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Abstract

Cloud storage systems play a key role in many cloud

services. To tolerate multiple simultaneous disk fail-

ures and reduce the storage overhead, today cloud stor-

age systems often employ erasure coding schemes. To

simplify implementations, existing systems, such as Mi-

crosoft Azure and EMC Atmos, only support file append-

ing operations. However, this feature leads to a non-

trivial and increasing portion of redundant data on cloud

storage systems.

To reduce the data redundancy due to file updates by

users so as to reduce the corresponding encoding and

storage cost, in this work, we investigate how to effi-

ciently integrate the inline deduplication capability into

the general context of the Reed-Solomon (RS) code.

For this purpose, we present our initial design of Code-

Plugin. Basically, CodePlugin introduces some pre-

processing steps before the normal encoding. In these

pre-processing steps, the data duplications are identified

and properly shuffled so that the redundant blocks do not

have to be encoded. CodePlugin is applicable to any ex-

isting coding scheme and our preliminary experimental

results show that CodePlugin can effectively improve the

encoding throughput (by ∼ 20%) and reduce the storage

cost (by ∼ 17.4%).

1 Introduction

Cloud storage is fundamental to many other cloud ser-

vices. To provide availability and reliability against si-

multaneous disk failures, cloud storage systems often

employ some replica protocols. To simplify the replica

protocol, these systems are mostly designed to allow

append-only operations, such as GFS [6] and WAS [4].

Therefore, in these systems, data are sealed in fixed-sized

blocks and only read and delete operations are allowed.

To achieve reliability while saving storage cost, the

erasure coding is widely used in various storage systems.

For example, the Reed-Solomon (RS) code [14] has been

adopted in several large cloud storage systems, such as

Microsoft Azure [4] and EMC Atmos [1]. In these sys-

tems, incoming data is considered as streams composed

of fixed-size containers, which are then encoded. The

coded blocks are commonly distributed into various stor-

age nodes for future container reconstruction once some

storage nodes are temporarily inaccessible. Existing cod-

ing schemes in cloud mainly focus on rapidly regenerat-

ing coded blocks (e.g., for reducing I/Os) against disk

failures [9, 8]. There is little work found on improving

the encoding performance.

Today redundant data widely exist in cloud storage

systems. For example, the VM images are geared with

similar operating systems and commonly used software.

Furthermore, due to the append-only feature, the update

operations always lead to a great amount of redundancy

in the cloud storage systems. As the end-users keep sim-

ilar text across their editable files in the versioning sys-

tem [7, 3], and every update to the kernel or application

makes a VM image slightly different to the previous ver-

sion. All these update operations are likely to generate

new containers at the lower level of the cloud storage

system. Then the system has to re-encode these redun-

dant data repeatedly for keeping availability. It has been

found that there is about 30% redundant data in the pri-

mary storage workload [5]. Such redundancy leads to

several consequences: (1) extra storage has to be used

to accommodate such redundant data, (2) extra coding

(I/O) cost has to be paid since the redundant data have

to be encoded as well. If we can effectively reduce such

redundancy in a cloud storage system due to various up-

date operations, the storage efficiency and the encoding

(I/O) throughput of the erasure coding can be improved.

This motivates us to consider integrating deduplication

characteristic into erasure coding to more efficiently sup-

port file updates. A straightforward solution is to dedu-

plicate the input data first, and then encode the remaining

data. However, if we look into the deduplication pro-



cess (described in section 2.1), small data pieces will be

generated and stored across the storage system. Thus the

subsequent reads will be random access with a high prob-

ability. So the first challenge is to mitigate such I/O per-

formance degradation for primary storage systems. Fur-

thermore, deduplication usually demands support at the

filesystem level. This constrains the applicability of the

deduplication technique on the primary storage.

To this end, we propose CodePlugin, which utilizes

the standard deduplication technique without demanding

extra filesystem support. CodePlugin applies some pre-

processing steps to identify redundant data before encod-

ing and strives to keep the original file untouched even if

it is chunked and deduplicated. Thus, the read perfor-

mance of the original file is not degraded. By effectively

reducing the amount of redundant data, CodePlugin fur-

ther reduces the amount of data for encoding. This in

turn improves the encoding performance. Our prelimi-

nary experiments based on some real-world VM work-

loads show the effectiveness of CodePlugin by improv-

ing the throughput for ∼ 20% and reducing the storage

size for∼ 17%.

