Area-Time Efficient Implementation of the
Elliptic Curve Method of Factoring in
Reconfigurable Hardware for Application in
the Number Field Sieve

Kris Gaj, Soonhak Kwon, Patrick Baier,
Paul Kohlbrenner, Hoang Le, Mohammed Khaleeluddin,
Ramakrishna Bachimanchi, Marcin Rogawski

Abstract— A novel portable hardware architecture of the Elliptic Cur ve
Method of factoring, designed and optimized for application in the
relation collection step of the Number Field Sieve, is desived and
analyzed. A comparison with an earlier proof-of-concept dsign by
Pelzl, Simka, et al. has been performed, and a substantial improveent
has been demonstrated in terms of both the execution time anthe
area-time product. The ECM architecture has been ported acpss five
different families of FPGA devices in order to select the farily with
the best performance to cost ratio. A timing comparison withthe highly
optimized software implementation, GMP-ECM, has been pedrmed.
Our results indicate that low-cost families of FPGAs, such a Spartan-3
and Spartan-3E, offer at least an order of magnitude improvenent over
the same generation of microprocessors in terms of the penfmance
to cost ratio, without the use of embedded FPGA resources, sh as
embedded multipliers.

Index Terms— Cipher-breaking, factoring, ECM, FPGA, NFS

I. INTRODUCTION

We therefore review existing algorithms which can be used to
factor medium-size numbers. Most practically useful athons are
probabilistic (Monte-Carlo) methods. There is no guaranieat a
probabilistic algorithm will terminate successfully, ibe probability
of a successful outcome is large enough that the expectee tim
needed to factor a given number is considerably lower thanh dh
any deterministic algorithm. In particular, all known deténistic
factoring methods have exponential asymptotic run timearactice,
they are at best used to remove the smallest prime factons tine
number to be factored.

Trial division by at most a few hundred small primes may be
considered as a first step in factoring random numbers. Widee
are asymptotically faster deterministic methods, in pcacthese are
surpassed by simple probabilistic methods.

Three other probabilistic factoring methods are also oberntial
run time, but with a much smaller overhead than the sub-esutoad

The fastest known method for factoring large integers is thggorithms, so that within a certain range they are efficfantoring

Number Field Sieve (NFS), invented by Pollard in 1991 [12B][

tools. These are Pollards — 1 method, the similap + 1 method

It has since been improved substantially and developed fitsm due to Williams, and Pollard’g-method (see for example [5] for a
initial “special” form (which was only used to factor numbeclose general introduction to elementary factoring algorithms)
to perfect powers, such as Fermat numbers) to a general SRIrpo Finally, the Elliptic Curve Method (ECM), which is the main

factoring algorithm.

subject of this paper, is a sub-exponential factoring dtigor, with

Using the Number Field Sieve, an RSA modulus of 663 bits waspected run time af (exp(cy/Iog plog log p) M(N)) wherec > 0,

successfully factored by Bahr, Boehm, Franke and Kleinjuniglay

p is a factor we aim to find, andV/(NN) denotes the cost of

2005 [8]. The cost of implementing the Number Field Sieve anghyitiplication (mod N). ECM is the best method to perform the

the time it takes for such an implementation to factob-lit RSA
modulus, provide an upper bound on the security-bft RSA.

In order to factor a big integerN such as an RSA modulus,

NFS requires the factorization of a large number of modbraieed
integers created during run time, perhaps of size 200 b&k [17],

kind of factorizations needed by NFS, for integers in the-BR0
range, with prime factors of up to about 40 bits [10], [13].

The use of above mentioned smoothness tests has been consid-
ered in the context of the quadratic sieve (see 4.15 in [1i8B,
number field sieve [6], [14], and special purpose factoriagdivare

[24]._ Such numbers can be quickly_factoreod and a smo_othl_eems '(TWIRL [13], or NFS in hardware [2]). Bernstein [3] has padt
applied. However, because an estimated _ such fa_lctorlzatlons out potentially large performance improvements possitiifusing a
may be necessary for NFS to succeed in factoring a 1024 B¥mpination of these techniques with “early aborts” of lpssmising

RSA modulus, it is of crucial importance to perform theseiléary
factorizations as fast and efficiently as possible.
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. ELLIPTIC CURVE METHOD

Let K be a field with characteristic different fro® and 3. For
example, K = Z, with a primeg > 3, which is a set of integers
{0,1,...,¢ — 1} with addition and multiplication (mod ¢). An
elliptic curve E over K is defined as a set of pointsX,Y) ¢ K>



satisfying Montgomery [21], [22] and Brent [4] independently suggdsee
continuation of Phase 1 if one ha$, # O. Their ideas utilize that
fact that even if one ha§o = kP, # O, the value ofk might

where A, B € K, 4A% + 27B% # 0, together with a special point MiSS just one large prime divisgrof | E(Z,)|. In that case, one only
called “the point at infinity" and denoted. Two points P = N€eds to compute the scalar multiplicationjbjo getpQo = 0. A
(zp,yp) and Q = (zq,yo) can be added together to give a thirdsecond bound3: restricts the size of pc_)ss_lble_ values jof
point R = P+Q = (zr,yr), wherezr = fi(zp,yp, 20, yo) and Let M(N) be th_e cost of one multlp_llcatlon(mo_d N). Th(_en
yr = f2(zp,yp, 0o, yo) for someK-rational functionsf; and f». Phase 1_ of ECM finds a factar of N with the conjectured time
The point at infinity,0, is an identity element of this operation, i.e. COMPlexity ue]O(eXP((ﬂ‘f0(1))\/m)M(N))- Phase
P+0 =P =0+ P. Points of the curve® (including the point at 2 SPeeds up Lenstra’s original method by the fadtgrq which is
infinity) together with aforementioned addition form a gopwhich ~aPsorbed in the(1) term of the complexity, but is significant for
is denoted by (K ). The representation of elliptic curve points using™all and medium size factors )
two coordinates? = (zp,yp) is called the affine representation. _ =Xample: We want to factorV = 40586929, using B1 = 20 and
In order to increase the computational efficiency of poirdition, 52 = 50- Suyama’s parametrization with = 6 gives us the point

