
ClusTile: Toward Minimizing Bandwidth in

360-degree Video Streaming

Chao Zhou

SUNY Binghamton

czhou5@binghamton.edu

Mengbai Xiao

George Mason University

mxiao3@gmu.edu

Yao Liu

SUNY Binghamton

yaoliu@binghamton.edu

Abstract—360-degree video has the potential to transform
the video streaming experience by providing a more-immersive
environment for users to interact with than standard streaming
video. This experience is hampered, however, by high bandwidth
requirements resulting from the extra information associated
with the 360-degree frames. Because users cannot see this full
360-degree view, but the full view is transmitted in the majority of
360-degree streaming systems, there is much potential to reduce
wasted bandwidth in this domain.

We propose ClusTile, a tiling approach formulated to select a
set of tiles that allows minimal bandwidth needed to be used when
streaming 360-degree video over an expected set of views. These
tiles are selected by solving a set of integer linear programs (ILPs)
independently on clusters of collected user views. The clustering
approach reduces computation requirements of the ILPs to
practical levels. Tilings computed from ClusTile can save up to
76% bandwidth compared to standard 360-degree streaming and
up to 52% bandwidth compared to best-performing fixed tiling
schemes.

I. INTRODUCTION

360-degree video delivers an immersive view to the viewer,

allowing exploration of all view orientations emanating from

the camera position. Increasingly sophisticated and inexpen-

sive hardware (e.g., Samsung’s GearVR) enable the 360-

degree video experience. Although it is possible to view

360-degree videos on standard video players, head mounted

displays with motion tracking render these 360-degree videos

truly immersive. The combination of new hardware and nov-

elty of the 360 degree video mean that it has the potential

to see widespread adoption in the coming years. Despite this

potential, the software and algorithms needed to stream 360-

degree video are still relatively immature compared to standard

video streaming. These software deficiencies could prevent

mainstream acceptance as bandwidth requirements for video

streaming might be too high for many users.

To illustrate the problem, 360-degree video streaming on

a VR device likely requires 4K resolution equirectangular

frames, a common 360-degree encoding, to achieve an ade-

quate viewing experience [10]. This high resolution is neces-

sary due to the combination factors. Close device proximity to

the user’s eyes means that high resolution is needed at viewing

time. Stereo viewing halves resolution from the delivered

360-degree frame, and, finally, only a small portion of each

360-degree frame is displayed on the screen. For example, a

100- by 100-degree view centered in an equirectangular frame

covers only about 14.3% of the frame’s pixels.

Netflix’s minimum recommended 4K video connection

speed is 25 Mbps [6], but average broadband speeds in the

USA are only 15.3 Mbps [1]. This bandwidth discrepancy

could pose problems for widespread 360-degree video adop-

tion without advances over the current status quo.

At least three core technical challenges in 360-degree video

streaming are related to this bandwidth problem: i) The 360

degree view cannot be directly encoded in a rectangular

frames, as is the case for standard videos. ii) Users can

only see a small field of view within the full 360-degree

frame, but these full frames are typically delivered during

streaming, wasting the unviewed portion of the bandwidth. iii)

During streaming the client does not know the user’s future

orientation, making selection of an area of the 360-degree view

difficult. Note that (iii) depends on (ii) in that predicted user

orientations are only useful if the 360-degree video streaming

infrastructure can support downloading of sub-areas that reflect

the prediction.

Of these problems, this work focuses on item (ii). Specifi-

cally, we propose a tiling scheme, which we call ClusTile, to

minimize the amount of bandwidth needed to deliver viewed

portions of 360-degree video segments. By “tiling scheme”,

we refer to a method of spatially slicing a projected 360-

degree video segment to allow portions of the segment, rather

than a single segment for the entire 360-degree view, to be

transmitted over the network. Note that in these tiling schemes

each tile represents a dynamic adaptive streaming (DASH)

segment covering a portion of the 360-degree view and a

(typically fixed) time interval, rather than a portion of a single

360-degree frame.

Tiling methods must address two tradeoffs to operate effi-

ciently. First, as tile sizes decrease, video encoding efficiency

decreases. On one hand, tiling methods must select tiles

that are small enough to cover portions of 360-degree views

without wasting too many pixels. On the other hand, tile sizes

cannot be so small that the benefit of wasting fewer pixels

is overtaken by decreased encoding efficiency. As an extreme

example, imagine that a tiling scheme selects single-pixel tiles.

These tiles could cover any user’s view exactly, but if they

were independently encoded, it would be as if no compression

was applied.

The second tradeoff involves a choice between using larger

numbers of tiles, thereby consuming larger amounts of storage

space but allowing more efficient streaming of a given view,



versus selecting fewer tiles for a segment, using less storage

space but reducing the possible tiling options of a user’s view

during streaming. To illustrate this tradeoff, imagine that we

store rendered 100- by 100-degree views at 10-degree intervals

for all 10-degree buckets in the 360-degree sphere. This

scheme would use more storage than the single equirectangular

image, but would allow any individual view to be efficiently

transmitted.

Our ClusTile method selects sets of tiles to encode and store

at the server side by solving an integer linear program (ILP)

formulated to capture an approximation of these tradeoffs. We

derive the ClusTile ILP from a much larger ILP that more-

directly represents the coding efficiency and storage tradeoffs

but cannot be practically solved. This larger ILP attempts to

efficiently cover views collected from a dataset of segment

views. ClusTile also benefits from a clustering procedure de-

signed to further reduce computational overhead. Rather than

running a separate optimization problem on many individual

views, clustering these views reduces the computation needed

by solving a smaller number of optimization problems on

clusters of views.

