



# New Efficient Hardware Architectures for Montgomery Modular Multiplication

## Miaoqing Huang<sup>1</sup>, Kris Gaj<sup>2</sup>, <u>Marcin Rogawski<sup>2</sup></u>

<sup>1</sup> The George Washington University, Washington, D.C., U.S.A. <sup>2</sup> George Mason University, Fairfax, VA, U.S.A.

# Outline

- Motivation
- Classical Hardware Architecture for Montgomery Multiplication by Tenca and Koc from CHES 1999
- Our Optimized Hardware Architecture
- Conceptual Comparison
- Implementation Results
- Possible Extensions
- Conclusions

## Motivation

- Fast modular multiplication required in multiple cryptographic transformations
  - RSA, DSA, Diffie-Hellman
  - Elliptic Curve Cryptosystems
  - ECM, p-1, Pollard's rho methods of factoring, etc.
- Montgomery Multiplication invented by Peter L. Montgomery in 1985 is most frequently used to implement repetitive sequence of modular multiplications in both software and hardware
- Montgomery Multiplication in hardware replaces division by a sequence of simple logic operations, conditional additions and right shifts

#### **Montgomery Modular Multiplication (1)**

 $Z = X \cdot Y \mod M$  X, Y, M – n-bit numbers

Integer domain Montgomery domain

X 
$$\longrightarrow X' = X \cdot 2^{n} \mod M$$
  
Y  $\longrightarrow Y' = Y \cdot 2^{n} \mod M$   

$$Z' = MP(X', Y', M) =$$

$$= X' \cdot Y' \cdot 2^{-n} \mod M =$$

$$= (X \cdot 2^{n}) \cdot (Y \cdot 2^{n}) \cdot 2^{-n} \mod M =$$

$$= X \cdot Y \cdot 2^{n} \mod M$$

 $Z = X \cdot Y \mod M \leftarrow Z' = Z \cdot 2^n \mod M$ 

#### **Montgomery Modular Multiplication (2)**



X' = MP(X, 
$$2^{2n} \mod M, M) =$$
  
= X ·  $2^{2n} \cdot 2^{-n} \mod M = X \cdot 2^{n} \mod M$ 

Z = MP(Z', 1, M) =  
= 
$$(Z \cdot 2^{n}) \cdot 1 \cdot 2^{-n} \mod M = Z \mod M = Z$$

# **Montgomery Product**

S[0] = 0for i=0 to n-1  $S[i+1] = \begin{cases} \frac{S[i]+x_i \cdot Y}{2} & \text{if } q_i = S[i] + x_i \cdot Y \mod 2 = 0\\ 2 & \text{if } q_i = S[i] + x_i \cdot Y \mod 2 = 1\\ \frac{S[i]+x_i \cdot Y + M}{2} & \text{if } q_i = S[i] + x_i \cdot Y \mod 2 = 1 \end{cases}$ 

Z = S[n]

M assumed to be  $odd_6$ 

## Classical Design by Tenca & Koc CHES 1999

#### Multiple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM)

<u>Main ideas:</u>

Use of short precision words (w-bit each):

- Reduces broadcast problem in circuit implementation
- Word-oriented algorithm provides the support needed to develop scalable hardware units.

Operand Y(multiplicand) is scanned word-by-word, operand X(multiplier) is scanned bit-by-bit.

#### Classical Design by Tenca & Koc CHES 1999

Each word has w bits

Each operand has n bits e words

$$e = \left[\frac{n+1}{w}\right]$$

$$\begin{split} X &= (x_{n-1}, \dots, x_1, x_0) \\ Y &= (Y^{(e-1)}, \dots, Y^{(1)}, Y^{(0)}) \\ M &= (M^{(e-1)}, \dots, M^{(1)}, M^{(0)}) \end{split}$$

The bits are marked with subscripts, and the words are marked with superscripts.

#### MWR2MM

#### Multiple Word Radix-2 Montgomery Multiplication algorithm by Tenca and Koc

**Algorithm 2** The Multiple-Word Radix-2 Montgomery Multiplication Algorithm

**Require:** odd  $M, n = \lfloor \log_2 M \rfloor + 1$ , word size  $w, e = \lceil \frac{n+1}{w} \rceil, X = \sum_{i=0}^{n-1} x_i \cdot 2^i$ ,  $Y = \sum_{j=0}^{e-1} Y^{(j)} \cdot 2^{w \cdot j}, M = \sum_{j=0}^{e-1} M^{(j)} \cdot 2^{w \cdot j}, \text{ with } 0 \le X, Y < M$ **Ensure:**  $Z = \sum_{j=0}^{e-1} S^{(j)} \cdot 2^{w \cdot j} = MP(X, Y, M) \equiv X \cdot Y \cdot 2^{-n} \pmod{M}, 0 \le Z < 2M$ 1: S = 0- initialize all words of S 2: for i = 0 to n - 1 step 1 do 3:  $q_i = (x_i \cdot Y_0^{(0)}) \oplus S_0^{(0)}$ Task 4:  $(C^{(1)}, S^{(0)}) = x_i \cdot Y^{(0)} + q_i \cdot M^{(0)} + S^{(0)}$ 5: for j = 1 to e - 1 step 1 do 6:  $(C^{(j+1)}, S^{(j)}) = C^{(j)} + x_i \cdot Y^{(j)} + q_i \cdot M^{(j)} + S^{(j)}$ e-1 times Task В 7:  $S^{(j-1)} = (S_0^{(j)}, S_{w-1,1}^{(j-1)})$ 8: end for 9:  $S^{(e-1)} = (C_0^{(e)}, S_{w-1..1}^{(e-1)})$ Task 10: **end for** 11: return Z = S

#### **Problem in Parallelizing Computations**



#### Data Dependency Graph by Tenca & Koc

- One PE is in charge of the computation of one column that corresponds to the updating of S with respect to one single bit x<sub>i</sub>.
- The delay between two adjacent PEs is 2 clock cycles.
- The minimum computation time is

2•n+e-1 clock cycles

• given

*(e+1)/2* PEs working in parallel.



