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Abstract—This paper proposes a power efficient video stream-
ing mechanism on mobile devices over cellular networks. We
first develop an analytical model to identify and quantify the
power inefficiency in mobile video streaming, due to the mismatch
between HTTP request schedule and the radio resource control
schedule. Based on the analytical model, we develop a low
power video streaming mechanism by employing the server push
technology available in the HTTP/2 protocol. We implemented the
server push-based low power streaming mechanism in an HTTP
DASH video streaming prototype involving mobile devices and
the 4G/LTE cellular network. Our experiments show significant
battery power savings on mobile devices using our server push
strategy.

I. INTRODUCTION

HTTP has been widely adopted as the protocol for video
streaming over the Internet, because of its ease of deployment
with existing web servers and scalability with the web caches
[1]1[2]. More recently, with the rapid growth and popularity of
smart phones and tablets, video streaming on mobile devices
over cellular networks (e.g., 3G and 4G/LTE) have become a
trend.

Unlike traditional video streaming platforms, mobile de-
vices are greatly power constrained. For example, most of
the newly released smart phones require nightly charging,
making the battery power an extremely constrained resource
compared to other components on the device. However, in
a video streaming scenario, a large amount of data must be
transmitted to the device via the wireless radio interface, which
consumes a large amount of battery power.

Furthermore, the radio resource control (RRC) protocol
[3], widely used in the cellular networks, specifies that the
radio power would remain in the full power or half power
mode after the data transmission has been completed, until
the inactivity timers expire. The intent of the RRC protocol
is to save the initialization delay and thus ensure premium
network performance, especially when the user makes two
consecutive network accesses within a short period of time.
However, the “long tail” feature in the RRC protocol leads to
significant power inefficiencies in the HTTP video streaming
scenario [4][5]. In HTTP streaming, the video file is packaged
into segments that are used as unit resources for HTTP
requests and responses. During a video streaming session,
the client maintains a buffer and issues a request to the
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next video segment whenever the buffer falls below a certain
threshold. Consequently, at steady state, there is an HTTP
request/response communication at an approximately fixed
interval, which is typically the segment duration (e.g., a few
seconds). In case the HTTP communication interval ends
before the radio inactivity timer expires, the cellular radio
would never go to the idle state (i.e., the state in which the
radio power consumption is close to zero) during streaming,
resulting in significant power inefficiency.

Since the RRC protocol has already been widely deployed
in today’s cellular network infrastructure, and it was care-
fully designed and optimized for various use cases of the
cellular network, it is not realistic to make changes to the
RRC protocol itself just for the video streaming scenario.
Instead, researchers have been focusing on adapting the HTTP
streaming schedule at the application level to achieve power
efficiency, such as the dynamic cache management [4] and the
bundled download [5] approaches. Despite the effectiveness
in lowering battery power consumption, the dynamic cache
management approach [4] may require OS kernel changes,
which is hard to deploy. The bundled download approach [5]
may affect the client’s ability to switch to a different bitrate in
a timely manner. Also, the bundled multiple requests would hit
the server in a short range of time causing potential scalability
issues.

We develop a power efficient mobile video streaming mech-
anism by using the server push technology available in the
HTTP/2 protocol [6]. In our prior work, we have developed
a K-Push strategy, which makes the server actively push the
next K segments, without requiring an individual request for
each segment [9][10]. In this paper, we employ the K-Push
strategy to change the HTTP request/response schedule, by
manipulating the parameter K and matching it with the radio
schedule for reduced power consumption. To summarize, our
contributions in this paper include the following: (1) using
HTTP/2 server push to achieve lower power consumption
in mobile video streaming, while maintaining the scalability
of HTTP streaming; (2) developing a power aware K-Push
strategy and applying it to a DASH [2] streaming system; and
(3) providing an analytical model to quantify the impact of
parameter K in K-Push on power consumption.



II. BACKGROUND
A. HTTP Streaming

HTTP streaming is a scalable and easy-to-deploy video
streaming solution over the Internet [1][2], which leverages
the existing web servers and content distribution networks
(CDNSs). In HTTP streaming, video content is divided into
multiple small segments and deployed on the web servers
for the client to request via HTTP. As shown in Figure 1(a),
the client requests video segments periodically from the web
server for video playback. The client maintains a video buffer
and requests a segment whenever the content in the buffer
falls below a certain threshold. At steady state, the client
would consume one segment in the buffer within one segment
duration, which requires that it issues HTTP requests at the
interval of a segment duration for a smooth video playback.
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(a) Regular HTTP (b) HTTP/2 Server Push

Fig. 1. Regular HTTP vs. HTTP/2 server push.

