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Abstract 

The results of five eSTREAM candidates using ALTERA Field Programmable Gate Arrays are presented and 
analyzed. Implementation costs and performance of chosen architectures are compared and disscussed. The 

chosen eSTREAM proposals are divided into four classes regarding the results of their implementation features. 
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1. Introduction 
 
 The European Network of Excellence for Cryptography (ECRYPT) has started a multi-year effort called 
eSTREAM to identify new stream ciphers that might become suitable for widespread adoption. A total of 34 
algorithms have been submitted to eSTREAM. All of them were designed primarily for software, hardware or 
both profiles.  
 In July 2006 the second phase of evaluation started. Algorithms which have been accepted for the 
second phase of eSTREAM project have been divided into two classes (algorithms focused on in the second 
phase and other algorithms).  There are ten submissions which are focused on in the second phase: Dragon, HC-
256, Lex, Phelix, Py, Salsa20, Sosemanuk, Grain, Mickey-128 and Trivium. 
 Very few results regarding hardware implementations of the eSTREAM candidates have been published 
so far. Original documentation provided by designers of the submitted algorithms contains typically only rough 
estimates of the hardware performance. Additionally, these estimates are very difficult to compare among each 
other because of large differences in assumptions regarding the technology, and because of different architecture 
choices. The results of actual implementations of individual algorithms, published recently by independent 
researchers, provide only a very fragmentary knowledge, not suitable for reliable comparison. 
 Our main aim is to provide some details about  hardware features of  Grain, Lex,  Mickey128, Salsa20 
and Trivium stream ciphers and compare their properties to AES reference implementations.  
 
 
Stream ciphers 
 
 A stream cipher is a symmetric cipher which generates a sequence of cryptographically secure bits 
called the key stream which is then combined with either the plaintext or ciphertext. The basic topology (Fig. 1) 
of a stream cipher consists of an internal state (register to store the key and an initialisation vector (IV)), function 
for internal state update (typically some sort of feedback shift register) and filter function (key stream 
generation).  
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Fig.1: Block scheme of stream cipher 

 
 

2. Alternative architectures  
 
2.1. Basic organization of a stream cipher implementation 
 

The basic organization of hardware implementation of a stream cipher is shown in Fig.2 All chosen 
algorithms are implemented using this organization. It includes: 

a) keystream generation unit – used to compute key stream. This unit consist of memory for internal 
state, combinational logic for update and filter functions,  

b) input interface – connection to external modules (arguments loading), 
c) output interface – connection to external modules (results storing),  
d) control unit – responsible for control signal generation. It provides control over other units,   
e) encryption/decryption unit – usually xor operation between keystream and plain text and cipher text 

for encryption or decryption unit respectively. 

 
Fig. 2:Two architectures for the implementation of an encryption/decryption unit of a stream cipher: left – basic 

iterative (basic loop), right – a-round unrolled iterative (a-round loop unrolling) 
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basic-iterative 
  

Crypto algorithms are usually iterative by nature. For example AES (with 128-bits key) uses 10 rounds 
for encryption every 128-bits block of plain data. We call an update function and filter function round in stream 
ciphers. Typically every execution of a stream cipher round allows to extract at least one bit of key stream.  

Hardware engineers usually define basic-iterative or basic loop architecture solution with features as 
follows: one round of a stream cipher is implemented as a combinational logic, and supplemented with a single 
register and a multiplexer. Input block of initial values is fed to the FPGA through multiplexer and stored in 
internal memory (registers) in the first clock cycle. In each subsequent clock, one round of cipher is executed 
and the result is fed back through multiplexer and stored in register. This architectures is shown on the left part 
in Fig 2.   
  
unrolled-iterative 
  
 Unrolled-iterative or loop unrolling architecture is shown in Fig 2 on the right part. Instead of a single  
rounds in basic iterative architecture, combinational part consist of a rounds executed in parallel. In each 
subsequent clock cycle, a rounds of stream cipher (a update functions, a filter functions) is executed the result 
(internal state) is fed to the circuit through combinational logic, and stored in register. Internal states (register 
contents) change in basic-iterative and unrolled-iterative architecture are compared and shown in the Fig. 3. 