_ . . _ 2, _
one may prefer the representationfin homogeneous (projective) £t 0= (29791 '248335 '213824) on the curvel = 3150302y”~z =
coordinates off x° + 33712722z 4+ 2z° (mod N). The product of maximal prime

powers belowB; = 20isk = 2*-32.5.7-11-13-17-19 = 232792560.
Y?Z = X°® + AXZ* + BZ®. (2) In Phase 1, we comput®o = kPp = (zq, :: 2q,) = (3177782 ::
33732517) but do not succeed in recovering any factors frév
since ged(zg,, N) = 1 (= ged(zg,,N)). (It can be shown that
_ ze ) Yyq, = 37451505, but the implementation described in Algorithm 3
represented by0, 1, 0) in projective coordinates. ) does not compute thg-coordinates at all). In Phase 2 we compute
3Mont2gomery _[21] studied elliptic curves of the forrf_v?, 1 by = pQo = (zpo, = zpo,) for all large primesp in the rangeB, =
z°+ar”+w, \{vhlch_allowsamore eﬁ|0|ent|mplemt_entat|on _of_elllptlczo <p< By =50, ie,p e {23,29,31,37,41,43,47}, and set
curve operations in software and hardware. This form isinbta ; _ [Ty <p<p, Zr@o mod N. We find d = 20600066, and the

l;ysthge change of variablesy = 32y = §, A = 235~ B = Eyclidean algorithm reveals a factgt — ged(d, N) = 8887. With

55+, from Eq. (1). The corresponding expression in projectivg’ = N/q' = 4567 we have found a factorizatioN = 8887 - 4567,
coordinates is with both factors easily shown to be prime.

In this simple setting we can have a glance at what happeiteins
the algorithm. Reducing the curvE@ and the pointP; modulo the
with b(a®> — 4) # 0. Using the above form of elliptic curves, two factorsq’ = 8887 and ¢ = 4567 we get two elliptic curves
Montgomery derived an addition formula f@ and Q which does E' = 4304y*z = 2° + 30992°2 + z2* and E” = 3639y°> =
not need anyy-coordinate information, assuming that the difference’ -+ 8262”2 +x2* with points P = (3130 : 550 : 4937) and Py’ =
P—-Q is a|ready known. The choice of parametarandb for the (2389 : 666 : 123) on them. Schoof’s algorithm can be used to show
given above curve can be simplified using Suyama’s parazaéipn, that the number of points on these curvegfis/F,/| = 8928 and
which expresses, b, and the coordinategz, y, z) of a point on the |E”/Fqr| = 4572, whereg928 = 2°-3%.31 and4572 = 2°-3°-127.
curve P, as a function of a single parameteras described in detail Here we see the divisor 12 of the group orders due to the fact th
in [31]. Suyama curves have a torsion subgroup of order 12. Moreaver,

Let N be a composite integer we want to factor. The ECM Metho@Xplicit calculation shows that = ord[FP;: E'] = 1116 = 2°-3%-31
[4], [21], [31] considers elliptic curves in Montgomery for(3), and ando” = ord[FPy': E"] = 762 = 2-3-127. (As an aside, this again
involves elliptic curve operations(mod N), where the elements in reveals the orders of” and E” because the only multiple af in
Z are reduced (mod N). Since N is not a prime,E over Zy is the Hasse intervdly’ +1—2[v/¢’|, ¢’ +1+2[V¢']] = [8699, 9076]

not really an elliptic curve but we can still do point addittoand 1S 80’ = 8928, and the same argument works fér’.) From the
doublings as ifZx was a field. definition of k, we see that), = kP is of order31 over E’ and

of order 127 over E”. In both cases, the order @, is prime, but
) becaus81 < B < 127, forp = 31 in Phase 2 we find1Qo = Og/
A. ECM Algorithm over E’, while pQo # Og for all p < B, over E”. Thusq’, but not
The Elliptic Curve Method (ECM) was originally proposed byq” shows up as a factor id and we are able to recover the divisor
Lenstra [16] and subsequently extended by Brent [4] and Mort887 = gcd(XV,d) in Phase 2.
gomery [21]. The original part of the algorithm proposed tBnktra
is typically referred to as Phase 1 (or Stage 1), and the sxterpy B. Operations on an Elliptic Curve
Brent and Montgomery is called Phase 2 (or Stage 2). The pseud The hierarchy of major operations used in the ECM algoritem i
code of both phases is given below as Algorithm (1). Recalt &in  shown in Figure 1. Scalar multiplicatioP, is the basic elliptic
integer is calledB-smooth (or simply smooth if the value d® is curve operation used in ECM.
implicit) if it has no prime divisors exceeding. An efficient algorithm for computing scalar multiplicatievas pro-
Let ¢ be an unknown factor olN. For any pointP, belonging to posed by Montgomery [21] in 1987, and is known as the Montggme
the curveFE, we have|E(Zq)|Po = O, where|E(Z4)| is the order of ladder algorithm. This algorithm is especially useful wkaenelliptic
the curveF, i.e., the number of points on the curfZewith operations curve is expressed in Montgomery form (see Eq. (3)), in ptoje
performed (mod ¢). This order might be a smooth number, and weoordinates. In this case, all intermediate computati@mshe carried
have a good chance of finding an integerc Z (by multiplying on using onlyz andz coordinates, and thg-coordinate of the result
many small primes) so that = [ - |E(Z,)| for somel. Therefore can be retrieved, except for the sign, from thend z coordinates
kPy = 1-|E(Zq)|Po = O. Thus, zxp, = 0 (mod ¢), and the of the final point. In the ECM method, thecoordinate of the result
unknown factor ofN, ¢, can be recovered by taking:d(zxp,, N). is not needed, so this final computation is unnecessary.

Y? = X%+ AX + B, (1)

With this change(X, Y, Z) with Z # 0 represent§ <, L) in affine
coordinates. 1fZ = 0, then we have the point at infinit® which is

E b’z = 2® + ax’z + 227, 3)



Algorithm 1 ECM Algorithm

Require: N: composite number to be factoref; elliptic curve, Py = (zo, yo, 20) € E(Zx): initial point, By: smoothness bound for PhaseR:
smoothness bound for Phase2;, > Bj.

Ensure: ¢: factor of N, 1 < ¢ < N, or FAIL.

