Model Reduction Techniques for Spatiotemporal Data Analysis in Drought Modeling

Marilyn Vazquez, Muhammad Baqui Advisor: Maria Emelianenko

Department of Mathematics George Mason University mvazque3@masonlive.gmu.edu

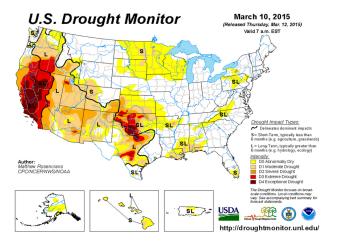
STudent REsearch TalkS April 17, 2015

Interesting Questions



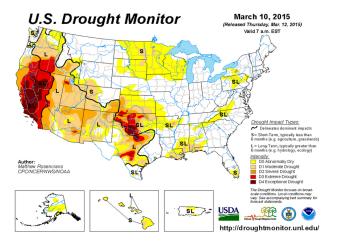
Are the droughts increasing in coverage and duration or are they pretty much stationary? ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Interesting Questions



Will analysis on compressed data yield similar results compared to actual data?

Interesting Questions



What is the best distribution of gauges to efficiently measure precipitation?

Challenges: Different Data from Different Sources

Precipitation for June 1994

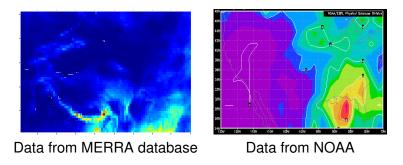
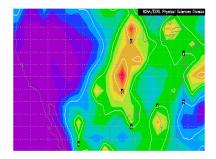


Image provided by Physical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, Colorado, from their Web site at http://www.esrl.noaa.gov/psd/.

Challenges: Large Data

Precipitation for June 2000



90 by 51 pixels (4590 pixels)

Image provided by Physical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, Colorado, from their Web site at http://www.esrl.noaa.gov/psd/.

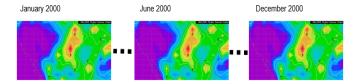
COMPRESSION

CURRENT RESEARCH

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Challenges: Large Data

12 months

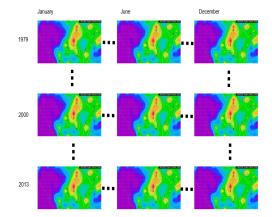


90 by 51 by 12 pixels (55080 pixels)

ヘロト 人間 とくほとくほとう

э.

Challenges: Large Data



90 by 51 by 12 by 35 pixels (1927800 pixels)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Data

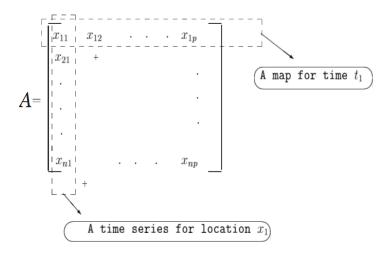


Figure : Each row is one map and each column is the time series observation for a given location. [1]

Interesting Questions

- Are the droughts increasing in coverage and duration or are they pretty much stationary?
- If we compress the data and analyze it, will it give us similar results to analyzing the whole data?
- What is the best distribution of gauges to efficiently measure precipitation?

(日) (日) (日) (日) (日) (日) (日)

Eigenvector maps and Variation

 $A = U \Sigma V^T$

Classical calculation of SVD [1]

- **•** Form the matrix $A^T A$
- Solution Find eigenvalues $\lambda_j = \sigma_j^2$ for singular values and normed eigenvectors i.e. $||v_j|| = 1$ to form right unitary matrix
- Solution Project eigenvectors $u_j = \frac{1}{\sigma_i} A v_j$ to form left unitary matrix

COMPRESSION

CURRENT RESEARCH

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Preliminary Results

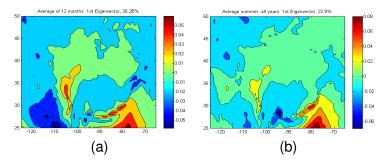


Figure : The contour eigenvector map corresponding to the first eigenvalue for an average of (a) all months and (b) summer months only.

Preliminary Results

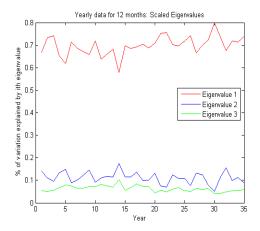


Figure : The percentage of variation that the first 3 eigenvalues represent for the 35 years. This is calculated as follows: $\frac{\lambda_k}{\sum_i \lambda_j}$

・ロト・西ト・ヨト ・ヨー シック

Interesting Questions

- Are the droughts increasing in coverage and duration or are they pretty much stationary?
- If we compress the data and analyze it, will it give us similar results to analyzing the whole data?
- What is the best distribution of gauges to efficiently measure precipitation?

COMPRESSION

CURRENT RESEARCH

SVD and Compression

$$A = \sigma_1 u_1 v_1^T + \cdots \sigma_n u_n v_n^T$$
$$\epsilon = \sum_{j=1}^n |a^{[j]} - P_{\psi,d} a^{[j]}|^2$$

where,
$$m{P}_{\psi,d}m{a}^{[j]} = \sum_{i=1}^d m{c}_{ji}$$
 $m{c}_{ji} = m{v}_i^{\mathsf{T}}m{a}^{[j]}$

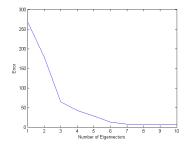


Figure : The error of including *d* many eigenvectors in the reconstruction of *A*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

COMPRESSION

CURRENT RESEARCH

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Compressing the Intensity Domain

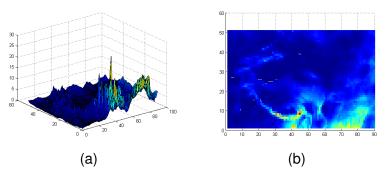
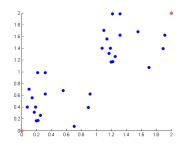


Figure : June 2000 precipitation (a) side view and (b) top view.