## Main Idea of the New Architecture

- In the architecture of Tenca & Koc
  - w-1 least significant bits of partial results S<sup>(j)</sup> are available one clock cycle before they are used
  - only one (most significant) bit is missing
- Let us compute a new partial result under two assumptions regarding the value of the most significant bit of S<sup>(i)</sup> and choose the correct value one clock cycle later

#### Idea for a Speed-up



perform two computations in parallel using two possible values of the most-significant-bit

## **Primary Advantage of the New Approach**

 Reduction in the number of clock cycles from

to

 Minimum penalty in terms of the area and clock period

#### The Proposed Optimized Hardware Architecture



# Data Dependency Graph of the Proposed New Architecture



#### **The Overall Computation Pattern**





#### Tenca & Koc, CHES 1999

# Our new proposed architecture

# **Demonstration of Computations**

Sequential



Tenca & Koç's proposal



# Demonstration of Computations (cont.)

The proposed optimized architecture



#### **Related Work**

- Tenca, A. and Koç, Ç.K.: A scalable architecture for Montgomery multiplication, CHES 1999, LNCS, vol.1717, pp.94--108, Springer, Heidelberg, 1999
  - The original paper proposing the MWR2MM algorithm
- Tenca, A., Todorov, G., and Koç. Ç.K.: High-radix design of a scalable modular multiplier, CHES 2001, LNCS, vol.2162, pp.185--201, Springer, Heidelberg, 2001
  - Scan several bits of X one time instead of one bit
- Harris, D., Krishnamurthy, R., Anders, M., Mathew, S. and Hsu, S.: An Improved Unified Scalable Radix-2 Montgomery Multiplier, ARITH 17, pp.172-178, 2005
  - Left shift Y and M instead of right shift  $S^{(i)}$
- Michalski, E. A. and Buell, D. A.: A scalable architecture for RSA cryptography on large FPGAs, FPL 2006, pp.145--152, 2006

- FPGA-specific, assumes the use of of built-in multipliers

 McIvor, C., McLoone, M. and McCanny, J.V.: Modified Montgomery Modular Multiplication and RSA Exponentiation Techniques, IEE Proceedings – Computers & Digital Techniques, vol.151, no.6, pp.402-408, 2004

- Use carry-save addition on full-size n-bit operands

## Implementation, Verification, and Experimental Testing

<u>New</u> architecture and <u>two previous</u> architectures:

- Modeled in Verilog HDL and/or VHDL
- Functionally verified by comparison with a reference software implementation of the Montgomery Multiplication
- Implemented using Xilinx Virtex-II 6000-4 FPGA
- Experimentally tested using SRC 6 reconfigurable computer based on microprocessors and FPGAs with the 100 MHz maximum clock frequency for the FPGA part

#### Normalized Latency New Architecture vs. Previous Architectures



#### Normalized Product Latency Times Area New Architecture vs. Previous Architectures



# **Further Research**

specialized PE generic PE i=2 i=3 i=4 (d) i=0 (a) i=0 i=1 i=2 i=3 j=4 i=Q ----- PE #0 i=0-A A A A A j=1в В В в в В В В В В ----- PE #1 i=1 В в В j=2в В B •(B (B B ----- PE #2 j=2-\*(B j=3в в В в в B В ----- PE #3 j=3-В (B В в в в в В j=4 (B В ----- PE #4 В В (B в в в в В --- PE #e-1 В В В в В PE #2 PE #1 PE #3 PE #0 PE #4 /=U 1=1 1=2 1=3 1=4 1=0 1=2 1=3 1=4 (c) (b) D D D D D i=0-D D D ----- PE #0 i=0D D E E Е E Е E Е j=1-Е Е E ----- PE #1 i=1-E E E E E E Е E Е E ----- PE #2 i=2j=2-E E E ----- PE #3 E E j=3-E E E E E j=3-E E E E E ----- PE #4 j=4 E E E E Е F F F PE #e-1 PE #3 PE#0 PE#1 PE #2 PE #4

latency - 2 clk

latency - 1clk

## Conclusions

 New optimized architecture for the word-based Montgomery Multiplier

Compared to the classical design by Tenca & Koc:

- Minimum latency smaller by a factor of about **1.7**, in terms of both clock cycles and absolute time units
- Comparable circuit area for minimum latency
- Improvement in terms of the product of latency times area by a factor of about 1.3
- Reduced scalability in Architecture 2, comparable scalability in Architecture 1

Compared to the newer design by McIvor et al.:

- Area smaller by about 25%
- Improvement in terms of the product of latency times area by a factor between 1.06 and 1.61
- Similar scalability

# Thank you!



# Questions???