normally defined as the resem-
blance between the original video image and the backlight-
scaled image [6, 15]. One way to resolve the problem is
by simultaneously scaling the backlight level and increasing
the luminance of every pixel [5, 7, 9, 12]. In this way, image
fidelity can be preserved.

While the idea of increasing the luminance of video frames
at runtime to compensate for a dimmed backlight is intu-
itive, a significant challenge arises when attempting to ad-
just the luminance of every pixel in every video frame in an
energy efficient manner. Many existing techniques rely on
the CPU to perform per-pixel manipulation [7, 9] but this
may significantly offset the power savings achieved via back-
light dimming. To avoid the computation intensive step on
the mobile device, Hsiu et al. and Lin et al. propose not
to perform luminance compensation, but instead, simply to
choose a critical backlight level for each frame as the scal-
ing constraint [10, 11]. This, however, can lead to a large
amount of distortion of the displayed frames. Instead of us-
ing the CPU, Ruggiero et al. consider a special multimedia
processor, the Freescale i.MX31, which has an Image Pro-
cess Unit (IPU) that can be used to perform the luminance
adjustment task [13]. Rather than a client-side solution,
Pasricha et al. [12] and Cheng et al. [6] propose to migrate
the computation to an intermediate proxy server that com-

putes backlight scaling values and transcodes the original
video to a luminance-adjusted version.

Compared to existing work, our proposed solution can
save display consumption while maintaining image fidelity
without relying on either a specialized processor for pixel
luminance compensation or intermediate servers for video
transcoding. Instead, CAD uses the Graphics Processing
Unit (GPU) to perform the computation.

3. DESIGN OF THE CONTENT-

ADAPTIVE DISPLAY (CAD) POWER

SAVING MECHANISM
In this section, we discuss how CAD generates backlight

scaling data offline using a dynamic programming algorithm
with lower complexity and how CAD performs luminance
compensation online using GPU instead of CPU.

3.1 Display Power Saving Constraints
CAD is based on the Backlight Scaling method [9], which

saves power consumption by dimming the backlight level.
Suppose the display brightness levels lie within the range
(0, 1], where a value of 0 indicates that the backlight is
off, and a value of 1 indicates that it is set to maximum
brightness. With backlight scaling, for every frame in the
video, we would like to set the display backlight level to
b ∈ (0, 1]. To avoid fidelity loss under reduced backlight
levels, we adopt Luminance Compensation [6, 15]. We in-
crease the luminance of every pixel in the frame by a factor
of 1

b
(i.e., increasing the Y component of the YUV repre-

sentation of every pixel). In this way, the observed pixel
luminance, Y ′, is adjusted to a value that is the same as
that of the original frame’s: b× Y ′ = b× Y × 1

b
= Y . With

joint backlight scaling and luminance compensation, display
power consumption can be saved without any observable fi-
delity loss.

For every frame in a video, the backlight scaling value
must be determined according to the following three con-
straints:

Distortion Constraint. The Y component a pixel can not
be scaled to higher than its maximum value, 255. Therefore,
if b is chosen to be a value such that Y × 1

b
> 255, then the

observed luminance of the adjusted pixel with the reduced
backlight will be lower than the luminance under the original
brightness level, distorting the displayed image. In previous
work this distortion has been referred to as a “clipping ar-
tifact” [8]. To avoid creating these “clipping artifacts”, we
must limit any backlight adjustments to b ≥ Ymax

255
, where

Ymax is the maximum pixel luminance in the frame. This
distortion-based constraint gives rise to a lower bound on the
adjusted backlight level for every frame in the video.

User Experience Constraint. While setting the back-
light level of every frame to its lowest possible value subject
to distortion constraint can maximize power savings, users
could experience inter-frame brightness distortion, often per-
ceived as flickering, if the variation in backlight scaling levels
between two consecutive frames is too big. Therefore, we
need to limit the brightness variation between two consecu-
tive frames to reduce this flickering effect.

Hardware Constraint. The display hardware requires
a minimum amount of time to apply any brightness ad-
justments. Therefore, it is impossible to adjust the back-
light level promptly for every video frame. Instead, we

must specify a minimum interval (in terms of numbers of
frames) where the backlight level must remain constant for
all frames.