A potential disadvantage of ClusTile is that sets of tiles

it produces may overlap, and, when streaming, there is no

naive way to select tiles from this set that minimizes network

bandwidth. We show, however, that a simple modification of

our integer program produces a fast tile selection method that,

in combination with caching, makes tile-selection practical

during streaming.

Evaluation shows that under perfect prediction of user head

orientation, ClusTile saves up to 76% downloaded volume

compared to the baseline non-tiling scheme, and up to 52 %

compared to best-performing fixed tiling schemes.

II. BACKGROUND AND RELATED WORK

Unlike traditional video streaming, which encodes a view

from a single perspective, 360-degree videos encode a full,

omnidirectional view. To do so, 360-degree video frames are

first projected onto a 2D plane before encoded using standard

video codecs such as H.264 [26].

A. 360-degree Video - Projection and View Rendering

While many projection schemes exist, the equirectangular

projection [2] is the most commonly used method for project-

ing 360-degree frames onto a 2D plane. This projection is cur-

rently used by 360-degree video streaming service providers

such as YouTube and JauntVR.

In the equirectangular projection, pixels on the sphere are

mapped to the 2D rectangular frame based on their yaw and

pitch angle values (the yaw and pitch values of a point on a

sphere are determined by applying the yaw motion first and

pitch motion second). The yaw angles range from -180 degree

to 180 degree from the left to right in the equirectangular

image, while the pitch angles range from 90 degree to -90

degree from top to bottom. For example, a pixel at < yaw =
0, pitch = 0 > on the sphere is projected to the center of the

equirectangular projection.

During 360-degree video streaming, the view displayed to

the user is rendered at runtime based on the user’s head

orientation (e.g., in Euler angle < yaw, pitch, roll >) and the

field of view (FOV) (e.g. 100-degree vertical and horizontal).

For every pixel in the destination image, we project a ray

from the center of the sphere to the destination pixel. This

ray will intersect with a point on the sphere. We can then fill

this pixel value in the destination rendered image from the

pixel at point where the ray described above intersects with

the sphere’s surface.

B. 360-degree Video Streaming

Today, 360-degree video streaming leverages bitrate adap-

tation provided by Dynamic Adaptive Streaming over HTTP

(DASH) [18]. In DASH, videos are divided temporally into

segments. A video segment is a sequence of video frames

downloaded as a single unit during streaming. Segment du-

rations can vary, but they typically consist of about one or

a few seconds of video. Multiple versions of each segment

are encoded at different bitrates. Over time, as available

bandwidth fluctuates, the video streaming client will select a

segment whose bitrate matches available network bandwidth.

This selection procedure enables algorithms to flexibly tradeoff

between reducing video quality and stalling (stopping play-

back to buffer additional video), allowing smooth playback

under varying network conditions.

Bitrate adaptation, however, cannot address a fundamental

inefficiency in 360-degree video streaming. That is, not all

downloaded pixels in a video frame is consumed by the

user. While 360-degree videos can provide a full 360-degree

horizontal field of view, most VR headsets today have only

between 90-degree to 110-degree horizontal FOV [9]. As

a result, many of the pixels in a 360-degree video frame

are not displayed. For example, to render a view of 100

degrees horizontal and vertical FOV centered at < yaw =
0, pitch = 0 >, only approximately 14.3% of the pixels in

an equirectangular frame are needed. The network bandwidth

used for downloading the rest 85% pixels is thus wasted.

To address this problem, one approach is to design an

oriented projection scheme that devotes more pixels in the

360-degree video frame to the area on the sphere that matches

the user’s view orientation. One example of such scheme is

the “offset cubic projection” proposed by Facebook. However,

our measurement results have shown that this scheme suffers

significantly from reduced encoding efficiency due to the

distortion applied on the spherical surface [28]. As a result,

even if this projection can produce similar visual qualities in

less than half of the pixels compared to the equirectangular

projection, the reduction in bitrate of the encoded video is

only 5.6% to 16.4%. A further disadvantage of the offset

cube projection is that a separate offset cube segment must

be encoded for many orientations to support high qualities

in all orientations. For example, Facebook uses 22 offset cube

orientations [28] in their implementation. These many versions

of the oriented projection significantly increase the storage

space used to stream supported videos.



Another approach is tile-based streaming [14], [15], [16],

[17], [19], [22], [23]. A tile is a rectangular area on the

projected 360-degree video’s frame. Tiles are independently

encoded, allowing them to be decoded independently. Tile-

based streaming is typically used with DASH, cutting a DASH

segment into multiple tiles that jointly cover the entire frame

area of the segment. In an ideal scenario, the video streaming

client only need to download a minimum set of tiles that cover

the user’s view.

A challenging problem with tiling is in determining tile

sizes that best support the streaming application. Small tile

sizes can minimize the number of pixels transmitted over the

network that are not observed by the user. However, as the

number of pixels in a tile decreases, the video compression

ratios also suffer [12], [21], [25]. These decreased compression

ratios occur because motion estimation, the key to inter-frame

compression in modern video codecs, is less efficient when

the search range of block matches is constrained to small tiles.

As a result, a tiling strategy that minimizes tile sizes may not

minimize downloading bandwidth. On the other hand, while

large tile sizes can improve compression ratios for individual

tiles, these large tiles may result in larger numbers of unviewed

pixels.

Existing tile-based streaming prototypes mainly use fixed-

tiling: video frames are cut into non-overlapping tiles with

size tile width× tile height each [4], [7], [15]. In prior work,

we proposed a method called OpTile. OpTile optimizes an

objective that considers both the server-side storage cost and

bandwidth cost. The tiling solutions from this optimization

problem are both non-overlapping and allow for variable sized

tiles [27]. A downside of OpTile is its restriction to non-

overlapping tiles, which limits bandwidth savings.