Phase 1. Phase 2.
Lk [[,<p, e B 9 d«—1
2. Qo +— kP 10: for each primep = By to B do
{Qo = (£qQo,¥Qo+ 2Q0)} 11 (#pQo» YrQos #pQ0) — PQo-
3! q < ged(zq,, N) 12.  d«—d-zyq, (mod N)
4: if ¢ > 1 then 13: end for
5. returng 14: g « ged(d, N)
6: else 15: if ¢ > 1 then
7: go to Phase 2 16: returng
8: end if 17: else
18: return FAIL
19: end if

Level 4

Algorithm 3 Addition and Doubling using Montgomery’s Form of

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Elliptic Curve
Level 3 . Require: P = (zp :: zp), Q = (zq :: 2Q) With zpzg(xp —2q) # 0,
"""""""""""""""""""""""" Elliptic curve Py = (SC() o Zo) = (IP_Q o ZP_Q) =P - Q, az4 = ETH, where

Level 2 point operations
a is a parameter of the curnvg in Eq. (3)

,,,,,,,,,,,, Ensure: P+ Q = (zp4q : 2p+Q), 2P = (z2p :: 22P)
Level 1 ' . 9
L zpiq — zp-ql(xp — 2P)(zq + 2Q) + (zp + 2P)(zq — 2Q)]

Modular arithmetic
(ring operations)

D zprq —apqllzp — zp)(zq + 2q) — (xp + zp)(zq — 2Q))?

Moduar Modular Modular
multiplication addition subtraction

tdxpzp — (xp+2p)% — (zp — 2p)?

tzop — (zp +2p)(zp — 2p)?

a M W N

Fig. 1. Hierarchy of Elliptic Curve Method Operations
: zap « (4zpzp) ((xp — 2p)? + a4 - (4zpzp))

Algorithm 2 Montgomery Ladder Algorithm

Require: Py = (z0: : z0) on E with zo # 0, an s-bit positive integer A careful analysis of the formulas in Algorithm 3 indicatdsat
k= (ks—1ks—2 - kiko)2 With ke_y =1 point additionP + @ requires 6 multiplications, and point doubling 5

multiplications. Therefore, a total of 11 multiplicatioage required in

each step of the Montgomery ladder algorithm. In Phase 1 dEC

the initial point, Py, can be chosen arbitrarily. Choosing = 1

Ensure: kPy = (zrp, :* 2kP,)
1. Q— Py, P<—2P

2: for i = s — 2 downto0 do implies zp_o = 1 throughout the entire algorithm, and thus reduces
3:  if k; =1 then the total number of multiplications from 11 to 10 per one stéphe

4: Q—P+Q, P<—2P algorithm, independent of theth bit k; of k. This optimization is

5 else not possible in Phase 2, where the initial poip is the result of

6: 0 — 20, PePtQ computations in Phase 1, and thus cannot be chosen atpitrari

7:  endif S

8 end for C. Montgomery Multiplication

9: returnQ Let N > 0 be an odd integer. In many cryptosystems such

as RSA, computingXY” (mod N) is a crucial operation. Taking
the reduction of XY (mod N) is a more time consuming step
than the multiplicationXY" without reduction. Montgomery [20]
As a result, we denote the starting poift by (zo :: 20), introduced a method for calculating productsnod N) without the
intermediate point, Q, by (zp :: zp), (zo :: 2g), and the final costly reduction (mod N), known as Montgomery multiplication.
point kPy by (zkp, :: zkp,). The pseudo code of the MontgomeryMontgomery multiplication ofX andY, M P(X,Y, N), is defined
ladder algorithm is shown as Algorithm 2, and its basic stegefined as XY2™" (mod N) for some fixed integen.
in detail as Algorithm 3. The algorithm is constructed ints@cway Since Montgomery multiplication is not an ordinary muligaition,
that the difference between the intermediate poidtand@, P — @, there is a process of conversion between the ordinary do(aaih
is always constant, and equal to the value of the initial fpdtn.  ordinary multiplication) and the Montgomery domain.
Therefore,zp_q and zp_¢ in the formulas in Algorithm 3 can be Despite the initial conversion cost, if we do many Montgoyner
replaced byx, and zo, respectively. multiplications followed by an inverse conversion from thont-



gomery domain back to the ordinary domain, as in RSA, we olaai B, =960 B, = 57,000
advantage over ordinary multiplication. In fact, in the E@Mthod,

the inverse conversion is not necessary becagsg X', N) = D=30=23"5 D=210=2357
ged(X2™ (mod N), N) = ged(X, N) for an arbitraryX, and odd i i 24
N mD\1 7 11 13 mD \ 1 103
. 32 5 .
6408 bits
Algorithm 4 Radix-2 Montgomery Multiplication 7476 bits 267 22?};21,'5
- = : - - 271 ?
Require: N,n = [log, N] +2,X = Y070 X;2/, Y = 020 v;27 1869 (D\ / prime_table
with 0 < XY < 2N 4531 0f 1's | >,

Ensure: Z = MP(X,Y,N) = XY2™ " (mod N) < 2N 61% of 1’s 1ifp=m-D-j is prime or p =m-D +j is prime

1: S[O} -0 1900 0 otherwise

2:fori=0ton—1do prime_table

8 ¢ < Sli] + XiY¥o (mod 2) Fig. 2. Dimensions of primg¢able and the number of 1's in this table for

4 Sli+1] « (S[] + X;Y 4+ ¢;:N) div 2 D =30andD = 210

5: end for

6: return S[n]

Typically, the first of these sets, is smaller, and thus only this set
is precomputed. One then computes the produotthe Eq. (5) for a

Algorithm 4 uses an improvement over Montgomery’s Originaéurrent value ofnDQo, and all precomputed point&o, for which
method which avoids the need for an additional conditiondl-s o0, +j ormD — j is prime. For each pairm, j), where

traction at the end, see [30] _a_nd [1]. 'I_'his improver_nent_ Waz_i firj € Js andm € My, we can precompute a bit table:
developed with the goal of avoiding the side-channel riskeient in

conditional statements, but it also improves performandeardware prime_table[m, j]
which makes it beneficial in our context. Algorithm 4 showe th 1 < mD+jormD — jis prime
pseudo code for radix-2 Montgomery multiplication wherecheose = 0 < else.