3.2 Computing Backlight Scaling
Given the constraints described above, we propose an of-

fline algorithm that uses global knowledge about all frames
in the video for computing the backlight scaling level for
maximized power saving.

We have designed a dynamic programming algorithm to
compute backlight scaling levels given a sequence of maxi-
mum pixel luminance values of video frames as well as a set
of constraints to maintain an acceptable video-viewing ex-
perience. As discussed earlier, two constraints are necessary.
The first constraint, ℓmin, specifies the minimum interval in
while backlight must remain at the same level for all frames.
The second constraint, specified by ∆b, limits the ratio of
change in the backlight level. That is, if the backlight is at
level bt at time t and bt+1 at time t+1, then we enforce the
constraint bt × (1−∆b) ≤ bt+1 ≤ bt × (1 + ∆b).

Our dynamic programming algorithm computes the values
of B(t, b), the minimum cumulative backlight levels ending
at frame t with the backlight level of the final interval set to
b. B(t, b) can be computed by the following recurrence:

B(t, b) = min
t′,b′

(b× (t− t′) +B(t′, b′)) (1)

where t′ is the frame number of the end of the interval that
immediately precedes the interval frame t belongs to, subject
to the constraint t − ℓmax ≤ t′ ≤ t − ℓmin Here, b′ is the
brightness level of the previous interval, and also subjects
to the ∆b constraint discussed above. This algorithm will
minimize power consumption if a linear relationship exists
between backlight levels and display power. We confirm that
such a linear relationship exists in Figure 3.

We also add an additional constraint, ℓmax, specifying the
maximum length of an interval. This decision is motivated
by the two considerations. First, setting the algorithm to use
fixed-length intervals of constant brightness produces subop-
timal behavior. This is because large changes in maximum
luminance exist at many positions within a video. These
changepoints are unlikely to align with boundaries of any
preset fixed-length interval. As a result, a large number of
fixed-length intervals would cross changepoint boundaries,
leaving a portion of these intervals assigned to higher back-
light levels than necessary. On the other hand, if we were
to consider all possible lengths of constant-brightness inter-
vals, the algorithm would be optimal but computation would
have a complexity of O(T 2 × |b|2)1, which is unsuitable for
our application. Motivated by the fact that long intervals
of constant brightness can be expressed by concatenating
shorter intervals, we can choose constant brightness inter-
vals whose length is not fixed, but lie within a small range
of values (i.e., between ℓmin and ℓmax). This allows regions
of constant brightness intervals to align more closely with a
video’s luminance profile, thus achieving near-optimal total
brightness levels. Therefore, the ℓmax constraint can reduce

1This is similar to the algorithm proposed by Lin et
al. for determining optimal backlight scaling levels with
O(N2M2(N + lnM + d2)) complexity, where N is the num-
ber of frames, M is the number of backlight levels, and d is
the minimum duration before a backlight level change [11].

1: ⊲ On input lum, an array of length T , indicating max-
imum luminance values for each frame of a video con-
taining a total of T frames, compute output, an array
containing minimum backlight brightness values subject
to constraints.

2: ⊲ Compute the recurrence
3: for t in [ℓmin, T] do
4: for t′ in [t− ℓmax, t− ℓmin] do
5: for b ≥ max(lum[t′ + 1 : t])/255 do
6: for b′ in [b/(1 + ∆b), b/(1−∆b)] do
7: if b× (t− t′) +B[t′, b′] < B[t, b] then
8: B[t, b] = b× (t− t′) +B[t′, b′]
9: H[t, b] = (t′, b′)

10: ⊲ Backtracking phase
11: output = array(T)
12: t = T
13: b = arg min

b′
B[t, b′]

14: while t >= 0 do
15: (t′, b′) = H[t, b]
16: output[t′ + 1 : t] = b

17: return output

Figure 1: Computing the backlight scaling data with
O(T × (ℓmax − ℓmin +1)× |b|2) complexity, where |b| in-
dicates the number of possible values of b. In the
algorithm, B[t, b] indicates the sum of the bright-
ness levels ending at frame b whose final constant-
brightness interval level is b, T indicates the num-
ber of frames in the video, ℓmin is the shortest al-
lowed constant-brightness interval (in frames) and
ℓmax is the longest, lum[t′ : t] indicates the luminance
values over video frames t′ through t, ∆b encodes
the constraint specifying the allowable ratios of ad-
jacent brightness intervals, and H[t, b] is a history
array that records how the minimum-brightness ar-
ray B[t, b] was constructed.

the complexity of our algorithm at the cost of only a min-
imal increase in total brightness over the course of video
playback.