B. Radio RRC States

In cellular networks, the RRC protocol defines a state
machine for the radio activity [3], as shown in Figure 2. In the
RRC Idle mode, the power consumption is close to 0. Once
data communication is initiated, the mobile device switches
to a full power state (i.e., Dedicated Channel, or DCH) after
a certain delay (i.e., delay 1 in Figure 2), namely promotion
delay. Then, data can be transmitted via the radio link. Once
the data transmission is completed, the radio interface would
stay at the full power state until an inactivity timer (i.e.,
timer 1 in Figure 2) expires, during which time, the device
still consumes full power. After the state transitions to the
half power state (i.e., Forward Access Channel, or FACH),
the power consumption reduces to approximately half of the
full power state. While at the half power state, the device
may either switch back to the full power state, after another
promotion delay (i.e., delay 2 in Figure 2) if there is data
transmission, or switch to the Idle state after another inactivity
timer (i.e., timer 2 in Figure 2) expires.

In 4G/LTE, there is an improved RRC protocol with dis-
continuous reception (DRX) modes, which involves more
sophisticated RRC state transitions and inactivity timers [7].
According to the 4G/LTE measurement results reported by
Huang et al. [7], although there are three inactivity timers
involved, there is only one timer (i.e., the tail timer) that is
significant in terms of time and power consumption. Also, the
power consumption in the tail period is not necessarily half

of the full power mode. However, in our work, we consider
the RRC states and power modes described in Figure 2 as a
generic model for discussion. Our model can be adapted to the
4G/LTE case by adjusting the timer 1 and timer 2 values, as
well as the power consumption levels in the half power mode.

Fig. 2. Radio RRC state machine.

C. HTTP/2 Server Push Technology

HTTP/2 is a new revision to the currently used HTTP
protocol, which is developed by IETF. It intends to enable
a faster Internet by introducing a variety of new features, such
as server push and stream multiplexing. Among all the new
features, server push enables a server-to-client communication
channel unlike the traditional client-pull only mechanism. As
shown in Figure 1(b), the server push feature enables the web
server to actively push HTTP resources to the client without
requiring an explicit request for each resource. Although the
server push technology was originally designed for reducing
web page loading latency, it provides an elegant way of chang-
ing the HTTP request schedule in video streaming without
compromising the scalability of HTTP streaming or making
changes to the HTTP resources.

D. Related Work

There have been several research efforts that are focused
on power efficient video streaming on mobile devices. Li
et al. proposed a dynamic cache management scheme to
address the power consumption issues in the scenario of
HTTP progressive download [4] . Tian et al. developed rate
adaptation algorithm for mobile devices considering both
the TCP throughput and the battery consumption [5]. Their
approach to adapting the HTTP request/response schedule
to the radio activity is bundled download, where the client
aggregates and requests multiple segments periodically. Nazir
et al. suggest modifications to the TCP protocol in order
to adapt to the HTTP video streaming schedule [8]. In our
prior work [9][10], we have developed a K -push strategy for
low latency live video streaming and cost effective video-on-
demand streaming. This paper for the first time investigates
the benefits of using HTTP/2 server push for low power video
streaming over cellular networks.

III. ANALYTICAL MODEL
A. Overview

In order to optimize the power consumption during an
HTTP streaming session, we first develop an analytical model
to calculate the total power consumption (P). The model of



TABLE 1
NOTATIONS FOR THE ANALYTICAL MODEL.

Notation Definition
v Video length
Video segment duration (the request interval)
T Video bitrate
b Available bandwidth
A Bitrate/Bandwidth ratio, A = r/b
D Power consumption per unit time
P Total power consumption
w1 Inactivity timer of the DCH mode
Wa Inactivity timer of the FACH mode

P depends on both the HTTP streaming and the radio activity
parameters, as outlined in Table 1.