n = |log, N| + 2. It should be mentioned that our is slightly ) ) ) . )
different from [log, N | +1 which Montgomery [20] originally used. This table can be reused for multlple |te_rat|ons of Phaseth !_fme
This modified algorithm makes all the inputs and output in thgAMe values off; and Bz, and is of the size oy - ¢(D)/2 bits.
same range, i.e0) < X,Y, S[n] < 2N. Therefore it is possible to Similarly, we can precompute a bit table:

implement Algorithm 4 repeatedly without any reductionikelthe 1 & 4eJ
GCD _table[j] = J € Js
original algorithm [20], where one has to take reductidmod N) -table[j] = 0 < else.
at the end of the algorithm to make the output value in the same ) )
range as the input values. This table will haveD /2 bits for odd D and D /4 for even D (no

need to reserve bits for even values;df The exact pseudocode of
the algorithm used in our implementation of Phase 2, for tee of
evenD, is given in Algorithm 5. Values oD =30 =2-3-5 and

Phase 1 computes one scalar multiplicatiof,, and the imple- D =210 =2-3-5-7 are the two most natural choices fbras they
mentation issues are relatively easy compared to Phaser PHase minimize the size of setds and S. As a result, they minimize the
2, we follow the basic idea of the standard continuation [2d§i amount of memory storage and computations required forePhals
modify it appropriately for efficient FPGA implementatioBhoose Figure 2, we show the dimensions of prirteble and the number of
0 < D < Bs, and let every prime, B; < p < B, be expressed in 1’s in this table for these choices @i. The total size of priméable
the form in bits determines the memory requirements of the impleatimt,
while the number of 1's in the table affects the computatiaretof
Phase 2.

D. Implementation of Phase 2

p=mD+j (4)

wherem changes betweei/y;n = [(B1+ £2)/D] to Myax =
(rEBz - %)_/D},_an(ﬁj v?]ries db(etvge)en 1 a_r:_dﬁl}%j. The_glonditilon E. Choice of By, B: and D
that p is prime implies thatged(j, D) = 1. Thus, possible values i i )
of j form a setJs = {j : 1 < j < |§],gcd(j, D) = 1}, of the The  subexponential time  complexity o(exp((\/i. +
size of ¢(D)/2, and possible values of. form a setMr = {m : o(1))v/1og qloglog q) M (N)) 1of ECM is achieved by choosing the
Muinv <m < Muyax}, of the sizeMy = Myax — Muin +1, theoretical boundB, ~ eV z'°#alo8logd [16], where log is the
where My is approximate|y equa| t(@ Then, the condition natural Iogarithm. However the precise ValUGOOI) term is difficult
pQo = O, implies (mD + j)Qo = O, and thusmDQ, = +jQ,. !0 estimate. The choice of the boutsl is closely related with the
Writing mDQo = (zmpo, = 2zmpa,) and jQo = (z;0, = Dickman-de Brujin functionp(u) [22], which gives the probability
m i Zm 3 _ i - :
zjo,), the conditonmDQo = +jQo € E(Z,) is satisfied if that a randomly chosen integeX is X% -smooth. As with the
and only if £,npo,zj0, — Tjo,2mp@, = 0 (mod ¢). Therefore case ofBi, an optimal boundB; is related with certain numerical
existence of such pair. and j implies that one can find a factor of integrations involving Dickman-de Brujin type functiondowever,

N by computingged (d, N) > 0, where it seems that predicting precise values of theoreticahmgtbounds,
B1 and B2, is rather difficult. Instead, one usually determin@s
d= H(xMDQOZJ'Qo — ZjQoZmDQy)- () first (which is more or less close w0V 2 15410512 4) and setsB,
m,j

betweerb0B; and100B; depending on the computational resources
In order to speed up these computations, one precompute®fondor Phase 2. For exampl&imka et al. [27] choosé3; = 960 and
the setsS = {jQo : j € Js} or T = {mDQo : m € Mr}. Bz = 57000 to find a40-bit prime divisor of 200-bit integers. By



Algorithm 5 Standard Continuation Algorithm of Phase 2

Require: N: number to be factoredy: elliptic curve, Qo = kPy: initial point for Phase 2 calculated as a result of PhasB;1,smoothness bound
for Phase 1B>: smoothness bound for Phase2, > Bi, D: parameter determining a trade-off between the computdiioe and the amount
of memory required;D is assumed even in this version of the algorithm.

Ensure: ¢: factor of N, 1 < ¢ < N or FAIL

Precomputations: Main computations:
1 Myn « (Br+ 2)/D] 25:d+ 1, Q< DQo, R+ MpyinQ
20 Myjax — [(B2 — 2)/D] 26: for eachm = My;;n t0 Myax do
3: clear GCDtable, clearJg 27: for eachj € Jg do
4: for eachj =1 to % step 2do 28: if prime_tablgm, j] = 1 then
5. if ged(j, D) = 1 then 29: retrieve jQo from table S
6: GCD_tabldj] =1 30: d—d-(TrzjQ, — TjQ%R)
7: addj to Jg {R=(zr: :2R)}
8: endif 31 end if
9: end for 32:  end for
10: clear primetable 332. R<—R+Q
11: for eachm = Mysrn t0 Masax do 34: end for
12: for eachj =1 to £ step 2do 35: ¢ — ged(d, N)
13: if (mD + j or mD — j is prime)then 36: if ¢ > 1 then
14: primetabldm, j] = 1 37:  returng
15: end if 38: else
16: end for 39:  return FAIL
17: end for 40: end if
18: Q@ «— Qo
19: for j =1 to £ step 2do

20: if GCD-tablgj] =1 then
21 store@ in S
{Q=7Qo = (zjq,: :2jgy)}
22:  endif
23 Q—Q+2Qo
24: end for

settingg = 2*', we haveeV 2 °s71°g 1089 ~ 988 which is close to the amount of Precomputations in Algorithm 5, but the smalléy,
960. The ratio Bo/B1 in [27] is 57000/960 =~ 59. In general, the and thus the smaller number of iterations of the outer loopndu
larger values ofB;, and Bs increase the probability of success inMain computations in Algorithm 5.
Phase 1 and Phase 2 respectively (and thus decrease theeexpec
number of curves), but at the same time, increase the erectitne I1l. ECM ARCHITECTURE
per curve of these phases. o .