Our algorithm thus consists of a forward step where the
values of B(t, b) are computed and a backward step where
the values of bt, the backlight value at video frame, t, are re-
covered. Pseudocode to compute the dynamic programming
recurrence is shown in Figure 1.

3.3 Backlight Scaling and Luminance Com-
pensation

A mobile device can use the backlight scaling informa-
tion computed offline to dynamically adjust its LCD display
brightness level during playback. Meanwhile, to compen-
sate for the dimmed display and maintain image fidelity,
the mobile device increases the luminance level for every
pixel in every frame that is associated with a dimmed back-
light brightness level. That is, given the backlight scaling
level bf for rendering frame f , we increase the luminance
of every pixel p in frame f from Yp, its original luminance,
to Y ′

p = Yp × 1

bf
, and retain the original Up and Vp val-

ues. This luminance scaling allows the video frame to be
rendered on the display without fidelity loss. Note that this
luminance compensation has to be performed on all frames
that are rendered at scaled backlight level to maintain con-

sistent contrast levels. This computation must occur as long
as the backlight intensity is not set to its default value.

This luminance compensation step requires a floating
point data operation for every pixel in every frame. There-
fore, the total computation load generated by operations on
an entire frame would be infeasible for the CPU to perform
given the time constraints of live video playback. In ad-
dition, even if CPUs operating at higher frequency could
accomplish this task in time, the extra power consumed by
the CPU could offset the savings achieved by dimming the
backlight. The GPU, on the other hand, is able to perform
a large number of tasks in parallel, enabling it to compute
adjusted luminance over many pixels in a timely manner.
Therefore, we use the OpenGL ES API to interface with
mobile device GPUs, enabling these GPUs to perform the
luminance compensation task in an online manner.

3.4 Deciding Whether to Use Display Adapta-
tion

While using the GPU for luminance compensation, we
need to take into account the additional power consumed
by the GPU, i.e., we need to determine whether net power
savings can be achieved by comparing GPU incurred power
consumption overhead with display power that can be saved
via backlight scaling. Our approach toward this problem
involves three steps: (i) We build models to estimate the
power consumption of different devices at different back-
light brightness settings during video playback using power
measurement results. We also estimate a fixed rate of power
consumption of the GPU on these devices based on power
measurement results. (ii) We use these models, given the
input of a sequence of minimum backlight scaling values cal-
culated using the dynamic programming algorithm, to esti-
mate the display energy consumption during video playback.
(iii) We compare these energy consumption values with base-
line values to estimate the total energy saved, then compare
this saved amount to our estimate of GPU energy consump-
tion. If the value of display energy savings exceeds that of
GPU energy consumption, then we can be reasonably con-
fident that backlight scaling will save power when playing
the video, and we can apply our scaling method. Although
savings may not be possible for all videos, over the course
of typical mobile device usage, significant savings could be
achieved.

4. IMPLEMENTATION

4.1 Generating Backlight Scaling Data
Backlight scaling schedule is computed externally by a

standalone application that attempts to maximize power
savings. The external application first decodes the video
using the ffmpeg library [1]. Then, it determines the min-
imum backlight level required using the dynamic program-
ming algorithm described in Figure 1. We also compute
backlight scaling information that results in greater power
savings but causes a small number of pixels to be displayed
with an observed luminance lower than the original lumi-
nance. We refer to this as “pixel distortion”. If up to d%
pixel distortion per frame can be tolerated, we can choose
the (100 − d) percentile luminance of every frame instead
of the maximum luminance as input to the dynamic pro-
gramming algorithm. The generated backlight scaling data
is stored in a file with each value coupled with the corre-

sponding frame index. This data is then sent to the mobile
video player app before video playback.