K-means algorithm

Step 1: Minimize distance [2]

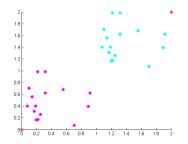


 $\mathcal{C}_i = \{x_k \in \mathcal{S} : |x_k - z_i| \le |x_k - z_j| \text{ for } j = 1, \cdots, d \text{ and } j \ne i\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

K-means algorithm

Step 1: Minimize distance [2]

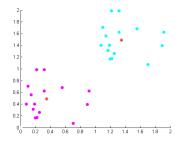


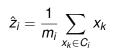
 $\mathcal{C}_i = \{x_k \in \mathcal{S} : |x_k - z_i| \le |x_k - z_j| \text{ for } j = 1, \cdots, d \text{ and } j \ne i\}$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

K-means algorithm

Step 2: Center [2]





◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ.

Results

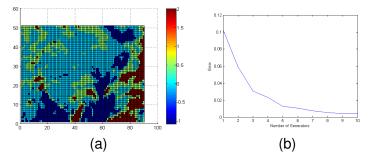


Figure : (a)MATLAB's built-in k-means function applied on detrended precipitation data for a particular June. Number of generators = 4.(b) Error of representing the data with 1 through 10 generators.

(日) (日) (日) (日) (日) (日) (日)

- Are the droughts increasing in coverage and duration or are they pretty much stationary?
- Which parameters contribute most to modeling drought?
- If we compress the data and analyze it, will it give us similar results to analyzing the whole data?
- What is the best distribution of gauges to efficiently measure precipitation?

Where to place the gauges?

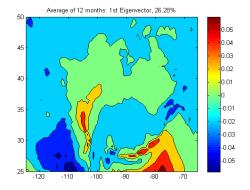


Figure : First eigenvector map for average over all months.

・ロト・西ト・田・・田・ ひゃぐ

Centroidal Voronoi Tessellation

Tessellation instead of cluster [2]

$$V_i = \{x \in W : |x - z_i| \le |x - z_j| \text{ for } j = 1, \cdots, d \text{ and } j \ne i\}$$

Center of mass instead of mean

$$\hat{z}_i = \frac{\sum_{x \in V_i} \rho(x) x}{\sum_{x \in V_i} \rho(x)}$$

Minimize cost function instead of distance

$$\epsilon = \sum_{i=1}^{d} \sum_{x \in V_i} \rho(x) |x - z_i|^2$$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

イロト 不得 トイヨト イヨト

э

Centroidal Voronoi Tessellation

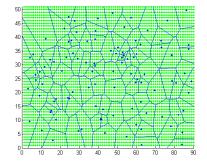


Figure : Random points used as generators of the tessellation.

Centroidal Voronoi Tessellation

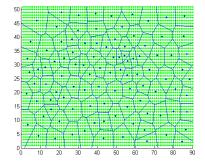


Figure : Second iteration.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − 釣�?

イロト 不得 トイヨト イヨト

ъ

Centroidal Voronoi Tessellation

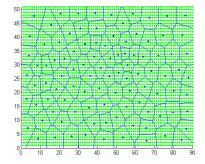


Figure : Fifth iteration.

イロト 不得 トイヨト イヨト

ъ

Centroidal Voronoi Tessellation

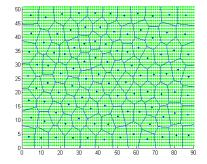


Figure : 29th iteration.

Centroidal Voronoi Tessellation

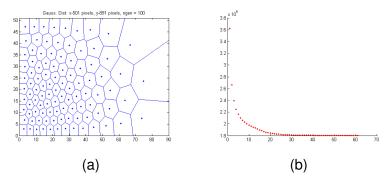


Figure : (a) The CVT using an exponential density function.(b) A regular cost function.

COMPRESSION

CURRENT RESEARCH

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

CVT and Gauge Locations

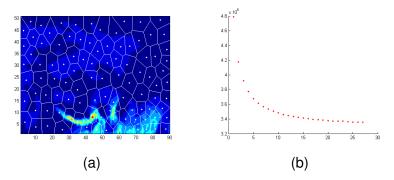


Figure : (a) The CVT on top of the first eigenvector map for average over 12 months (26.28%).(b) The cost function (not normalized).

References

A manual for eof and svd analyses of climatic data. *CCGCR Report*, 1997.

- John Burkardt, Max Gunzburger, and Hyung-Chun Lee. Centroidal voronoi tessellation-based reduced-order modeling of complex systems. *SIAM Journal on Scientific Computing*, 28(2):459–484, 2006.
- Max Gunzburger and Janet Peterson. Reduced-order modeling of complex systems with multiple system parameters.

In Ivan Lirkov, Svetozar Margenov, and Jerzy WaÅŻniewski, editors, *Large-Scale Scientific Computing*, volume 3743 of *Lecture Notes in Computer Science*, pages 15–27. Springer Berlin Heidelberg, 2006.