
Multi-Scale Vessel Extraction Using Curvilinear Filter-Matching Applied to Digital
Photographs of Human Placentas
Marilyn Y. Vazquez, Nen Huyhn, and Jen-Mei Chang, Ph.D.

California State University, Long Beach, CA, U.S.A.

WHY STUDY THE PLACENTA?

• As the source of nutrients and outlet of waste, the placenta has a big impact
on the development of the fetus, and studying it might give better clues on the
causes of problems such as low birth weight and short gestational age.

• Features of the placenta that are being studied as potential predictors of
pathologies are placental shape and vascular structure pervasiveness.

Question: Which one of following placentas is associated with a healthy baby?

Figure: Sample digital placenta images in the UNC data set provided by Placental Analytics.

OVERVIEW

• The goal of this project is to develop an automated program that detects
vessels in placenta images, which can be challenging because of the
variations of color in the placenta and the non-uniform texture.

• To extract the vascular structure of the placentas, we use a multi-scale filter in
combination with a line filter to take advantage of the second order
characteristics and linear structure of the vessels.

• The results show an improved identification of vessels, measured by the
Matthew’s Correlation Coefficient, compared to the only other previous work
in [1].

IMAGE REPRESENTATION AND FILTERING PROCESS

• For implementation purposes, we used the green channel of the images so
that I(x, y) denotes the image function I and x, y the pixel location. For
example, from (c) in the figure below, I(104, 43) = 6 means that the pixel
located at the position (104, 43) has a “green” intensity value of 6.

Figure: An image, its green channel tilted to show intensity map, some pixels labeled on the green channel, which is

the one used for the implementations of this paper to create a better contrast, with some pixels labeled.

• The linear filtering process can be viewed as a convolution of the image I(x, y)
with a filter function f (x, y) with a moving convolution mask [3], illustrated in
the following figure.

Figure: Convolution masks in light blue with red centers. These convolution masks move throughout the image as

illustrated here from left to right.

THE MULTI-SCALE FILTER

• Let the 2D Gaussian filter be defined as follows
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• If we let I(x, y) be the image input and Gσ, be a Gaussian filter, the Hessian
matrix is
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• Since vessels appear as “valleys” in the image’s intensity map, the

eigenvalues of the Hessian are used to create a function that will output high
values for pixels that are vessels and low values for those that are not.

• This likelihood equation, or“vesselness” equation, is defined in [2] as
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where A = λ1
λ2

and c and β are thresholds that control the sensitivity of the line
filter to A.

• However, due to the non-uniform texture of the placenta, this method detects
background noise as vessels, as shown in the figure below.
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Figure: (a) Eigenvectors corresponding to the smallest eigenvalue of the Hessian, and (b) the eigenvectors

corresponding to the other eigenvalue. (c) Intensity map rotated to magnify intensity values. Notice that a vessel,

highlighted in yellow, and noise, highlighted in red, cannot be distinguished easily. (d) Multi-scale method applied on

placenta patch.

ENHANCING THE MULTI-SCALE FILTER

Linear Filter Matching
Since the multi-scale method identifies background noise as part of the vessel
structure, we propose a new line filter to highlight linear structures already
identified with the previous method and penalize surrounding pixels.

To achieve this goal, we constructed the following equation from the second
derivative of the Gaussian function:
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Then, we divided the multi-scale result in components and kept only components
with linear values higher than a threshold, as shown in the following figure.
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Figure: (a) The proposed linear filter and (b) the results of applying this filter to the placenta patch. (c) The

multi-scale result, and (d) the combination of both using a threshold of 40.

EMPIRICAL RESULTS

The Matthew’s Correlation Coefficient
To test the effectiveness of the filtering process, we used the confusion matrix to
compare our results to the hand tracings of the placenta images done by
pathologist. The confusion matrix can be constructed in the following form:

True ID
True False

Labeled ID True True Positive False Positive
False False Negative True Negative

The Matthew’s Correlation Coefficient (MCC) metric is defined as follows:

mcc(x, y) =
TP× TN − FP× FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)

This metric is a correlation measure with values between -1 and 1 that for our
case will be measuring how related the our identification of the vessels are to
the actual vessel locations. Since the MCC gives an idea of how well the filtering
process identified the vessels for the given parameters, it can be plotted against
different threshold values to compare the overall accuracy of the our proposed
filtering process. Then, the area under the MCC curve can be calculated to have
a single value to compare results.

The Results
The best results were given by experiment 1, shown in Figure 6(e), with
parameters: resizing = 3, Frangi scale = 5, Ridgelet width = 14, length = 36,
number of filters = 12. The MCC values are given in Table 1
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Figure: (a) Hand tracing, (b) results from neural networks, (c) Frangi results with a threshold of 0, and (d)

Frangi-Ridgelet with resizing = 3, Frangi scale = 5, Ridgelet width = 14, length = 36, number of filters = 12.

Method Highest MCC value Area Under the MCC curve
Neural Networks 0.345 0.22

Frangi 0.2552 0.1216
Experiment 1 0.3539 0.25

As seen in the table above, our proposed method is able to detect vessel pixels
better than the neural networks method and the multi-scale vessel on its own.
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