4.2 Runtime Backlight Scaling and Lumi-
nance Compensation

We implement the concurrent backlight scaling and lumi-
nance compensation in an Android video player app. To
program GPU to increase pixel luminance, we use OpenGL
for Embedded Systems (OpenGL ES) [3]. OpenGL ES is
a subset of the OpenGL 3D graphics API. It is designed
for handheld and embedded devices such as mobile phones,
PDAs, and video game consoles. Notable platforms support-
ing OpenGL ES 2.0 include iPhone 3GS and later versions,
Android 2.2 and later versions, and WebGL.

In the video player app, we use the MediaPlayer provided
by Android to decode the video stream. Instead of render-
ing the decoded video frames onto the default Surface, we
create a GLSurfaceView, wrap it into a Surface object, and
set the MediaPlayer to use this Surface as the video data
sink so as to divert the video frames into the GLSurfaceView
object.

To adjust the luminance of all pixels of the frame as a re-
sult of an adjusted brightness level, we set up a customized
Renderer in the GLSurfaceView that implements the Vertex
Shader and the Fragment Shader. Since pixels have been
converted by the Android system from YUV to RGB color
space for rendering, the Fragment Shader must to convert
the color space back to YUV before luminance compensa-
tion can be performed. The Vertex Shader just sets up the
vertex positions without any transformation. Next, we scale
the Y value of the pixel to Y ′ and convert the YUV rep-
resentation back to RGB color space using Y ′, U and V .
By scaling the backlight brightness level and the pixel lu-
minance simultaneously, power consumption is reduced and
the image fidelity is maintained.

5. EVALUATION
To evaluate our CAD during video streaming playback,

we have installed our video player app on various Android
devices. Due to space limit, in this paper, we only show
results from a Samsung Galaxy Tab 2 10.1-inch tablet. It
features the TI OMAP4430 SoC which includes the Pow-
erVR SGX540 GPU, programmable using OpenGL ES 2.0.
The LCD displays on this device support 255 backlight lev-
els. To build the supported backlight level table, we evenly
pick 255 numbers in the range (0, 1].
We uniformly select 471 YouTube videos at random for

evaluation using random prefix sampling method proposed
by Zhou et al. [16]. We download the 360P version of all
471 videos for experiments and analysis. Figure 2 shows
the setup of our experiments. To accurately measure the
power consumption during video playback, we use a Mon-
soon power monitor [2] to supply power directly.

5.1 Display and GPU Power Consumption
Models

We build a display power consumption model as a func-
tion of brightness. We play a video with the “Gallery” app
supplied by Android and measure its power consumption
using the Monsoon power monitor. To maintain reasonable
user experience, we restrict the minimum normalized back-
light luminance level to 0.5. The results are shown in Figure

Figure 2: Power measurement setup.

3. We find that the display power consumption of 10.1-inch
Galaxy Tab can be best represented with the following linear
model: y = w1 × b+w2, where b ∈ [0.5, 1] is the normalized
display backlight level, w1 = 3512.7, and w2 = 1053.4, with
R2 = 0.9928. In addition, we also measure the GPU power
consumption on the 10.1-inch tablet. We set the backlight
to maximum level and compare power consumption when
GPU is not used with when GPU is used to scale pixel lu-
minance by 1.0 (no effect). Power measurement results show
that when using GPU for luminance compensation to play
videos at 30 frames per second, the GPU consumes a con-
stant amount of power, around 578 mW.

We use our display and GPU power models in combination
with computed backlight scaling data to decide whether the
CAD mechanism should be employed to save power.

5.2 Power Saving with Backlight Scaling
To calculate backlight scaling schedule, we first determine

appropriate values for parameters required in the algorithm,
including ℓmin and ∆b. We set these parameters to differ-
ent values and compute the corresponding backlight scaling.
Five users were asked to watch videos played using our CAD
mechanism and report whether they noticed flickering or dis-
tortion during playback. We found that when we set ∆b to
0.06, users did not perceive any flickering. We thus use 0.06
for backlight scaling data generation. Similarly, we found
that setting ℓmin = 5 produces no observable display hic-
cups. We therefore enforce that the display backlight level
remains stable for at least 5 frames.