Note that CodePlugin can be used with any coding

scheme, although our following discussion focuses on

RS code.

The rest of the paper is organized as follows. We

present some background information in section 2, and

the design of CodePlugin in section 3. Experimental re-

sults are presented in section 4. We make concluding

remarks in section 5.

2 Background

2.1 Deduplication

Deduplication is commonly used in backup storage sys-

tems. In general, it consists of the following steps: 1)

chunking the raw data based on a variable chunk size or

a fixed chunk size, 2) calculating the fingerprints, e.g.,

using MD5 or SHA-1, of each resulting data piece, 3)

determining if one data piece is redundant by searching

the index table, where all unique fingerprints are kept, 4)

adding the fingerprints of new unique data pieces to the

index table and replacing the redundant data pieces with

the references to the existing ones.

The variable sized chunking usually has higher effi-

ciency in detecting redundant data since it can limit the

updates in a small range. Rabin Fingerprinting [13] is

often used, such as in LBFS [11]. It has been shown

that the primary storage workload has about 10% more

duplication if using the Rabin Fingerprinting rather than

the fixed sized chunking [10]. However, the fixed sized

chunking has much higher throughput and rsync [16]

uses the fixed size chunking.

The performance bottleneck of a deduplication system

is often at the I/O throughput [17, 15]. Bloom filter and

cache are often used to help with this problem.

3 CodePlugin Design

To integrate deduplication with erasure coding, CodePlu-

gin introduces some pre-processing steps before the en-

coding operation. These processing steps are: (1) the

de-duplicating step that tries to identify the redundant

blocks; (2) the pseudo-shuffling step, which is to virtu-

ally re-arrange the positions of data blocks so that en-

coding is only needed on a subset of blocks; and (3) the

optional sub-files exchanging step, which can further re-

duce the number of blocks to be encoded.

Before the detailed illustration of our design, for ease

of presentation, we assume that in each encoding process

there are N raw data files, each of which is of size S.

Without loss of generality, we assume that the (k,m) RS

code is used.

3.1 Pre-Processing

3.1.1 Basic Deduplication

For deduplication, we choose fixed chunking. To make

it clear, we define the data separated by erasure coding

as sub-files, which are usually stored in separate devices

for availability. For (4,2) code, the file is divided into 4

sub-files. The data pieces chunked by the deduplication

technique are referred to as blocks. If the block size is

s bytes, we can expect that one file is about to be chun-

ked into S
s

blocks, and S
k·s

blocks for each sub-file. Every

block is identified by its fingerprint, i.e. SHA-1 or MD5.

A block is marked either as unique or redundant accord-

ing to the following processing.

After the file is chunked, the blocks are identified via

3-tuple ( f id,sid,cid) address, which is composed of the

corresponding file id (fid), sub-file id (sid) and column id

(cid). Figure 1 shows an example.

Since it is difficult and unnecessary to perform dedu-

plication globally in CodePlugin, we choose to use a

cache to keep the fingerprints. In the cache, a hash table

is responsible for mapping fingerprints of unique blocks

to their addresses, and the LRU algorithm is used to evict

items when the cache is full.

Figure 1 illustrates the deduplication process. When

a file is read into memory, it is firstly chunked and all

fingerprints are generated. After comparing these fin-

gerprints to the ones in the cache, CodePlugin can tell

which blocks are redundant, as well as the correspond-

ing address of their source blocks. Such information and

references are kept in the map-file table for each file.
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Figure 1: Deduplication in CodePlugin.

When processing the file with fid = 1, some

redundant blocks (shadow blocks) and the

referring source blocks are found. The cal-

culated fingerprints, e.g. FP1, are stored in

the cache with their addresses.

After Shuffling

0 2 31

0 2 31

0 2 31

0 2 31

0 3 21

0 2 31

0 3 12

0 3 21

Before Shuffling

Figure 2: Pseudo-Shuffling in CodePlu-

gin. After shuffling, the unique blocks

(without shadow) aggregate on the left side.

The redundant blocks move to the right side.