III. DESIGN OF CLUSTILE

The ClusTile objective was developed from the intuition

that the most important aspect of 360-degree video streaming

involves minimizing the bandwidth used to deliver video

streams to the client. We make the assumption that there is

some underlying distribution of views for each segment, and

that this distribution can be effectively estimated by observing

the pattern of past views of the segment. Our objective thus

relies on a dataset of past views.

The solution to such an objective clearly involves selecting

a tile corresponding to each past view so that this tile covers

the view as precisely as possible. Equally clearly, the problem

with this approach is that as the number of past views increase,

the number of tiles will also increase so that all possible

tiles that almost-exactly cover user views are included in the

tiling solution. This solution, however, may cause practical

problems, as the amount of storage needed for these tiles may

increase past available system constraints.

We thus attempt to find a tiling solution that minimizes

the required bandwidth with a set of tiles that also can be

stored in a pre-defined amount of space. Adding this constraint

unfortunately produces an ILP that is intractable to solve even

for relatively small datasets, as the ILP must be solved jointly

TABLE I: Variables used in the problem formulation.

x
A vector representing the set of tiles selected and
encoded for streaming.

c
A vector representing the downloading (i.e., band-
width) cost of each tile.

M
A matrix mapping tiles (column) to basic tiles they
cover (row).

x
(v) A vector representing the set of tiles used to cover

view v.

b
(v) Basic tiles partially or fully covered by view v.

x
(k) A vector representing the set of tiles needed to cover

all views in a cluster k of views.

b
(k) b

(k) is a binary vector indicating which basic tiles are
included in cluster k

n
(k)

A vector of counts of the number of views in cluster
k that are covered by tiles indexed by each element of

the vector. Given a vector m(k), where m
(k) indicates

the number of times a basic tile is covered, n
(k)
j =

maxi(m
(k)
i ×Mij).

basic 
tile 0

basic 
tile 1

basic 
tile 2

Fig. 1: Dividing a segment into three basic tiles.

for all dataset items. A dataset of only ten items requires

seven minutes of computation on commodity machines, and

the solution scales polynomially in the number of dataset

items.

To overcome this computational limitation, we propose to

run our ILP over clusters of views in the dataset rather

than over individual views. The speed increase results from

the observation that clusters of views can be computed very

quickly with standard tools compared to solutions to the ILP.

In addition, if many views in our dataset are very similar,

then it may not be useful computing tiling solutions multiple

times. Grouping these similar views together is a natural way

to address this inefficiency in computation as we expect similar

views to produce similar tile coverage solutions.

A. Problem Formulation

To formulate the problem of finding the best tiling solution,

we must first create a candidate set of tiles. To create this

candidate set, we use the same method we proposed in

OpTile [27]. We describe the method here so that the problem

formulation is complete.

Given a video segment, we first construct a set of basic

tiles. Each basic tile is the smallest tile that can be encoded

and downloaded during video streaming. Any valid tile must

be rectangle and exactly covers one or more basic tiles. For

example, if we divide a video segment spatially into 3 basic

tiles as in Figure 1, there exists a total of six possible tiles that

can be created from these basic tiles, shown in Figure 2. We

thus can use a binary vector x to encode the presence of these

possible tiles in the solution: [a, b, c, d, e, f ]. For example, if

decision is made to cut the segment vertically into two disjoint

tiles, a and e, then x will be represented as [1, 0, 0, 0, 1, 0].



basic 
tile 0

tile a tile b tile c tile d

tile etile f

basic 
tile 1

basic 
tile 2

basic 
tile 0

basic 
tile 1

basic 
tile 1

basic 
tile 2

basic 
tile 2

basic 
tile 1

basic 
tile 0

Fig. 2: A candidate set of six possible tiles can be

constructed if the segment is divided into 3 basic tiles.

Different from OpTile [27] which considers only non-

overlapping tiles, in ClusTile, it is possible to select overlap-

ping tiles. For example, if x = [0, 0, 0, 1, 1, 0], selecting tiles

d and e, then basic tile 1 is covered twice.

We use a vector c to represent the amount of bandwidth

needed to download each tile. This amount of bandwidth can

either be estimated or computed directly by encoding the

corresponding tile.

We formulate the following integer linear program (ILP)

objective intended to find an optimal set of tiles used to stream

a segment of 360-degree video. The objective is intended to

minimize the expected network bandwidth used to stream a

view of the segment, assuming fixed distribution over segment

views, subject to a storage constraint. Here, the optimal set of

tiles is encoded in the value of x.

Joint Bandwidth Minimization Objective:

minimize:
∑

v

c⊤x(v)

subject to: Mx(v) ≥ b(v) ∀v

x
(v)
i ∈ {0, xi} ∀v, i

xi ∈ {0, 1} ∀i

c⊤x ≤ S

In the Joint Bandwidth Minimization Objective, for a view v

of the segment, b(v) is a binary vector where a 1 indicates that a

basic tile is at least partially shown by the view. x(v) is a subset

of tiles in x used to cover all basic tiles in b(v), as required by

view v. This coverage constraint is expressed using a matrix

M . M is a binary matrix whose rows represent basic tiles and

whose columns represent tiles. A value of 1 at position (i, j)
of M indicates that the tiles represented by column j cover

the basic tile represented by row i. For example, the contents

of M for the example in Figure 2 is shown below:

basic tile a b c d e f

0 1 0 0 1 0 1

1 0 1 0 1 1 1

2 0 0 1 0 1 1

The Joint Bandwidth Minimization Objective minimizes the

bandwidth used in streaming, over an entire dataset of views,

subject to a constraint on the total storage size of all tiles in

x. However, there are two practical problems associated with

this objective. First, to compute the cost vector, c, we need to

know O(n2) tile costs, where n is the number of basic tiles. To

do so, either the tiles can be encoded to compute these storage

costs, at significant computational expense, or these costs can

be estimated. Estimation requires that the estimation errors be

small enough, or bound the true tile sizes closely enough, that

the ILP solution will still have acceptable performance.