We run the dynamic programming algorithm on all 471
YouTube videos. For each video, we decode the video and
extract the maximum, 98-percentile, 95-percentile, and 90-
percentile pixel luminance for every frame. We use this
data as input to our dynamic programming algorithm, which
computes the backlight scaling level assignment for each
frame that will yield no distortion, up to 2%, 5%, and 10%
pixel distortion per frame respectively. Given the backlight
scaling level assignment data, we further use the power con-
sumption models to examine if and how much net power sav-
ing can be achieved (i.e., display power saving being greater
than GPU power consumption). Figure 5 shows the results.
In this figure, “schedule-0%” represents the setting where
backlight scaling data is computed offline using maximum
luminance data per frame, while “schedule-2%” represents
the experiment setting where backlight scaling data is com-
puted offline using 98-percentile luminance data per frame.
Results show that if no distortion is allowed, 17 out of 471
videos can save power with the CAD mechanism. If more
distortion can be tolerated, more power can be saved: 317

(67.3%) videos can save power with negligible (up to 5%)
pixel distortion, If up to 10% pixel distortion is allowed, 393
(83.4%) videos can save power, and 209 (44.4%) videos can
save more than 500 mW on average. For backlight scal-
ing schedules that may produce pixel distortion, we calcu-
late their peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) between the rendered video and the non-
backlight-scaled video. Figure 4 shows that for all videos,
their PSNR values are always above 40 dB when up to 2%,
5%, or 10% pixels are rendered with lower observed lumi-
nance than their original luminance, indicating good ren-
dered frame quality. The SSIM values between the rendered
videos and the non-backlight-scaled videos are always more
than 0.99999.

We also use the power monitor to measure real power sav-
ings for videos that are expected to save power via our CAD
mechanism. Figure 6 shows the overall power consumption
of playing one video under different settings. This video is 9
minute 56 seconds long (596 seconds) and is encoded at 30
frames per second. For the 10.1-inch tablet, when our CAD
mechanism is not used, GPU is put into sleep mode, the
average overall power consumption is 4898 mW. When we
apply backlight scaling that yields no distortion, the aver-
age overall power consumption is 4963 mW, slightly higher
than without adaptation. On the other hand, if up to 2%
pixel distortion is allowed, the average power consumption
can be reduced to 3518 mW, a 28% savings. If up to 5%
pixel distortion is allowed, the average power consumption
is further reduced to 3264 mW, a 33.4% savings.

6. CONCLUSION
In this work, we have designed and implemented a

Content-Adaptive Display (CAD) power saving mechanism
for reducing display power consumption on mobile devices
in receiving Internet streaming services. CAD improves on
previous backlight scaling schemes by using the GPU in-
stead of the CPU for online luminance adjustment and a
backlight scaling algorithm with lower complexity compared
to existing algorithms. We have implemented CAD on An-
droid and experimented with more than 470 randomly se-
lected YouTube video clips. The results show that CAD can
effectively produce power savings while maintaining good
streaming quality.

7. ACKNOWLEDGEMENT
We appreciate constructive comments from anonymous

referees. The work is partially supported by High-Tech Re-
search and Development Program of China (“863 - China
Cloud”Major Program) under grant SQ2015AAJY1595, by
China NSF under grant 61471217, by China Postdoctoral
Science Fund under grant 2014M550735, and by NSF under
grants CNS-0746649, CNS-1117300.

8. REFERENCES
[1] FFmpeg. http://www.ffmpeg.org/.

[2] Monsoon Power Monitor. http:

//www.msoon.com/LabEquipment/PowerMonitor/.

[3] OpenGL ES. http://www.khronos.org/opengles/.