Our goal in developing an analytical model is to calculate
the total power consumption P during the video streaming
session, in order to evaluate and optimize the power efficiency
of video streaming over cellular network. We note that the
value of P can be determined by analyzing the three cases
(i.e., small, medium and large segment durations) presented
in the next subsections, based on the relationship among
segment duration d, bitrate/bandwidth ratio A, and inactivity
timers w; and wsy. Our analysis follows the HTTP streaming
scheme described in Section II, where the client requests each
individual segment (with duration d) at a fixed interval d at
steady state. For each segment, the network download time is
Ad. After the download, even in the case without any more
network activities, the radio interface of the client device
would still remain active due to the RRC protocol, with power
consumption rates p for duration w; and p/2 for duration ws.

B. Case 1: Large Segment Duration

In the case where the segment duration d is larger than the
download time and inactivity timers combined, as shown in
Figure 3, d satisfies the following:
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Fig. 3.  Power consumption when a large segment duration (i.e.,
w2 < d < v) is used.

C. Case 2: Medium Segment Duration

In the case where the end of segment duration d ends
after w; and before wo, as shown in Figure 4, d satisfies the
following:

A+ w < d< A+ wyp + ws (@)
which is,
w1 w1 + wo
1—A<d<71—/\ 5)

At the end of duration d, the client starts the next request
cycle and thus the half power mode (i.e., ws) is finished early
and escalated to the full power mode. In this case, the total
power consumption can be calculated as:
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Fig. 4. Power consumption when a medium segment duration (i.e.,
= <d< wi%f\”z) is used.

D. Case 3: Small Segment Duration
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Fig. 5. Power consumption when a small segment duration (i.e.,
A < d < {7) is used.

In the case where duration d ends before the end of wq, as
shown in Figure 5, d satisfies the following:

w1

)

d<d
)\<<1

which is,

w1
11—\ ®

In this case, the radio remains in the full power state
throughout the entire video streaming session and, therefore,

0<d<

P=pv )



E. Discussions of the Analytical Model

Putting together Cases 1, 2, and 3, we note that A and d
play important roles in power consumption. In particular, in
Figure 6, we plot the total power consumption with varying d
according to the analytical models described in Equations (1)
to (9), where

Power (P)

d, d, d Segment
Duration (d)
Fig. 6. Power consumption vs. segment duration.
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1 1— )\; 2 11—\ s 43 v ( )

We observe from Figure 6 that we can achieve the lowest
possible power consumption by assigning the largest possible
segment duration, which equals to the entire video length (v).
To be precise, the maximum power consumption savings that
can be achieved by varying the segment duration d is the
following:

APy =Py — Py = p|(1 — Ao —wy — %}

(14)

In practice, AP, can be a large positive number, with a
large enough video duration v and the high bandwidth pro-
vided by the 4G/LTE network (5 to 12Mbps downlink speed,
with peak speed approaching 50Mbps) [11]. For example, even
for a short 5-minute 1080p movie trailer streamed at 3Mbps,
with 5SMbps 4G/LTE speed and AT&T’s typical radio modes
(w1=5 sec and wy = 12 sec) [12], the power saving can be
up to 109p, which is approximately the power consumption
of streaming 1/3 of the original video content.

Despite the promising potential power savings, the use of
large segments in HTTP streaming is ineffective in practice.
For example, during bitrate switching, the client may have
to delay the request of the next segment with new bitrate
until the current large segment is played, or it may request
the current segment with new bitrate immediately causing
additional bandwidth consumption.

IV. LOow POWER MOBILE VIDEO STREAMING OVER
HTTP/2

A. Server Push and K-Push Strategy

In order to reduce the power consumption in mobile
video streaming, while still maintaining the benefits of HTTP
streaming, we develop a new power efficient video streaming
scheme employing the server push feature in HTTP/2. Our
approach is based upon the K -Push strategy that we developed
for low latency and cost effective video streaming [9][10],
which enables the server to actively push multiple (i.e., K)
segments to the client without requiring an individual request
for each segment. In this work, we further develop a power-
aware K -Push strategy for low power mobile video streaming.
Our key observation is that by employing K-Push we can
obtain an equivalent HTTP download schedule as compared to
using large segment durations, without changing the segment
duration. More importantly, the K-Push strategy enables us
to maintain the HTTP streaming benefits, such as bitrate
switching and scalability. For example, we can maintain the
flexibility of bitrate switching by adapting the parameter K.
Also, since it requires only one request for every K segments,
the number of requests reaching the server is significantly
reduced, which eliminates the scalability issues.