The second and more-difficult problem to surmount, is

that the size of this integer linear program is proportional

to the number of items in the dataset. These integer linear

programs become infeasible to solve even for small datasets.

For example, a dataset of ten views takes about 400 seconds

to solve on commodity hardware.

We propose a tractable approximation of the Joint Band-

width Minimization Objective. Solutions to this approximation

can be computed in practical amounts of time on commodity

hardware but may not achieve the precise guarantees of the

original objective.

ClusTile Objective:

minimize: c⊤diag(n(k))x(k)

subject to: Mx(k) ≥ b(k) ∀k

x
(k)
i ∈ {0, 1} ∀k, i
∑

i

x
(k)
i ≤ N ∀k

The ClusTile Objective is similar to the Joint Bandwidth

Minimization Objective, defining a comprehensive objective

over a set of views. There are four main differences.

First, rather than attempting to cover individual views, it

attempts to cover clusters of views. Here, the vector b(k) is

a binary vector indicating which basic tiles are included in

cluster k:

b(k) =
∨

v∈k

b(v)

If any view in cluster k includes a basic tile, then we indicate

this basic tile in b(k) by a 1 in the corresponding vector

element. However, we note that other thresholds on cluster

contents may be possible for constructing b(k). Specifically,

basic tiles covered by a small number of cluster elements may

be excluded from b(k).

Second, unlike the Joint Bandwidth Minimization Objective,

the cost vector in the ClusTile Objective is scaled by the

number of views in the cluster that are covered by a given

tile, with this weighting given by the vector n(k).

Third, we include a constraint on each cluster’s solution,

xk, requiring that there are no more than N non-zero items

in xk. That is, no more than N tiles should be used to render

views required by cluster k. This constraint is based on the

following practical concern: With H.264, each tile has to be

independently decoded. This means for every tile needed for

rendering the view, a decoder instance has to be initiated. All

decoders have to complete their decoding tasks timely. This

can result in high context switch overhead if there are too many

instances. The decoded streams also have to be synchronized



before view rendering can take place. Such synchronization

overhead can be big if too many tiles are required for rendering

a view.

Finally, the ClusTile Objective removes cross-view con-

straints, x, and the total storage size constraint, c⊤x ≤ S.

Removing these cross-view constraints allows us to solve the

ClusTile Objective for each cluster independently, improving

the tractibility of the ILP. The combined solution, x, for all

clusters is constructed as x =
∨

k xk. Despite the absence of

the total tile size constraint, we expect solutions for all clusters

to consume reasonable amounts of space as long as the number

of clusters is limited.

The ClusTile Objective also improves computational

tractability by reducing the integer linear program size through

inclusion of multiple views into a single clustered view –

clusters can be computed much more quickly on a per-view

basis than ILP solutions. A potential disadvantage with this

approach is if clusters have high variances, then the coverage

computed for a cluster will result in wasted bandwidth when

streaming a single view. That is, if clusters cannot tightly

represent groups of views, then the optimal way of selecting

tiles to cover a single view from the set provided by the

clustering objective may also frequently cover unviewed areas

of the 360-degree sphere, making this clustering objective

inefficient. We attempt to evaluate the effect of this clustering

approximation empirically in Section V.

As a final concern, we note that solutions to these objectives

might lead to situations where we cannot cover views outside

of our training set with tiles in the solution. That is, solutions

to our objectives may not generalize well outside of the set

of sampled views. A possible “regularization” strategy could

involve always including the set of basic tiles in the solution.

This approach would ensure that all views not seen in the

training set were coverable but would come at the cost of extra

storage. We use this approach in our experiments in Section

V.

B. Cost Estimation

An important piece of our integer program formulation is

the cost c associated with each item in x. Here, ci represents

the storage size of the segment associated with tile xi. Given

n basic tiles, there exists O(n2) solution tiles. This large

number of tiles makes encoding each tile to obtain its size

too computation intensive to be practical.

Instead, we estimate the storage size of each possible tile

through a prediction strategy that takes the strong correlation

between video compression and motion estimation into ac-

count. To do so, we use an approach we previously proposed

in [27]. We describe the approach here so that this section is

self-contained.

Video codecs today exploit inter-frame similarity for com-

pression through block-based motion estimation. To encode

a block, the video encoder searches for a best-matching

block in nearby frames. The relative location of this best-

matching block to the block being encoded is then recorded

as a “motion vector”. The video encoder then computes the

TABLE II: Features used for tile size estimation.

∑
i∈t

si
Total storage size of all basic tiles inside tile t if
they are all encoded independently.

∑
i∈t

mvi

Total number of motion vectors that need to be
relocated if all basic tiles in tile t are encoded
independently.

mvt

The number of relocated motion vectors if tile t

is encoded independently. Note that this set does
not include the mvi describing motion vectors
between basic tiles found within tile t.

o
Average storage overhead of each relocated mo-
tion vectors in this segment.

nt Number of basic tiles inside t.

difference between the current block and the best-matching

block and compresses this difference (residual). If the current

block and the reference block are highly similar, then only

a small amount of data is needed to encode the residual.

Cutting a frame into tiles reduces the population of potential

block matches available to the video encoder. As a result, with

smaller tiles, a less similar reference block may be located

and used for motion estimation, leading to a larger-magnitude

residual that cannot be compressed as efficiently.