[4] A. Carroll and G. Heiser. An analysis of power
consumption in a smartphone. In Proceedings of the
2010 USENIX conference on USENIX annual
technical conference, 2010.

http://www.ffmpeg.org/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.khronos.org/opengles/

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 0.5 0.6 0.7 0.8 0.9 1P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

m
W

)

Normalized Luminance

Figure 3: Display power consumption model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 50 60 70 80 90 100

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n

Peak Signal-to-Noise Ratio (PSNR)

schedule-2%
schedule-5%

schedule-10%

Figure 4: PSNR (dB) between the rendered video
and the non-backlight-scaled video.

 0

 0.2

 0.4

 0.6

 0.8

 1

-500 0 500 1000 1500

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n

Power Savings (mW)

schedule-0%
schedule-2%
schedule-5%

schedule-10%

Figure 5: Estimated power savings (accounting for
GPU power consumption) with backlight scaling com-
puted under different settings.

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600
P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

W
)

Time (s)

no adaptation
schedule-0%
schedule-2%
schedule-5%

Figure 6: Measured results: power consumed by the
entire device with backlight scaling.

[5] N. Chang, I. Choi, and H. Shim. Dls: dynamic
backlight luminance scaling of liquid crystal display.
Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 12(8):837–846, Aug 2004.

[6] L. Cheng, S. Mohapatra, M. El Zarki, N. Dutt, and
N. Venkatasubramanian. Quality-based backlight
optimization for video playback on handheld devices.
Adv. MultiMedia, 2007(1), Jan. 2007.

[7] W.-C. Cheng and M. Pedram. Power minimization in
a backlit tft-lcd display by concurrent brightness and
contrast scaling. Consumer Electronics, IEEE
Transactions on, 50(1):25–32, 2004.

[8] H. Cho and O.-K. Kwon. A backlight dimming
algorithm for low power and high image quality lcd
applications. Consumer Electronics, IEEE
Transactions on, 55(2):839–844, 2009.

[9] I. Choi, H. Shim, and N. Chang. Low-power color tft
lcd display for hand-held embedded systems. In Low
Power Electronics and Design, 2002. ISLPED ’02.
Proceedings of the 2002 International Symposium on,
pages 112–117, 2002.

[10] P.-C. Hsiu, C.-H. Lin, and C.-K. Hsieh. Dynamic
backlight scaling optimization for mobile streaming
applications. In Proceedings of the 17th IEEE/ACM
international symposium on low-power electronics and
design, pages 309–314, 2011.

[11] C.-H. Lin, P.-C. Hsiu, and C.-K. Hsieh. Dynamic
backlight scaling optimization: A cloud-based

energy-saving service for mobile streaming
applications. Computers, IEEE Transactions on,
63(2):335 – 348, Feb 2014.

[12] S. Pasricha, S. Mohapatra, M. Luthra, N. D. Dutt,
and N. Venkatasubramanian. Reducing backlight
power consumption for streaming video applications
on mobile handheld devices. In ESTImedia, pages
11–17, 2003.

[13] M. Ruggiero, A. Bartolini, and L. Benini. Dbs4video:
dynamic luminance backlight scaling based on
multi-histogram frame characterization for video
streaming application. In Proceedings of the 8th ACM
international conference on Embedded software, pages
109–118. ACM, 2008.

[14] T. Simunic, L. Benini, P. Glynn, and G. De Micheli.
Event-driven Power Management. Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, 20(7):840–857, 2001.

[15] P.-S. Tsai, C.-K. Liang, T.-H. Huang, and H. Chen.
Image enhancement for backlight-scaled tft-lcd
displays. Circuits and Systems for Video Technology,
IEEE Transactions on, 19(4):574–583, 2009.

[16] J. Zhou, Y. Li, V. K. Adhikari, and Z.-L. Zhang.
Counting youtube videos via random prefix sampling.
In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, pages
371–380. ACM, 2011.

	Introduction
	Background and Related Work
	Design of the Content-Adaptive Display (CAD) Power Saving Mechanism
	Display Power Saving Constraints
	Computing Backlight Scaling
	Backlight Scaling and Luminance Compensation
	Deciding Whether to Use Display Adaptation

	Implementation
	Generating Backlight Scaling Data
	Runtime Backlight Scaling and Luminance Compensation

	Evaluation
	Display and GPU Power Consumption Models
	Power Saving with Backlight Scaling

	Conclusion
	Acknowledgement
	References