Figure 7 shows the end-to-end work flow of our K-Push
strategy specifically designed for mobile video streaming. The
mobile client determines the parameter K, i.e., the number of
segments it expects the server to push, for the current push
cycle. Then, the client signals the K value to the server, either
via a light weight push trigger GET message, or piggybacking
it as an HTTP header extension in the existing regular HTTP
request for the first segment. Upon receiving the push trigger
message, together with the value K, the server starts to push
the indicated K segments without expecting an explicit request
for each of them. The K pushed segments, while reaching the
client, will be stored in the web cache. Thereafter, the client’s
request to the set of K segments will be served by the local
web cache without hitting the network or server.
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K -Push strategy for mobile video streaming over HTTP/2.

Fig. 7.

B. Selection of K

From the work flow presented in Figure 7 we can observe
that the K pushed segments, with duration d each, are equiva-
lent to the regular HTTP request/response of a large segment,
with duration K d. Therefore, we can apply the same analytical
model presented in Section III for determining the impact of



parameter K to power consumption. In particular, considering
a commonly deployed fixed segment duration d,,, e.g., d, = 2
sec, we have

d

K=—

dp

Therefore, the power consumption model with varying K

can be presented in Figure 8, where the power values P, Ps,

and Ps are the same as those in Equations (10) to (12), and
the three boundary values k1, ko, and k3 are the following:
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Fig. 8. Power consumption vs. parameter K.

It is worth noting that K must be larger than k; in order to
obtain power savings in the mobile video streaming scenario.
Therefore, k1 = (17“’7)\1)% is the lower bound of determining a
K for low power streaming. The power consumption decreases
linearly as K increases from ki to ky. The upper bound for
K is k3, which is essentially the total number of segments
for the video. However, in practice, there is often a tighter
upper bound of K determined by the constraints of bitrate
switching delay and bandwidth overhead, as we have reported
in our prior work [10]. For example, the bitrate switching delay
would increase linearly with K, resulting in a tradeoff between
power efficiency and the ability of HTTP adaptive streaming.

Furthermore, in the scenario of a sudden bandwidth drop,
which is common in the cellular radio case, a large K would
result in more higher bitrate segments being pushed under
lower available bandwidth. It may cause additional congestion
in the network, impacting the video streaming experience. In
that case, we can design the K -Push strategy in an interruptive
manner, where the currently pushed segments can be cancelled
and a new (smaller) K can be applied immediately after the
bandwidth drop is detected. Since the implementation of the
“cancel” feature is still evolving and not yet supported by the
existing browsers, we leave this as future work.

In summary, the K-Push strategy provides us with a flexible
and non-intrusive method of adjusting the tradeoff between
power efficiency (e.g., battery consumption) and video stream-
ing experience (e.g., bitrate switching delay). Comparing to the
traditional progressive download (i.e., equivalent to pushing
all segments) or regular HTTP streaming (i.e., equivalent to
no push), the K-Push strategy enables the content/service
providers and/or the end users to adjust the key video stream-
ing parameters at runtime for a premium and power-efficient
video streaming experience.

C. Inactivity Timer Measurements

From Equation (16), we note that the boundaries of K
values depend on the two radio inactivity timers w; and ws,
as well as the bitrate/bandwidth ratio A. While A can be
determined and adjusted (via bitrate switching) by the client,
wy and we are carrier dependent and are unknown to the client.
In order to provide a complete set of reference values for K,
we must measure the inactivity timers.

Probably, the most accurate way to measure wy and ws is to
use external power supplies and measuring tools [13], which
can directly and precisely measure the power consumption
over time during the video streaming session to determine
the timer values. However, this is not practical in user devices
used for video streaming. Instead, we employ the side-channel
based approach as described in the literature [14]. The idea is
to download the same file multiple times with predetermined
intervals and measure the average load time of the file. By
varying the interval incrementally and repeating the experi-
ments, one can capture the promotion delays, included in the
load time, when the radio state switches from FACH to DCH,
and from Idle to DCH, respectively. The interval when the
former switch occurs is approximately w;, while that when
the latter switch occurs is approximately w; + ws.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

We implemented the proposed K-Push strategy in a DASH
streaming system, as shown in Figure 9. The client is a Google
Nexus 4 Android phone equipped with AT&T 4G/LTE cellular
data service. We use the HTTP/2 enabled Google Chrome
browser (Dev 45.0.2427.6) on Android to run the DASH IF
dash.js player [15]. For the web server, we use the Jetty
server (version 9.3.0), which supports HTTP/2 as well, with
the addition of our K-Push strategy.