A theoretical analysis of the optimal parameter choicesviergin A. Top-level view: ECM units
[26], with a view towards software implementations. Thentéques ~ Our ECM system consists of multiple ECM units working inde-
developed there - which use Dickman'’s function to estimageprob- Pendently in parallel, as shown in Figure 3. Each unit penfothe
ability of success of the Elliptic Curve Method - can be addpb a €entire ECM algorithm for one numbé¥, one curveEs and one initial
hardware Setting and make it possib|e to determine optiMmeter point Py. All units share the same global control unit and the same
choices via numerical approximations to Dickman’s functigvhile ~global memory. All components of the system are located @ th
our choices are not strictly optimal, they are fairly goodiallow same integrated circuit, either an FPGA or an ASIC, dependim
for direct comparison wittsimka et al. [24], [27]. the choice of an implementation technology. The exact nunabe

In Phase 2, one needs at mdtpoint additions for the computa- ECM units per integrated circuit depends on the amount afuiess
tion of the setS and at mostB, /D additions for the tabld". Thus available in the given integrated circuit. Multiple inte¢ed circuits
the time complexity of finding tables & and 7" is O(D + By/D). May work independently in parallel, on factoring a singlenier, or
By choosing D ~ +/Ba, one minimizesD + By/D ~ +/Bs. factoring different numbers. All integrated circuits arenoected to
Also one may choosé in such a way that it has many prime& central host computer, which distributes tasks amongritigidual
factors so that the size of the sgtcan be further reduced. HoweverECM systems, and collects and interprets results.
in memory constrained hardware devices, choosihgy +/Bs is The operation of the system starts by loading all parameters
not always possible because the tabldor at least one ofS and required for Phase 1 of ECM from the host computer to the dloba
T) should be precomputed and needs to be saved. For hardw@@mory on the chip. These parameters include:
purposes, one may choode sufficiently small such a®D = 30 1) The number to be factoredy, the coordinates of the starting
or 210 and use the precomputed talffe The largerD, the larger point Py, and the parameter., which depends on the coeffi-
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cienta of the curveFE - all of which can be different for each
ECM unit.
2) Integerk, used as an input in the ECM Phase 1 (see Algo-

Area o
rithm 1), its sizeky, and the parameter = |log, Naax | +2, ADD/SUB ‘10‘(‘)/1 T T T T
related to the size of the largelst Nasax, processed by the (6%)
ECM units - all of which are common for all ECM units. MUL 1 (43%)
The contents of the global memory after initialization fdraBe 1
is shown in Figure 4a.
. MUL 2 (43%)|
Next, N, the coordinates of?,, and the parameters.s and n
are loaded to the local memories of their respective ECMsufiibe Control
operation of these units is started. All units operate sgorobusly, on (l;n/'; Time
different data sets, performing all intermediate caléatat exactly at
the same time. Fig. 6. Utilization of resources as a function of time durithg execution

The results of these calculations are coordinates and zo, of ~©f Phase 1.
the ending pointQy = kP, separate for each ECM unit. These
coordinates are downloaded to the host computer, whictoesf
the final calculation of Phase ¥; = gcd(zq,,N). If ¢z = 1, no
factor was found by a given ECM unit. i, > 1 andg; # N, then

a non-trivial factor ofV, ¢;, was found. Ifg; is equal to/V for all 1) Medium-level operations: The primary operation constituting
ECM units working on the sam#/, then the computations of Phaseppase 1 of ECM is a scalar multiplicati@py = & Po. As discussed

1 need to be repeated for a smaller value of the batind in Section 1I-B, this operation can be efficiently implemeahtin

If no factor of N was found, the ECM system is ready for Phase 2rojective coordinates using Algorithm 2.

The values ofN, parameters of the curves, and the coordinates  The two branches of the if statement in Algorithm 2 can be
of the pointsQo obtained as a result of Phase 1 are already in th@jculated using exactly the same sequence of instructisite a
local memories of each ECM unit. The host computer calcslatel  gnditional swap of input and output variables, as showniguife 5.
downloads to the global memory of the ECM system the follgvin | Phase 1, one coordinate & can be chosen arbitrarily, and
parameters dependent @ and D: M1y, My, GCD_table, and  yherefore the computations can be simplified by selectipng =

prime_table, as defined in Section II-D. zp_q = 1. The remaining computations necessary to simultaneously
The contents of the global memory after initialization fdnaBe computeP + Q and 2P can be interleaved, and assigned to three
2 is shown in Figure 4b. Note that the previous contents of thenctional units working in parallel, as shown in Table |.€Téntire
global memory used for Phase 1 can be overwritten because #i€p of a scalar multiplication, including both point aduit and
inputs to Phase 1 are either no longer nee@ig k), or have been doubling can be calculated in the amount of time required Zor
already loaded to the local memorigV,a24). Phase 2 is then modular additions/subtractions and 5 modular multipis. Note
started simultaneously on all ECM units, and produces abréisalts, that because the time of an addition/subtraction is muchteshthan
the accumulated product$ (see Eqg. (5)). These final results arehe time of a multiplication, two sequential additions/sabtions can
then download to the host computer, where the final calarati be calculated in parallel with two multiplications. As a ults as
ged(d, N) are performed. shown in Figure 6, we obtain over 90% utilization of the area
Note that with this top level organization, there is no need time space, which is crucial from the point of view of minirinig
compute greatest common divisors or divisions in hardwate the areax time product.
overhead associated with the transfer of data between thd EC The storage used for temporary variables ..., a4, s1,.. ., sS4,
system and the host computer, and the time of computationsand m,...,mio can be reused whenever any intermediate values
software are both typically insignificant compared to thaetiiused are no longer needed. With the appropriate optimizatios,atimount
for ECM computations in hardware, even in the case of a welgti of local memory required for Phase 1 has been reduced to 1-bi256
slow interface and/or a slow microprocessor. Additionadigftware operands, i.e., 88 32-bit words. The remaining portion i themory
and hardware computations can be done in parallel. is used in Phase 2 of ECM.

B. Medium-level View: Operations of the ECM Unit
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Fig. 4. Contents of the global memory in a) Phase 1, b) Pha@wotents of the local memories in c) Phase 1, d) Phase 2.