 
 

Fig.3: Differences between basic-iterative and unrolled-iterative architectures. 
 
resource-shared 
  
 For some ciphers, it is possible to decrease circuit area by time sharing of certain resources (e.g. 
quarter-round in Salsa20). It is accomplished by using the same functional unit to process two (or more) parts of 
the date in different clock cycles. Obviously, we agree with the assumption made in [11], that use of the resource 
sharing in real life implementation is rather untypical, because gain in the circuit area always lead to 
inappropriate loss in speed of circuit. Moreover the amount of resources used by basic implementation of stream 
ciphers is usually small.  
 
2.2. Asumptions 
 
 The following assumptions have been made to provide an equal basis for comparison:  

 
a) only standard logic cells used (no built-in memories, dsp ) 
b) standardized interface 
c) some submissions did not provide an assiociated authentication method. All algorithms were 
implemented without any authentication method add-on.  
d) code written in VHDL (additionaly in AHDL) language  
e) Quartus II 6.0 and Cyclone family (EP1C20F324C6)  
f) Cyclone_power_est_2-12 for power consumption’s estimation 
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3. Algorithms 
 

In this section we would like to make a few comments about our impressions apeared during algoritms 
implementation process, few thoughts and assumptions during collecting and analysis of the results. We would 
also like to explain also the names of chosen architectures.    
 
Reference implementation – AES – 128bit  

 
The Advanced Encryption Standard [12] was standardized by National Institute of Standards and 

Technologies in 2001. For low-cost FPGA benchmarks two references were selected in [7]. Both Chodowiec/Gaj 
and Good/Benaissa implementations uses a Xilinx devices and our implementations were prepared in Altera 
circuits. We assume that the fair comparison with referenced implementations in area will be done, if we 
multiply by two their area results (Xilinx CLB Slice is equal to two Altera LE). 

Our referenced AES implementation, but according to [11] it is not area-optimized and can be called 
basic-iterative AES architecture.    
 Our benchmarks are summarized in Table 
  
 Good/Benaissa Chodowiec/Gaj ours 
Architecture 8-bit 32-bit 128-bit 
FPGA Xilinx Spartan-II 

XC2S15-6 
Xilinx Spartan-II 

XC2S30-6 
Altera Cyclone 
EP1C20F400C6 

Slices 264 CLB Slices 522 CLB Slices 5058 LE 
Clock frequency (Mhz) 67 60 105 
Throuhput (Mb/s) 2.2 174 611 
Altera LE equivalent ~ 500 ~ 1000 5058 

Tab.1: Reference hardware AES implementations 
 

Regarding future industry expectations in performance of crypto-algorithms and our area benchmarks 
we believe that Fig. below divide all our implementation in very fair way.   

 

 
Fig.4: : Area/Throughput implementation division 

 
Grain 
 Very simple and straightforwared to implement up to 16 basic rounds in unrolled-iterative architecture. 
Submission package of Grain included documentation and its reference C-code was written in “hardware 
designer very friendly” way. We were inspired by C-code to prepare to an alternative solution of g(x) function. 
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Firstly, we implemented table-version of the above mentioned function. Grain-1 (tab) is the name of a basic 
iterative architecture our hardware Grain implementation. Grain-n (tab), where n from {2, 4, 8, 16}, are the n-
unrolled rounds iterative architectures. Grain-n (comb) architectures are similar, except from realization of g(x) 
function (it is in a gates-network form).        
 
Lex 
 It is a proposal for a simple AES-based stream cipher which is at least 2.5 times faster than AES both in 
software and hardware implementation. We agree with author that the strongest points of this design are: 

- actual soft./hard. AES implementation can be reused  with simple modifications and all favourite AES 
implementations “tricks” may be used to LEX realization too (speed/ratio is obviously better than 
AES), 

- potential cryptanalysis of existing standard FIPS197 will have influence on crypanalysis of LEX. 
Concentration of cryptoanalitical effort on AES has a indirect concentration on LEX security. 

Our LEX implementation is basic-iterative and is based on our AES reference code.  
 
Mickey-128 
 Compact algorithm that is very simple to implement. Reference C-code and documentation very easy to 
follow. We think that the weakest point of this design is difficulty with parallel realization and there is only one 
our implementation.          
 
Salsa20 
 Very good documentation with a test vectors for every simple operation in the algorithm. From our 
point of view an excellent package for engineers consist of: clear documentation, optimized and simple multi-
platform C-code, and most important smart test vectors.  