The web server is deployed on the public Internet, which is
accessible through the 4G/LTE cellular network. The video we
use for evaluation is the DASH test sequence made available
by Telecom ParisTech [16]. We package the source video
into main profile DASH streams, with various resolutions and

segment durations.
AT&T 4G/LTE
Cellular Network

Experimental Setup.

Jetty Web Server
(HTTP/2 enabled)
e ——

DASH Sequence

Chrome Brower
(HTTP/2 enabled)

Android Phone

Fig. 9.

We evaluate the power savings obtained from our K-Push
approach by streaming and playing back the DASH sequence
on the phone and observing the power consumption. We mea-
sure the battery power by recording the battery information,
including temporal current and temporal voltage, during video
playback. In particular, we obtain the current (in uA) and
voltage (in uV) values from certain device driver files. While
video is playing, we run a bash script in the background and
periodically sample the current and voltage data to a log file



on the device. Then, we calculate the temporal power as the
product of voltage and current. To ensure the accuracy of
the power measurements, we use a high sampling rate (i.e.,
approximately 1000 samples/minute) and take the average over
all samples.

B. Inactivity timer measurements

We measure the inactivity timers using the side-channel
based method described in the literature [14], to be able to
determine a range of K values for lower power streaming.
Figure 10 shows our measurement results!. We can observe
that there are two significant increases of the load time,
occurring at around the 5th second and the 21st second of
intervals. According to our discussion in Section IV, this
indicates that the approximate value of w; is around 5 seconds,
and that of wo is around 16 seconds.

The measured w; and wo values in this step are important
input parameters to the analytical model of K selection, as
presented in Equation (16). Although the accuracy of these
measurements is not guaranteed, and since it is dependent
upon various factors, we use the measured values only as an
approximate reference to guide us in selecting K.

Load Time (ms)
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o
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Fig. 10. Measurements for the inactivity timers.

C. Power Savings

We evaluated 7 cases of K selection (i.e., K=1, 6, 10,
15, 20, 25, and 30), in order to cover the different ranges
of linear segments shown in Figure 8. Table 2 shows the
absolute battery power consumption values, as well as the
relative power savings comparing K -Push to the No-Push case.
We observe that there is up to 17% savings in the battery
power by using our K-Push (e.g., K=30) approach. Also, the
power consumption follows a trend of decreasing with the
increase of parameter K, which approximately matches with
our analytical model shown in Figure 8.

VI. CONCLUSION

We developed an HTTP/2 server push-based approach to re-
duce the power consumptions in video streaming onto mobile
devices. Our approach achieves low power consumption during

'We conducted this measurement using the Verizon 4G/LTE net-
work on a Samsung Galaxy S5 handset earlier. The inactivity timer
values of this network could be different from the video streaming
experiments described in Section V.A. due to the network (i.e.,
AT&T) and the handset (i.e., Nexus 4) used. We assume that this
is not significant enough to impact the results.

TABLE 11
POWER SAVINGS USING THE K -PUSH STRATEGY. THE TEST
SEQUENCE IS A 5-MINUTE LONG DASH STREAM PACKAGED WITH
2-SECOND SEGMENTS.

Push Strategy Average Power (mW) | Power Savings
K =1 (No Push) 2777.73 (Baseline)
K=6 2572.47 7.4%
K=10 2504.30 9.8%
K=15 2351.73 15.3%
K =20 2294.98 17.4%
K=25 2280.52 17.9%
K =30 2280.65 17.9%

mobile video streaming by having the server actively push
K segments to the client, which changes the HTTP request
schedule to make power efficient use of the wireless radio
links. We presented both our analytical model and empirical
results of power consumption with regard to the selection of
parameter K in the push strategy. Our results indicate that we
can achieve an up to 17% of battery power savings by using
the proposed approach.
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