TABLE |
ONE STEP OF A SCALAR MULTIPLICATION, INCLUDING THE CONCURRENT OPERATIONS? + (Q AND 2P, FOR THE CASE OFzp_g = 1.
NOTATION: A: OPERATION USED FOR ADDITION ONLY D: OPERATION USED FOR DOUBLING ONLYA/D: OPERATION USED FOR ADDITION AND

DOUBLING.
Adder/Subtractor Multiplier 1 Multiplier 2
AD: ay = wxp+2zp
i 51 = xp—2zp
A/D: @2 i TQ +2Q D: mi = s% D: mo = a%
S92 = TQ — 2Q
D: S3 = Mmg — ma A: ms = S1 - as A: my = So - aq
Z‘: z zii t :nni D: Top = M5 = M1+ M2 D: me = S3 * 24
D: ag = m1+mg A: TpirQ = My = a§ A: mg = sfl
A: ZpifQ = Mg = Mg ' Tp_Q D: Zap = Mio = S3 - a4
A . TABLE IV
In Phase 2, the initial computation
ACCUMULATION OF THE PARTIAL RESULTS] [ (zn2; — xi2n)
i,mn
D-Qo and Myn - (D Qo) (6) (mod N) IN PHASE 2 (FOR FIXEDn AND MOVING 1)

[ Adder/Subtractor [ Multiplier 1 [ Multiplier 2|
[ | mi=an-20 | ma=x02n |

can be performed using a similar algorithm to the one usechas®

1. The only difference is that now? — Q = Qo, cannot be chosen Z?: - Zi — ZZ " .m(;'():l Zf = ii - ZZZ
arbitrarily, and thuszp_q = 2g, # 1 in general. As a result, the d=d-di, ma = T3 - Zn
computations will take the amount of time required for 2 meadu don =m1 —my | myg=1an 23 | M4 =213 2n
additions/subtractions and 6 modular multiplications,saswn in dgn =ms —my | d=d-day mi=Tn 2

d=d-dsp mo = T4 - Zn

Table II.

The second type of operation required in Phase 2 is a simpi¢ po
addition P + @. This operation can be performed using the time of
6 additions/subtractions and 3 modular multiplicatiorss shown in
Table 11l As can be seen from Table IV, after the initial delay of one

Finally, the last medium level operation required in Phase the multiplication, the time required to compute and accunaubaty two
accumulation of the produet as defined in Eq. (5). We can rewritesubsequent values df,, is equal to the time of three multiplications.
the expression fod as

2) Instructions of the ECM unit: Each ECM unit is composed of
two modular multipliers, one adder/subtractor, and onallogemory.

d= H din = H(xnzi —Tizn) (mod N) (") The local memory is 512 32-bit words in size, equivalent ta266-
in in bit registers. The contents of the local memory during thecation
of Phase 1 and Phase 2 are shown in Figures 4c and 4d, respectiv
where In Phase 1, only 11 out of 64 256-bit registers are in use. las€h
2, with D = 210 the entire memory is occupied.
(@i 2:) € {(z,2): (x,2) = jQo}, ®) Every ECM unit forms a simple processor with its own instiorct
(Tn,2n) € {(z,2): (z,2) = mDQo} (9)  set. Since all ECM units execute exactly the same instrostiat

the same time, the instructions are stored in the globatuacsbn
and GCD table[j]=1 and prime tablejn, j]=1. The repetitive se- memory, and are interpreted using the global control usitstaown
qguence of such operations is shown in Table IV. in Figure 3.



TABLE Il
ONE STEP OF A SCALAR MULTIPLICATION, INCLUDING THE CONCURRENT OPERATIONS” + Q AND 2P, FOR THE CASE OFzp_q # 1.
NOTATION: A: OPERATION USED FOR ADDITION ONLY D: OPERATION USED FOR DOUBLING ONLYA/D: OPERATION USED FOR ADDITION AND

DOUBLING.
Adder/Subtractor Multiplier 1 Multiplier 2
AID: ar = zp+zp
: S1 = xzp —2zp
A/D: a2 i rQ +2Q D: mi = s? D: mo = (L%
S2 = TQ — 2Q
D: S3 = Mo —mi A: ms3 = 81 - ag A: m4 = S2 - aj
a = m m
A: 843 _ mz t mi D: Top = M5 = M1 - M2 D: me = S3 - 24
D: ay = mi+ meg A: m7 = aé A: mg = si
Al zZpig=mg=mg-Tp_qQ D:  zop =mio =53 a4
A: Tp4Q = M1l = M7 " 2ZP—Q
TABLE Il
ADDITION OF POINTSP + Q
Adder/Subtractor Multiplier 1 Multiplier 2
a1 =xp + zp
S1 =Tp —zZp
az = xQ + 2qQ
S2 = TQ — ZQ
m3 = S1 - a2 my4 = S2 - a1
az = m3 + my
83 = M3 — My
myr = aé mg = Si
ZP4+Q = M1 = Mg " TP—Q TpP4+Q = Mi1 = M7 ZP—Q

C. Low-level View: Modular multiplication and addition/subtraction

The three low level operations implemented by the ECM unﬁ

are Montgomery modular multiplication (defined in Sectid+C),
modular addition, and modular subtraction. Modular additand
subtraction are very similar to each other, and as a reseit &éne
implemented using one functional unit, adder/subtractor.

In order to simplify our Montgomery multiplier, all operatis are
performed on inputsY, Y in the ranged < X, Y < 2N, and return
an outputS in the same rangd) < S < 2N. This is equivalent to
computing all intermediate results moduWdv instead of N, which
increases the size of all intermediate values by one bitshattens
the time of computations, and leads to exactly the same fezallis
as operations (mod N). The algorithms for modular addition and
subtraction are shown as Algorithms 6 and 7 respectivelybdth
algorithms,S' is a result variable7" is a temporary variable, and,
C> are two carry bits.