Our cost estimation is done on video segments. Each

segment contains a short duration of video, typically one to

three seconds, and can only contain one group of pictures

(GOP). That is, each segment can contain one single intra-

coded I-frame. We denote the storage size of the non-tiled,

original segment as s. We then spatially cut this segment into

basic tiles of selected size. Size of basic tiles must be multiples

of the H.264 macroblock, i.e., 16×16. Our prediction method

begins by encoding all basic tiles. We denote the ith basic tiles

storage size as si. The method then extracts all motion vectors

in the segment and counts how many motion vectors pointing

to a basic tile i would have to be relocated if i was encoded

independently. We denote this count as mvi. The prediction

procedure then calculates the storage overhead per relocated

motion vector as o =
∑

i
si−s

∑
i
mvi

.

Given a tile t that contains more than one basic tiles, our

prediction method estimates t’s storage size using the five

features shown in Table II. We trained an artificial neural

network (ANN) model using a dataset of 6,082 tiles. To

generate these tiles, we first cut the video temporally into one-

second long segments. We then randomly select a segment

from a video, a tile position, and tile width and height. Once

a tile was selected, we extracted the features from Table II and

encoded the tile using ffmpeg [3] to obtain its true tile size in

bytes. We configured our ANN to use a single hidden layer

of 50 nodes with the ReLU activation function. L-BFGS [20]

was used for training the ANN.

Figure 3 shows prediction results from our four-fold cross

validation. In each fold, we trained an ANN model based on

features and empirical tile sizes from three videos. We then

evaluated the trained model on tiles from the fourth video.

The overall median absolute error in the prediction was 4.7%,

varying from 2% to 8% over the four folds.

We used the ANN model trained with all four videos in the



0 100 200 300 400 500
Predicted Tile Size (KBytes)

0
100
200
300
400
500

Re
al

 T
ile

 S
ize

 (K
By

te
s)

(a) Video 1

0 100 200 300 400 500
Predicted Tile Size (KBytes)

0
100
200
300
400
500

Re
al

 T
ile

 S
ize

 (K
By

te
s)

(b) Video 2

0 100 200 300 400 500
Predicted Tile Size (KBytes)

0
100
200
300
400
500

Re
al

 T
ile

 S
ize

 (K
By

te
s)

(c) Video 3

0 100 200 300 400 500
Predicted Tile Size (KBytes)

0
100
200
300
400
500

Re
al

 T
ile

 S
ize

 (K
By

te
s)

(d) Video 4

Fig. 3: Results from four-fold cross validation. In each fold, we trained a neural network model based on features and

empirical tile sizes from three videos. We then evaluated the trained model on tiles from the fourth video.

dataset for tile size (i.e., vector c) estimation for our evaluation

in Section V. This set of four videos used for ANN training

does not overlap with the set of five videos used for bandwidth

reduction evaluation in Section V.

C. Streaming Client Tile Selection

Since each basic tile may be covered more than once by

the tiles in x, a tile subset selection algorithm is required for

selecting x(v) given x and b(v).

Client Tile Selection Objective:

minimize: c(r)
⊤

x(v)

subject to: Mx(v) ≥ b(v)

x
(v)
i ∈ {0, xi} ∀v, i

For all i in x where xi is 1, c
(r)
i represents the true storage

size of the tile i. c(r) is obtained empirically after all tiles in

x have been encoded. This integer program then solves the

optimal x(v) given x, M , b(v), and c(r). Since the number

of non-zero items in x is typically small, we can reduce

the elements of x(v) and columns of M to only those that

correspond to non-zero elements of x, allowing the integer

linear program to be solved very fast. We report the solving

time in Section V.

IV. IMPLEMENTATION

For each video segment, we construct the ClusTile Objective

using a known set of d(v)s and estimate cost vector c using

the ANN model. When constructing matrix M , we limit the

height and width of each tile so that a tile can contain up to

12 × 12 basic tiles. We use an off-the-shelf implementation

of K-means [8] to cluster views and use Gurobi Optimizer

7.0.2 [5] to solve integer linear programs.

ffmpeg is then used to crop and encode tiles based on the

ClusTile solution. To maintain the same quality levels for

all tiles, we use the same x264 parameters for encoding all

cropped tiles. The same procedure is repeated for all segments

in a video.

V. EVALUATION

We compare ClusTile against two baseline 360-degree

streaming solutions: i) origin, a solution where no tiling

is employed and ii) fix-n, a fixed tiling scheme where

segments are cut into fixed-size tiles, each tile encoding n×n

pixels. We also compare ClusTile’s bandwidth savings with

our own prior work, OpTile [27].

Our ClusTile objective requires a set of existing views of

each segment as well as the basic tile coverage, b(v), of

these existing views. For this, we use a publicly-available

dataset: the 360-degree video head movement dataset [13].

This dataset records the head orientation of 58 users watching

5 monoscopic 360-degree videos, encoded in the equirect-

angular projection, in VR headsets. We downloaded these 5

videos and re-encoded them at two resolutions: 1920×960 and

3840×1920. For each video in the dataset, users watched each

video for about 80 seconds. We extracted these 80 seconds

from each video and encoded them into one-second segments.

After this segment extraction step, we then take each

segment and construct a set of basic tiles. For the 1920×960-

resolution videos, we set the basic tile to contain 4× 4 H.264

macroblocks, i.e., 64 × 64 pixels. For 3840 × 1920 videos,

we use larger basic tiles, 128× 128 pixels, in order to reduce

the number of solution tiles in x. These size selections mean

that for both video resolutions, the number of basic tiles is

30× 15 = 450.