The matrix shows the new positions of each

block.

file 0 file 1

Before Switching

After Switching

Figure 3: Sub-files Exchanging in Code-

Plugin. Before exchanging, we have to en-

code 4 stripes for each file – each stripe con-

tains unique blocks. After exchanging, we

only need to encode 2 stripes for file 0 and 4

stripes for file 1, a total of 6 stripes.

3.1.2 Pseudo-shuffling

Intuitively, to take advantage of deduplication, we should

encode the unique blocks together, and leave the redun-

dant blocks untouched. However, the challenge is that

how we can keep the sub-files as the original RS code

does. This is because if we encode the blocks from the

same sub-file, we will fail to reconstruct this sub-file

once it is erased.

Thus, in CodePlugin, we strive to group the stripes

in such a manner: every stripe must consist of k blocks

located in each sub-file, respectively. This leads to the

result that every sub-file is re-constructible if no more

than m sub-files are lost.

To achieve this goal, we need to move blocks around.

Since we want to keep the file untouched, we just need to

record the original address of the block instead of moving

the actual block around. For this reason, we call this

pseudo-shuffling.

Figure 2 illustrates the process of pseudo-shuffling.

After shuffling, all unique blocks are on the left side,

and redundant ones can be found on the opposite side.

We only need to encode the leftmost 3 columns, which

contain unique blocks. Notice that even if there is a re-

dundant block in the third column, it is still marked as

unique due to its unique peer blocks. Furthermore, the

actual blocks are never moved. We only record the new

positions in the corresponding map-address file. For ex-

ample, we can find the number 3 at row 0 and column

2 in Figure 2, which means the block is virtually moved

to the last spot of this sub-file. Procedure 1 depicts the

pseudo-shuffling algorithm of CodePlugin.

3.1.3 (Optional) Sub-files Exchange

Pseudo-Shuffling marks all redundant blocks as unique

ones if there are unique peer blocks in the same column.

Then if we have a sub-file consisting of unique blocks,

Procedure 1 Pseudo-Shuffling(k,S,s, i,map)

⊲ Shuffle the ith file

n← S
s·k

⊲ n is blocks number per sub-file

for j← 1,k do

Iuni← 1

Ired ← n

for l← 1,n do

if map[i][ j][l].state =UNIQUE then

⊲ map refers to the map-files

map[i][ j][l].position← Iuni

Iuni← Iuni + 1

else

map[i][ j][l].position← Ired

Ired ← Ired− 1

end if

end for

end for

we have to encode the whole file no matter how many re-

dundant blocks are found in this file. To deal with this

imbalance situation, we can resort to the sub-files ex-

change across files. We expect that sub-files from dif-

ferent files have more balanced unique block numbers.

Figure 3 shows an example.

If we allow exchange sub-files among at most nex files,

we will cache these nex files first. Sub-files exchange fol-

lows the Procedure 2. Basically, it sorts all k ·nex subfiles

based on the unique block numbers.

Then according to Procedure 2, CodePlugin re-

combines the sub-files into another nex buffers to be en-

coded. In this way the sub-files will be more balanced

and a less number of blocks will need to be encoded.

Note that this process is still “pseudo” because it does

not change the original data file. We only need to keep

the addresses of peer sub-files in the map-address table

for future decoding.
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Procedure 2 Sub-files Exchanging(k, i,map,nex)

⊲ Switch sub-files among the nex files

oSubs← NULL

⊲ oSubs stores the ordered sub-files

nFiles← NULL

⊲ nFiles represents the re-organized files

for j← 1,nex do

for l← 1,k do

oSubs[( j− 1) · k+ l]←map[i+ j− 1][l]
end for

end for

oSubs← sort oSubs

for j← 1,nex do

for l← 1,k do

nFiles[ j][l]← oSubs[( j− 1) · k+ l]
end for

end for

return nFiles

3.2 Encoding and Decoding

After the pre-processing, the encoding operation is

straightforward. With CodePlugin, we only need to en-

code the data stripe by stripe and distribute the sub-files

onto physical devices. The sub-files of data files stay un-

touched just like the normal (k,m) RS code.

The decoding process is a little more complicated than

the normal RS code. We need to follow the map-file to

locate the peers of the lost sub-files (if the sub-file ex-

changing is enabled). Then we need to re-shuffle the

blocks as before in the encoding process. Finally we can

decode the lost sub-file using the standard decoding op-

eration.