Algorithm 6 Modular addition
Require: N, X, Y < 2N, all expressed usinge 32-bit words,
XD y@ NG, j=0,...e-1
Ensure: Z =X +Y mod 2N
cfor j=0toe—1do
(C1,TW) — 1 + X0 Y ©)
: end for
for j=0toe—1do
(C2, 8D — Co + T — (2N)@)
: end for
1 if S <0 then
returnT
else
return.S
cend if

The block diagram of the adder/subtractor unit implemenbnoth

Algorithm 7 Modular Subtraction
equire: N, X,Y < 2N, all expressed using 32-bit words
X@, vy NG, j=0,...,e—1
X0 y@ NG, j=o0,...
Ensure: Z =X —Y mod 2N
cfor j=0toe—1do
(C2, S — Co + XU —y )
: end for
cfor j=0toe—1do
(C1,TW) — 1 4+ 86 4 (2N)D)
end for
2 if S < 0 then
returnT
: else
return.S
cend if

,e—1

algorithms is shown in Figure 7. The modul®é is loaded to the
adder/subtractor, using inpi_/N, one time, during the initialization
stage of Phase 1, and does not need to be changed until theineft
Phase 1 for another numbaf. This modulus is stored in the internal
32 x 32-bit memory, used to hold three numbéys S, andT', all up
to 256 bits wide. The 32-bit words of operandsandY are loaded
in parallel, starting from the least significant word, andriediately
added or subtracted, depending on the value of the contpmltin
sub_add (with sub add = 1 denoting subtraction). The result is stored
in the internal memory as variablE for addition i.e. X + Y, and
S for subtraction i.eX — Y. This first operation is followed by the
second operation of the respective algorithm, involvirgheviously
computed value and the modul2®&' computed on the fly, with the
result stored back to the memory. Finally, depending on iga s
of .S, stored in the flip-flopCs, eitherT or S is returned as a final
result. For 256-bit operands, the entire operation takedatk cycles



addry we addr,

| ! loaded in to the multiplier once at the beginning of Phasentl, @o
32x32 XN not need to be changed until the beginning of Phase 1 for anoth
LUT MEM — numberN. At the beginning of multiplication, the inpuf§ andY are

x_nlcnoice first loaded in parallel, in 32-bit words, to internal 256@-kegisters

X_N X and Y. In the following n clock cycles, the circuit executes
op, op; iterations of the for loop. Finally, in the last 8 clock cyslehe final
— result is computed word by word, starting from the least ificgmt
iy E[' word, and transferred to the output. The total executioretioh a

single Montgomery multiplication is equal t@ + 16 clock cycles.
For a typical use within ECMp is greater thari00, and thus one
addition followed by one subtraction can easily executeniaount
of time significantly smaller than the time of a single Momgary

sumy

multiplication.
read <>
%] IV. | MPLEMENTATION RESULTS
z  sign Our ECM system has been developed entirely in RTL-level VEHIDL

and written in a way that provides portability among mukifamilies
of FPGA devices and standard-cell ASIC libraries. In theecab
FPGAs, the code has been synthesized using Synplicity Bymfyb
v. 8.0, and implemented on FPGAs using Xilinx ISE v. 6.3, Tl a
(including writing data back to local RAM), the same amouat f 8.1. Five different families of FPGA devices have been tmde
addition and subtraction. including the high-performance families, Virtex E, Virtdk and
The radix-2 version of the Montgomery Multiplication algom, Virtex 4, as well as low-cost families, such as Spartan 3 guattan
which calculates the Montgomery product&fandY” is specified as 3E. The entire design has been thoroughly verified usingvesbrs
Algorithm 4 in Section II-C. This algorithm assumes thatvedirds of generated by a special test program written in C and by casgyar
the inputsX, Y, andM, are already available inside of the multiplier,with the results of GMP-ECM [9], [31].
and can be accessed at the same time. The second instrustide of In Table V, we summarize the memory requirements of our ECM
the for loop involves the addition of three long words. If ieqmented hardware architecture. The local memory represents metooayed
directly in hardware the operation would result in a londical path  within each ECM unit, with a memory map shown in Figure 4cd. In
and a very low clock frequency. In order to prevent that, #udition Phase 1, only 11 256-bit registers are required, takinga aft88
is performed using carry save adders, and the régult- 1] is stored memory words, and thus a 128x32 bit memory is sufficient ta ldil
in the carry save form. Using carry save adders, the sum ekthrinputs, outputs, and temporary values. In Phase 2, the segisars
numbersU, V, W is reduced to the sum of two numbe$s(sum) are required, and an additional precomputed tablef points of the
and C (carry), such thal + V + W = C + S. Similarly, using a form jQo, wherel < j < |D/2|, and ged(j, D) = 1. Clearly,
cascade of two carry save adders, as shown in Figure 8b, the ghe size of this table depends d@» and as a result the total size of
of four numbers,U, V, W, andY can be reduced to the sum ofthe local memory is equal to 256x32 fd» = 30 and 512x32 for
two numbersS andC, such thatyU +V + W +Y = C + S. Each D = 210. In the modern families of FPGA devices, such as Spartan
carry save adder is composed of a rownoFull Adders working in 3 and Virtex I, the smallest size of BRAM (Block RAM) that can
parallel, so it introduces a delay of just a single Full Ad@iez., a be allocated to a local memory is 512x32, and smaller memaae
delay of a single stage of a basic ripple-carry adder). be implemented only using distributed RAMs available witdiLB
slices. Thus, one BRAM is sufficient to hold local memory fatt
Algorithm 8 Radix-2 Montgomery Multiplication with Carry Save Phase 1 and 2. In the older families of Xilinx FPGASs, such ae¥|

Fig. 7. Block diagram of the adder-subtractor

Addition the size of a single Block RAM is equal to 4 kbits, which trates
Require: N,n = |logy N| +2,X = Z;%:—Ol X;20 Y = Z;}:—Ol y;21 1o the memory of the size 256x16 bits or 512x8 bits. As a result
with 0 < XY < 2N larger number of BRAMs is required to implement local memfany
Ensure: 7 = MP(X,Y,N) = X -Y -27" (mod N) < 2N; Phases 1 and 2, as shown in the last but one column of Table V.
Z0),Cn], Sn]¥) denote aj-th word of Z,C[n] and S[n] Global memory is the memory used by the global control unit,
respectively. and its map is shown in Figure 4ab. The size of this memory in
L S[0] <0 Phase 1 is determined primarily by the number of ECM units. In
2 C[O}f_ 0 Phase 2, this memory can be completely overwritten by newegal
3 fori=0ton—1do . . : . . .
4 « — (Clilo + Silo + Xi - Yo) (mod 2) !t is worth _notlng that the size of its main componer_n, p_ntable,
q
5 (Cli+1],S[i+1]) — CSA(C[i], S[i], Xi - Y, qi - N) div 2 is almost independent of the value &, as shown in Figure 2.
6: end for For 6 ECM units per each control unit, memory requirements in
7. C=0 Phase 1 and Phase 2 match, and amount to 256 32-bit wordseor on
8: for j =0to 7 do BRAM in modern families of FPGAs. The size of global memorg ha
9. (C,z0)) —Cn)) + 5[n]@) +C been minimized by the use of bit tables, GE&dble and primeable,
10:  return z() defined in Section 2.5.
11: end for The execution times of Phase 1 and Phase 2 in the ECM hardware