Our architectures of Salsa20 we named: Salsa20-dr (unrolled double round iterative architecture), 
Salsa20-sr (single round iterative architecture – we suggest to call it basic iterative), Salsa20-qr (quarter round 
resource shared iterative architecture).   
 
Trivium 
 Trivium has a very simple structure and it is very easy to implement it in optimized version for 4, 8, 16, 
32, 64-bits environment without noticeable area penalty. All of our control modules, except one, were prepared 
in the same “one-hot” routine and 4*288 initial clockings needs 1*18, 2*18, … 64*18 for 64, 32, … 1 bits 
architectures respectively. Our initial machine states with more initial clockings needs more states and this is a 
reason, why architectures with 1, 2 and 4 round unrolled has bigger area than 8 round unrolled architecture.  
 There are critical paths for chosen architectures inside control units. We were looking for the best suited 
to this algorithm control unit implementation. Key schedule requires 1152 clocks, and control unit can be 
implemented in many ways: 
- based on 11-bits counter (Trivium-1) or 5-bits counter (Trivium-64),  
- based on two one-hot machine states: 18 and 64-states (Trivium-1) and 18 states (Trivium-64) 
- based on many small one-hot machine states: seven 2-states and two 3-states (Trivium-1 needs 1152 

initial clocks – 2732)  and one 2-state and two 3-states machine states (Trivium 64 needs 18 initial 
clocks – 2*32) This architecture we call Trivium-64 enhanced one hot architecture.   
Moreover, Trivium has very good documentation and C-code.   

 

 
Fig.5: Key Init Control Unit for Trivium-64 enhanced “one hot” architecture 
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4. Results 
 

 area (LE) power drain (mW) throughput (Mb/s) thr/area (Mb/(s*LE))
AES – 128 bit 5053 1191,01 (105 Mhz) 611 0.12 

Grain-1 (comb) 219 341,12  (242 Mhz) 242 1.11 
Grain-2 (comb) 254 349,34 (230 Mhz) 460 1.81 
Grain-4 (comb) 302 358,12 (221 Mhz) 884 2.93 
Grain-8 (comb) 360 369,63 (215 Mhz) 1720 4.78 

Grain-16 (comb) 508 406,24 (215 Mhz) 3440 6.77 
Grain-1 (tab) 261 347,94 (205 Mhz) 205 0.79 
Grain-2 (tab) 326 332,29 (160 Mhz) 320 0.98 
Grain-4 (tab) 442 341,94 (160 Mhz) 640 1.45 
Grain-8 (tab) 679 356,01 (150 Mhz) 1200 1.77 

Grain-16 (tab) 1138 385,52 (143 Mhz) 2288 2.01 
LEX 5378 1578,31 (100 Mhz) 1454  0.27 

Mickey-128 537 366,63 (220 Mhz) 220 0.41 
Salsa20-qr 2356 415,23 (55 Mhz) 343 0.15 
Salsa20-sr 3400 390,00 (40 Mhz) 931 0.27 
Salsa20-dr 3510 450,14 (30 Mhz) 1280 0.36 
Trivium-1 393 381,99 (295 Mhz) 295 0.75 
Trivium-2 368 381,26 (290 Mhz) 580 1.58 
Trivium-4 364 393,27 (300 Mhz) 1200 3.30 
Trivium-8 380 435,00 (350 Mhz) 2800 7.36 

Trivium-16 424 457,15 (290 Mhz) 4640 10.94 
Trivium-32 518 540,08 (280 Mhz) 8960 17.30 
Trivium-64 710 669,78 (245 Mhz) 15680 22.08 
Trivium-64-

enhanced 
700 683,13 (255 Mhz) 16320 23.31 

 
Table: Summary of results for eSTREAM candidates 

 
 
 
 

 Init clocks Init time Crytical path 
AES – 128 bit 22 210ns SubByte, ShiftRow, MixColumn, AddKey 

Grain-1 (comb) 322 1330ns Combinational version of g(x) 
Grain-16 (comb) 19 92ns Combinational version of g(x) 

Grain-1 (tab) 322 1570ns Table version of g(x) 
Grain-16 (tab) 19 168ns Teble version of g(x) 