Once basic tiles are produced, we randomly select 40 users

from the dataset as a training set and extract their view ori-

entations for each temporal segment. A user’s view direction

may change over the playback of one segment, e.g., the user

may pan through the video within the one-second segment

duration. To account for this, the head movement dataset

records multiple instantaneous view orientation samples in one

second. To construct b(v), we assume a viewport of 100-degree

horizontal and 100-degree vertical field of view. For a user

u’s view v over a segment, if any pixel in a basic tile i is

used when rendering any instantaneous views of user u in

the same segment, we set b
(v)
i to 1. We repeat this strategy to

construct the set of 40 b(v)s for every segment. We then cluster

these views into K clusters. We experiment with two different

settings of K: 5 and 10, creating 5 or 10 b(k)s for the ClusTile

objective. We refer to these settings as ClusTile-5 and

ClusTile-10. For each cluster k, we limit the maximum

number of tiles needed to cover all basic tiles, b(k), in the

cluster to be 10.

To construct vector c as required by our objective, for each

segment, we estimate the storage size of each possible tile



TABLE III: Average number of tiles in ClusTile solutions.

1920× 960 3840× 1920
mean median mean median

ClusTile-5 46.3 50 47.7 50

ClusTile-10 85.4 89 91.4 95

Fig. 4: Tiles generated by ClusTile-5 solutions. The darker

an area is, the more times the corresponding basic tile is

covered.

using the ANN model described in Section III-B.

After solving the ILP, we cut each segment into tiles based

on tiles encoded in x. We encode each tile in x using ffmpeg.

We construct the vector c(r) from these true encoded storage

sizes to evaluate client-side tile selection time.

A. Server-side Tile Storage Size

Since we set the maximum number of tiles needed to render

a cluster of view to 10, the maximum number of tiles in the

ClusTile solution is K×10, where K is the number of clusters

we use in our ClusTile objective. That is, ClusTile-5

solutions can contain at most 50 tiles, and ClusTile-10

solutions can contain at most 100 tiles. Table III shows the

mean and median number of tiles in ClusTile solutions for

videos in both resolutions. Figure 4 shows two examples of

selected tiles in ClusTile-5 solutions. We use grayscale to

indicate the number of times a basic tile in the segment has

been covered by selected tiles. The darker an area is, the more

times its corresponding basic tiles have been covered by tiles

in the solution.

For every segment, we sum up all the tiles in the ClusTile

solution and normalize the sum against the original, non-

tiled, equirectangular segment. Figure 5 shows the results. For

segments in both resolutions, the median normalized storage

size of ClusTile-5 is only 2.3. For ClusTile-10, since

more tiles are generated, its median normalized storage size is

slightly bigger, 3.6. If we apply the “regularization” strategy

which includes all basic tiles in the solution, the normalized

server-side storage size is increased by 2.1 for 1920 × 960
videos, and by 1.3 for 3840× 1920 videos.

Overall, ClusTile uses 2.3 to 5.7 times the original storage

size. This is much smaller compared to the offset cubic

projection scheme used by Facebook. In their scheme, 22

offset cube orientations are used, requiring each segment to

be encoded in 22 versions, which significantly increases the

storage requirement at the server. Compared to the non-tiled,

equirectangular segments, ClusTile trades increased server-

side storage for much more efficient downloading. Next, we

show the bandwidth reduction results.

B. Bandwidth Reduction During Streaming

Streaming bandwidth savings rely on predicting a user’s

future view and only download portions of the video segment

that is needed for view rendering. Although view predic-

tion is outside the scope of this paper, recent studies have

shown that user’s head movement is highly predictable in the

near future [11], [24]. In this study, we evaluate ClusTile’s

performance under two different prediction schemes: perfect

prediction and naive prediction. Since we have used the view

orientations from 40 users to construct the ClusTile objective,

we evaluate the network performance on the remaining 18

users.

1) Perfect prediction: We first evaluate how ClusTile per-

forms if we can perfectly predict how a segment is viewed by

a user. Perfect prediction allows us to download the minimum

subset of available tiles, with every tile used in view rendering.

The results are shown in Figure 6. Error bars in this

figure represent the 95% confidence interval. ClusTile-10

consistently performs the best, reducing 68% to 76% down-

loaded volume compared to the baseline, origin, where

the full, non-tiled, equirectangular segment is downloaded.

ClusTile-5 performs slightly worse than ClusTile-10,

saving 66% to 73% downloaded volume. Both ClusTile-5

and ClusTile-10 perform better than all fix-n schemes.

ClusTile-10 can save 19% to 52% downloaded vol-

ume over the best-performing fix-n scheme. Compared to

OpTile1, ClusTile-10 can produce an additional 7% to

21% savings in downloaded data.

2) Naive prediction: We next evaluate the bandwidth ef-

ficiency when a naive prediction scheme is used for view

prediction. In this naive prediction scheme, we assume that

a user’s view at second s will match his or her view in

the interval [s + 3, s + 4). Here, the view vs at time s is

an instantaneous view at the beginning of second s, while

the a user may pan through the video in 1 second period.

We further assume that perfect prediction can be made one

second before a segment is due to play. Assuming that each

segment is one second long, this perfect prediction will be

able to accurately predict how segment s + 3 is viewed,

i.e., v[s+3,s+4) at time s + 2. Thus at time s + 2 in this

naive prediction procedure, we allow additional tiles to be

downloaded to cover basic tiles that were not downloaded at

time s. That is, at time s+2 we download tiles at bvmissing where

bvmissing = bv[s+3,s+4) ⊕ (bv[s+3,s+4) ∧ bvs). In this way, the total

downloaded data of a segment is the size of tiles downloaded

to cover bvs plus the size of tiles downloaded to additionally

cover bvmissing .

The results are shown in Figure 7. Across all videos

and both resolutions, ClusTile-10 consistently performs

the best, saving 49% to 63% compared to origin.

ClusTile-5 performs the second best, saving 46% to 59%

compared to origin. Compared to the best-performing fixed

1OpTile uses the parameter α to control the relative importance of storage
and bandwidth costs [27]. Larger α yields more bandwidth savings. In [27],
we tested OpTile with α = 0, 1, and 1000, and α = 1000 yields the best
results. We thus compare ClusTile with OpTile α = 1000 in this paper.