4 Preliminary Evaluation

CodePlugin aims to reduce the redundant data in the pri-

mary cloud storage to save storage cost and thus also re-

duce the amount of data required for encoding (or im-

prove the encoding throughput). For these objectives,

CodePlugin introduces some additional pre-processing

before the encoding, which is the overhead. In this sec-

tion, we conduct some preliminary experiments to eval-

uate the performance and overhead of CodePlugin.

4.1 Workload and Experiment Setup

For our experiments, we directly downloaded fresh VM

images based on VMware Player [2]. We downloaded

different Operating Systems, including different versions

of Ubuntu, Opensuse, Mint, Fedora and Debian, a total of

17 fresh VM images. These are brand new images with-

out applications installed. These images are dumped into

Table 1: Storage Space of RS and CodePlugin

Coded Files (GB) Map-Address Files (MB)

Original RS 19.48 0

CodePlugin-No-EX 17.77 464.6

CodePlugin-2-EX 16.74 464.6

CodePlugin-4-EX 16.10 464.6

fixed sized 300 MB data files. Totally there are about 40

GB data. For the erasure coding, the coding parameters

of (k,m,w) are set to (6,3,8) if they are not specified,

which is used in WAS [4]. The Jerasure library [12] is

used for implementation. In the de-duplicating process,

the fixed block size is set to 8 KB, and we use the MD5

digest algorithm to calculate fingerprints of blocks. We

set the cache size to 512 MB for fingerprint entries by

default.

All these experiments are run on the machine with a

64-bit Intel Pentium CPU 2.8 GHz dual core, with 6 GB

memory, 2 × 32 KB L1 caches, 2 × 256 KB L2 caches

and shared 3 MB L3 cache. The Operating System is

Ubuntu 12.04 with Linux kernel 3.2.0-53-generic.

4.2 CodePlugin Benefits

We first evaluate how much benefits we can gain from

CodePlugin. That is, how much storage space we

could save and how much improvement on the encod-

ing throughput. For comparisons, we evaluate the Code-

Plugin against the original RS code scheme with the

same coding parameters. In the experiments, we change

the sub-file exchanging number among 0, 2 and 4, and

they are denoted as CodePlugin-no-EX, CodePlugin-2-

EX and CodePlugin-4-EX, respectively.

We first look into the size of the coded file. Table 1

shows the size of the coded files of different coding

schemes in the second column. As we can see from this

table, CodePlugin with different configurations can re-

duce the storage consumption by up to 17.4%. Further-

more, the optional sub-file exchange can indeed improve

the deduplication results. Compared to the CodePlugin

without allowing sub-file exchanges, CodePlugin-2-EX

and CodePlugin-4-EX improves by 5.8% and 9.4%, re-

spectively.

With the redundant data deduplicated, we expect that

the encoding throughput would be improved as well.

Figure 4 shows the encoding throughput. In this figure,

the x-axis represents the encoding progress in terms of

the size of input files. The y-axis represents the aver-

age throughput of encoding and writes. As shown on the

figure, we find that CodePlugin with different configura-

tions has about 20%, on average, higher throughput than

the original RS scheme. This indicates that CodePlugin

finds about 20% redundant data in our workload. With

offline analysis based on the same size fixed-chunking
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technique, we find this is indeed the case – the fresh VM

images contain about 23.34% redundant data.

4.3 CodePlugin Overhead

To deduplicate the redundant data, CodePlugin mainly

introduces overhead from two aspects: the CPU cost in

terms of MD5 based fingerprinting, and the storage cost

in terms of the Map-Address file.

The third column of Table 1 shows the size of the

Map-Address file in our CodePlugin scheme. It does not

change with the sub-file exchanges, and the size is about

1.15% of the original data size.

To study the computation cost of the pre-processing in

CodePlugin, Figure 5 shows the pre-processing through-

put of different CodePlugin schemes and the MD5 fin-

gerprinting alone. In this figure, the x-axis is also the

size of the input file in GB. The y-axis is the throughput

of pre-processing. The figure clearly shows that the ma-

jor computing overhead introduced by CodePlugin is due

to MD5 computation. As expected, CodePlugin-No-EX

has a little higher throughput than the other two Code-

Plugin schemes that allow sub-file exchanges.
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4.4 Varying Cache and Coding Parameters

Since the cache size may affect the deduplication results,

we also evaluate the impact of different cache sizes.