LEX 22 220ns SubByte, ShiftRow, MixColumn, AddKey 
Mickey-128 603 2660ns Update function in S register 
Salsa20-qr 180 3240ns Quarterround 
Salsa20-dr 12 444ns Doubleround 
Trivium-1 1578 5350ns Control Unit 

Trivium-64 29 120ns Control Unit 
Trivium-64-enhanced 38 147ns Round function 

 
Table: Summary of Initialisation results and crytical path  
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Compactness 
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Fig.6: Compactness summary 

 
Selected reference AES implementations divided the set of chosen eSTREAM candidates into 3 classes: 
- small area (no more than 2k LE used) 
- medium area (2k – 5k LE) 
-  large area (more than our biggest ref. AES implementation > 5k LE). 
Three of chosen algorithms (Trivium, Grain, Mickey) have very compact characteristic and it is 

possible to implement them with not more than 1000 LE. The biggest (and the fastest) version of Trivium needs 
almost twice as much as the smallest one, but still can be regarded as one of the very compact implementations. 
Grain algorithm can be described in the same way. The biggest version needs five times as much as the smallest 
one, but similarly it is still very compact. 

Mickey-128 algorithm is based on two shift registers but his update functions in linear and non-linear 
register seems to be not very scalable. That is the reason why it is easy to implement compact version of Mickey, 
but our experiences with looking for high speed version are similar to the results from [10] and [8].   
 Salsa20 fits very well to our second class. Our implementations of this algorithm requires between 2,4k. 
LE and 3,5k. LE.  
 Only LEX seems to be always regarded as a more demanding as an implementation of AES, but it is 
always possible to use all flexibility and good implementation features of AES [26].   
 
Performance 
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Fig.7: Throughput summary 

 
Throughput is not a most important matter in our disscustion, but speed of Trivium-64 and Grain-16 

architecture have to be mentioned. Our results confirm authors expectations that this algorithms suits hardware 
implementations very well. 

Salsa20, Lex also can be implemented in such a way to achieve throughput better that 1Gb/s.   
As mention above Mickey seems to be very difficult scalable and our implementation is regarded as a medium 
speed.  
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Power Consumption 
 

power consumption

0
200
400
600
800
1000
1200
1400
1600

Sa
lsa
20
_d
r

Sa
lsa
20
_s
r

Mi
ck
ey
_1
28

AE
S_
12
8

LE
X

Tri
viu
m_
2

Tri
viu
m_
64

Gr
ain
_2
_t

Gr
ain
_1
6_
c

m
W

 
Fig.8: Power consumption summary 

 
We used Power Play Analyzer from Quartus II and Power Calculator for Cyclone family from altera.com site. 
All chosen algorithms, except LEX has more than twice smaller power consumption than AES.  
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Throughput/Area 
 

Fig.9: Throughput/area ratio summary 
 

 All our implementation have better throughput/area ratio than our AES ref. implementation. Grain and 
Trivium have significantly better ratio.  
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Fig.10: Hardware characteristics of chosen algorithms 

 
 
5. Conclusions  
 
 We believe that the large differences among parameters of all chosen eSTREAM algorithms in 
hardware resulted primarily from internal structure of these algorithms, and were not significantly affected by 
our implementation decisions. On the other hand, we could not completely eliminate or predict the influence of 
the FPGA design tools and the HDL design entry method on the results of the comparison. Assessed exclusively 
from the hardware performance point of view, the five chosen algorithms fall into the four distinct classes with 
different performance characteristics (Fig.10). 
 First class (large area, medium/high speed): LEX, AES (ours) (Lex is better than 1Gb/s but it needs 
more resources than AES) 
 Second class(medium area medium/high speed): Salsa20 (Salsa20 is insignificantly better than 1Gb/s 
and it is very close to be threated as “small area” algorithm type) 
 Third class (small area, medium speed): Mickey 
 Fourth class (small area, high speed): Trivium and Grain (great scalability, wide range possibilities of 
implementation ) 
 
 The expectations from an efficient cryptographic algorithm will differ depending on the specific 
application. It is very difficult to expect that a single implementation will satisfy all requirements. Our opinion is 
that the most important aspect for a hardware/software-efficient cryptographic algorithm is flexibility. It must be 
possible to implement wide range of algorithm's architectures.  
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