0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e 
Fr

ac
tio

n

ClusTile-5
ClusTile-10
ClusTile-5 + Basic
ClusTile-10 + Basic

(a) 1920× 960

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Fr
ac

tio
n

ClusTile-5
ClusTile-10
ClusTile-5 + Basic
ClusTile-10 + Basic

(b) 3840× 1920

Fig. 5: CDF of normalized server-side

storage size for various cutting schemes.

In this figure, “+ Basic” indicates the

normalized storage when all 450 basic

tiles are also included in the solution.

diving paris r-coaster timelapse venice0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Do

wn
lo

ad
ed

 V
ol

um
e

origin
fix-512
fix-256

fix-128
fix-64
OpTile

ClusTile-5
ClusTile-10

(a) 1920× 960

diving paris r-coaster timelapse venice0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Do

wn
lo

ad
ed

 V
ol

um
e

origin
fix-1024
fix-512

fix-256
fix-128
OpTile

ClusTile-5
ClusTile-10

(b) 3840× 1920

Fig. 6: Per-segment normalized down-

loaded volume averaged over traces

from 18 users with perfect prediction.

diving paris r-coaster timelapse venice0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Do

wn
lo

ad
ed

 V
ol

um
e

origin
fix-512
fix-256

fix-128
fix-64
OpTile

ClusTile-5
ClusTile-10

(a) 1920× 960

diving paris r-coaster timelapse venice0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Do

wn
lo

ad
ed

 V
ol

um
e

origin
fix-1024
fix-512

fix-256
fix-128
OpTile

ClusTile-5
ClusTile-10

(b) 3840× 1920

Fig. 7: Per-segment normalized down-

loaded volume averaged over traces

from 18 users with naive prediction.

TABLE IV: Average number of tiles needed for rendering

a segment.

1920× 960 3840× 1920
ClusTile-5 6.8 7.6

ClusTile-10 7.0 8.1

fix-64 106.7 N/A

fix-128 32.2 106.7

fix-256 9.7 32.2

fix-512 2.2 9.7

fix-1024 N/A 2.2

tiling scheme, ClusTile-10 performs at least as good

(“diving” in 3840 × 1920) and can save up to 39% (“paris”

in 1920 × 960) downloaded volume. Compared to OpTile,

ClusTile-5 can save 5% to 25% additional downloading

volume, and ClusTile-10 can save an additional 13% to

29%.

C. Client-side Tile Selection

We further show in Table IV the average number of tiles

needed for rendering views required by a segment. Using

tiles generated by ClusTile, on average, fewer than 9 tiles

are needed. This is smaller than all but one fixed tiling

scheme: fix-512 for 1920 × 960 videos and fix-1024

for 3840×1920 videos. fix-512 and fix-1024, however,

cut big tiles that require much more downloading bandwidth.

Finally, we report the solving time for the Client Tile

Selection Objective. In our experiments, we used an Intel(R)

Core(TM) i5-6600 3.30GHz CPU. Only one single CPU core

is used for solving the ILP. The results are shown in Figure 8.

The mean solving time for ClusTile-5 is 0.132 seconds.

0.10 0.12 0.14 0.16 0.18 0.20
Client Tile Selection Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e 
Fr

ac
tio

n

ClusTile-5
ClusTile-10

Fig. 8: Client tile selection time distribution.

For ClusTile-10, as the solution includes more tiles, the

mean solving time is slightly longer, 0.146 seconds.

VI. DISCUSSION AND FUTURE WORK

In this section, we first discuss the strong dependence of

our algorithm on data reflecting user behavior when viewing

360-degree videos. This strong dependence may lead us to

consider what could go wrong if the data is missing or does not

meet certain expectations. For example, how would ClusTile

operate in the absence of any user data? Similarly, what if the

distribution of views over a segment changes over time?

We expect that it should be possible to address either

of these cases by simply recomputing the set of tiles, x,

if we detect that the distribution of views over basic tiles

has changed. These changes in distribution could be detected

by applying a threshold on the distance between normalized

vectors of basic tile view counts. The smaller this distance

threshold, the more computation would be required, so the

sensitivity of the tile re-computation process could be adjusted

according to available resources.



For the case where no user data is available, ClusTile can

select a fixed tiling scheme. After more empirical user views

are collected and better tiles have been generated, these fixed

tiles can be replaced.

Some significant difficulties in 360-degree video streaming

using tiled segments involves strategies for predicting future

views and strategies for best selecting tiles to download given

these predictions. If there is a discrepency between tiles

selected by a downloading stategy and tiles actually viewed

by the user, then the ClusTile objective, which consumes

historical user views may not be optimal. For example, if a

user’s view covers only basic tile 0 from Figure 2, but the

client selects tiles a and b to download, then perhaps the

server-side tile selection algorithm, e.g., ClusTile, should have

included tile d, rather than tile a and b in the solution, as

downloading tile d may be more efficient than downloading

both tiles a and b. Future work involves better characterizing

the sources of uncertainty during 360-degree streaming and

developing tile selection algorithms to account for this.

VII. CONCLUSION

In this work, we propose ClusTile, a method to compute

tilings of 360-degree videos. ClusTile is inspired by the need

to minimize bandwidth used to stream 360-degree videos,

assuming that users navigate through these videos in a way

that can be characterized by recorded user behavior. ClusTile

also attempts to constrain the amount of space needed to store

tiles in its bandwidth-minimizing solution.