Figure 7 shows the results when the cache size varies

from 128 MB to 512 MB, while other parameters are the

same as before. Note for clarity of presentation, Figure 7

only shows the results of CodePlugin-4-EX. A cache size

of 128 MB performs better at beginning, but was sur-

passed by the larger size of 256 MB and 512 MB later.

On one hand, this indicates that the cache size does im-

pact the deduplication. This is reasonable as a smaller

cache size may cause more evictions from the cache. On

the other hand, a larger cache size does not always per-

form better, for example, 256 MB performs worse than

128 MB cache most of the time, as it also relates to the

access sequence of the fingerprints.

Last, we also evaluate the impact of different coding

parameters. Besides (6, 3, 8), we also evaluate (4, 2, 8),

and (10, 5, 8). Figure 6 shows the results of CodePlugin-

4-EX. In general, we can observe that for all sets of pa-

rameters, the CodePlugin can outperform the original RS

code.

5 Conclusion and Future Work

In this work, we explore the possibility of supporting

deduplication in cloud storage systems due to the in-

creasing amount of redundant data on cloud storage. For

this purpose, we have designed CodePlugin, a mecha-

nism that is applicable to any existing erasure coding

scheme. Experiments based on some real-world cloud

VM images have been conducted, and the results show

that CodePlugin can effectively remove the redundant

data and subsequently improve the encoding throughput.

CodePlugin is an initial design, and we are optimiz-

ing and testing it from various aspects. We will conduct

experiments in real deployed storage systems to examine

its effect in practice.
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6 Discussion

Primary storage deduplication is attracting more and

more attention. Some startups are working in this area.

Work [5] also showed that there is a growing rate of re-

dundant data in the cloud storage due to various reasons

and the increasing demand of efficient solutions for pri-

mary storage deduplication. However, the solution is still

open and CodePlugin explores one possible way to ad-

dress this challenge. The experimental results presented

in this paper show that CodePlugin can achieve 17.4%

storage saving and about 20% improvement of the encod-

ing throughput. However, this is not the limit of Code-

Plugin. The performance of CodePlugin is highly work-

load dependent. In the previous experiments, the work-

load we use only contains fresh VM images for VMware.

Our offline analysis shows that there is about 23% re-

dundant data in the workload, and our preliminary ex-

periments show that CodePlugin can exploit such redun-

dancy.

The first question remained for CodePlugin is whether

this is the most efficient and suitable approach for pri-

mary storage. What are other possible alternatives?

What are their corresponding advantages and disadvan-

tages? CodePlugin aims to introduce the minimum over-

head (changes) to existing systems. Is a clean-slate de-

sign a better approach?

The second is that inside CodePlugin, currently the

fixed sized chunking is used in deduplication. An al-

ternative is to use the variable sized chunking that has

higher efficiency in detecting the redundant data. We can

expect lower preprocessing throughput due to complex-

ity of the variable chunking algorithms, e.g., by using

Rabin Fingerprinting. Also it would be more compli-

cated in implementation, because the deduplication units

are not well aligned to be efficiently encoded. How-

ever, it may be still worth exploring whether such weak-

ness is addressed while a higher storage efficiency can be

achieved.

Lastly, in this work, we mainly introduce the idea of

CodePlugin. Our evaluations are centered on the per-

formance when dealing with deduplication. There are

other aspects to be evaluated, such as read and recov-

ery after a failure. For unique blocks, we expect they

perform not very differently from the traditional erasure

coding shcemes. However, the reconstruction of redun-

dant blocks, which reads blocks from the storage nodes,

may degrade the I/O performance. Are there any opti-

mizations to mitigate such overhead? One possible so-

lution is to leverage the rendundant data temporal and

spacial locality [15]. Another direction is to only mark

blocks from distinct storage nodes as redundant so that

a higher read speed can be achieved with concurrent I/O

requests. It is also very desirable to measure its perfor-

mance under normal operating environments. As a next

step, we plan to conduct more thorough evaluations of

CodePlugin.
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