We first present an objective that jointly attempts to mini-

mize bandwidth over past user views subject to a direct con-

straint on total tile storage space. Unfortunately, this objective

is impractical to optimize on a large scale. We then improve

the computational efficiency of our method by clustering user

views and solving independent ILPs over these clusters. Taking

the union of the solutions to these ILPs produces a set of tiles

that can be served to efficiently render 360-degree segments

during streaming.

This efficiency is demonstrated by our up to 76% bandwidth

savings over non-tiled equirectangular segments and up to

52% savings over best-performing fixed tiling methods. For

ClusTile-10, the best-performing ClusTile configuration, the

storage space consumed by its solutions ranges from 3.0x of

the non-tiled, equirectangular segment at the 10th-percentile

and 4.3x at the 90th-percentile.

VIII. ACKNOWLEDGEMENT

We appreciate constructive comments from anonymous ref-

erees. This work is partially supported by NSF under grant

CNS-1618931.

REFERENCES

[1] Akamai’s [state of the internet] q1 2016 report. https:
//www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/
akamai-state-of-the-internet-report-q1-2016.pdf.

[2] Equirectangular Projection. http://mathworld.wolfram.com/
EquirectangularProjection.html.

[3] FFmpeg. http://www.ffmpeg.org/.

[4] Gpac hevc tile-based adaptation guide. https://gpac.wp.imt.fr/2017/02/
01/hevc-tile-based-adaptation-guide/.

[5] Gurobi. http://www.gurobi.com/index.
[6] Internet Connection Speed Recommendations. https://help.netflix.com/

en/node/306.
[7] Kvazaar. https://github.com/ultravideo/kvazaar.
[8] sklearn.cluster.KMeans. http://scikit-learn.org/stable/modules/generated/

sklearn.cluster.KMeans.html.
[9] Virtual reality headset comparison chart. https://freeflyvr.com/

virtual-reality-headset-comparison-chart/.
[10] Virtual reality (vr) and 360 videos 101 - a

beginner’s guide. https://medium.com/visbit/
virtual-reality-vr-and-360-videos-101-a-beginners-guide-70bbade8e39.

[11] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In
2016 IEEE International Conference on Big Data (Big Data), pages
1161–1170, Dec 2016.

[12] C. Concolato, J. Le Feuvre, F. Denoual, E. Nassor, N. Ouedraogo, and
J. Taquet. Adaptive streaming of hevc tiled videos using mpeg-dash.
IEEE Transactions on Circuits and Systems for Video Technology, 2017.

[13] X. Corbillon, F. De Simone, and G. Simon. 360-degree video head
movement dataset. In ACM MMSys 2017, 2017.

[14] L. D’Acunto, J. van den Berg, E. Thomas, and O. Niamut. Using mpeg
dash srd for zoomable and navigable video. In Proceedings of the 7th

International Conference on Multimedia Systems, page 34. ACM, 2016.
[15] M. Graf, C. Timmerer, and C. Mueller. Towards bandwidth efficient

adaptive streaming of omnidirectional video over http: Design, imple-
mentation, and evaluation. In Proceedings of the 8th ACM on Multimedia

Systems Conference, pages 261–271. ACM, 2017.
[16] M. Hosseini. View-aware tile-based adaptations in 360 virtual reality

video streaming. In Virtual Reality (VR), 2017 IEEE, pages 423–424.
IEEE, 2017.

[17] M. Hosseini and V. Swaminathan. Adaptive 360 vr video streaming
based on mpeg-dash srd. In Multimedia (ISM), 2016 IEEE International

Symposium on, pages 407–408. IEEE, 2016.
[18] ISO/IEC 23009-1:2014 Information technology – Dynamic adaptive

streaming over HTTP (DASH) – Part 1: Media presentation description
and segment formats. Standard, International Organization for Standard-
ization, May 2014.

[19] J. Le Feuvre and C. Concolato. Tiled-based adaptive streaming using
mpeg-dash. In Proceedings of the 7th International Conference on

Multimedia Systems, page 41. ACM, 2016.
[20] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large

scale optimization. Mathematical programming, 45(1):503–528, 1989.
[21] K. Q. M. Ngo, R. Guntur, and W. T. Ooi. Adaptive encoding of zoomable

video streams based on user access pattern. In Proceedings of the second

annual ACM conference on Multimedia systems, pages 211–222. ACM,
2011.

[22] D. Ochi, Y. Kunita, K. Fujii, A. Kojima, S. Iwaki, and J. Hirose. Hmd
viewing spherical video streaming system. In Proceedings of the 22nd

ACM international conference on Multimedia, pages 763–764. ACM,
2014.

[23] D. Ochi, Y. Kunita, A. Kameda, A. Kojima, and S. Iwaki. Live streaming
system for omnidirectional video. In Virtual Reality (VR), 2015 IEEE,
pages 349–350. IEEE, 2015.

[24] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. Optimizing 360 video
delivery over cellular networks. In Proceedings of the 5th Workshop

on All Things Cellular: Operations, Applications and Challenges, pages
1–6. ACM, 2016.

[25] N. Quang Minh Khiem, G. Ravindra, A. Carlier, and W. T. Ooi.
Supporting zoomable video streams with dynamic region-of-interest
cropping. In Proceedings of the first annual ACM SIGMM conference

on Multimedia systems, pages 259–270. ACM, 2010.
[26] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview

of the h. 264/avc video coding standard. IEEE Transactions on circuits

and systems for video technology, 13(7):560–576, 2003.
[27] M. Xiao, C. Zhou, Y. Liu, and S. Chen. Optile: Toward optimal tiling

in 360-degree video streaming. In Proceedings of the 2017 ACM on

Multimedia Conference. ACM, 2017.
[28] C. Zhou, Z. Li, and Y. Liu. A Measurement Study of Oculus 360 Degree

Video Streaming. In Proceedings of the 8th International Conference

on Multimedia Systems. ACM, 2017.