architecture are shown in Table VI. The generic formulasnfajor

The modified algorithm, based on carry save addition (CSA) momponent operations are provided, together with the astidn
shown as Algorithm 8. This algorithm has been describediezarlvalues of the execution times for the casel6B-bit numbersN,
in [19]. The block diagram of the circuit implementing Algym and the smoothness bound$ = 960 and B, = 57000. The
8 is shown in Figure 8a. The modulu§ and the parameter are estimated values are compared with the accurate valuemettom
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Fig. 8. a) Block diagram of a Montgomery multiplier; b) a cade of two carry save adders

TABLE V
AMOUNT OF MEMORY REQUIRED BY THEECM HARDWARE ARCHITECTURE(FOR THE NUMBER OF BITS OFN, n < 254)

# BRAMs # BRAMs
# 32-bit in in
Objects # objects words # # Memory Virtex Spartan 3
per of words | of bits size (256 x 16 &
objects or Virtex 2
512 x 8) (512 x 32)
Local memory - Phase 1
Registers | 11 8 88 2816 [ 128 x 32 1 | 1
Local memory - Phase 1 & 2,D = 30
Registers 11 8 88 2816
JQo 4 16 64 2048
DQo,mDQq 2 16 32 1024
184 5888 256 x 32 2 1
Local memory - Phase 1 & 2,D = 210
Registers 11 8 88 2816
JiQo 24 16 384 12288
DQo,mDQo 2 16 32 1024
504 16128 | 512 x 32 4 1
Global memory - Phase 1 ¢ ECM units, B; = 960)
ECM unit 6 x4 8 192 6144
init values
kN 1 1 1 32
k 1 43 43 1376
236 7552 256 x 32 2 1
Global memory, Phase 2 D = 30)
GCD-table 1 1 1 32
Mopin, Mn 2 1 2 64
prime_table 1 234 234 7488
237 7584 256 x 32 2 1
Global memory, Phase 2 D = 210)
GCD-table 1 2 2 64
Moin, Mn 2 1 2 64
prime_table 1 201 201 6432
205 6560 256 x 32 2 1




TABLE VI
EXECUTION TIME OF PHASE 1 AND PHASE 2 IN THE ECM HARDWARE ARCHITECTURE FORL98-BIT NUMBERS N, By = 960 (WHICH IMPLIES
NUMBER OF BITS OFk, kv = 1375), B2 = 57000, AND D = 30 OR D = 210

Operation Notation Formula # clk # clk
cycles cycles
D = 30 D =210
Elementary operations
Modular addition Ta 41
Montgomery T Ty =n+ 16 216
multiplication
Point addition and Tap1 Tap1 = 5Tn + 2T4 + 50 1212
doubling (Phase 1)
Point addition and TapD2 Tap2 = 6T + 2T4 + 50 1428
doubling (Phase 2)
Point addition (Phase 2) TAapD2 Tapp2 = 3Ty +6Ta + 30 924
Phase 1
Phase 1 (estimation) Tp1est Tp1 ~ kN - Tap1 1,666,500
Phase 1 (simulation) TP1 sim 1,713,576
Phase 2
Precalculating T;q Tjq = 2Tap2 7476 49,056
JQo +(LD/4] — 2)Tapp2 (0.19%) (2.56%)
DQo Tphq Tpg =~ ”ng(D —+ 1)]TAD2 7140 11,424
(0.18%) (0.60%)
My1inDQo T,y in DQ T, in DQ = 8568 4284
[logz(Mkle + 1)—‘TAD2 (0.22%) (0.22%)
Calculating mDQq for TmbDQ Tmpo = (Mn —2)TapD2 1,725,108 | 244,860
Muyrn <m < Marax (44.29%) (12.78%)
Number of ones Nprime_table 4531 4361
in the prime_table
Calculating Ty Tq = [1.5 - Nprime.table | (Tar + 12) 1,789,883 | 1,525,886
accumulated product d +Mpy (Trr +Ta)/2 (45.95%) | (79.67%)
Phase 2 (estimation) Tpoest Tp2 = Tjq +Tbqg + TIWmin,DQ 3,638,175 | 1,835,510
+Tmpg + T4 (90.84%) | (95.84%)
Phase 2 (simulation) Tpssim 3,895,013 | 1,915,219
(100%) (100%)

TABLE VII
EXECUTION TIME OF PHASE 1 AND PHASE 2 USING SRC 6 RECONFIGURABLECOMPUTER HOLDING9 ECMUNITS FOR198-BIT NUMBERS N
B1 = 960 (WHICH IMPLIES NUMBER OF BITS OFk; ky = 1375), Ba = 57000, AND D = 210

| Phase 1 | Phase 2 | Phases 1 & 2

One-time pre-computations

Pre-computations by the microprocessor (common to algereto be factored) | 2,249 s
Generation of 9 integers to be factored
Generation of numbers to be factored | 7,902 s
ECM computations for one set of 9 integers to be factored
Pre-computations by the microprocessor (specific to a gbetrof integers to be factored) 1,368 s 0 us 1,368 s
Transfer of data-in (from the microprocessor memory to théoard-memory of the FPGA-based
51 pus 0 ps 51 pus

processor
Calculations performed by the FPGA-based processor 17,136 s 19,152 s 36,289 us
Transfer of data-out (from the on-board-memory of the FRta&ed processor to the microprocesgor 19 s 19 s 19 s
memory)
Function call overhead (overhead associated with theferan$ control between the microprocessor 252 s 252 s 252 s
and the FPGA)
Post-computations by the microprocessor (final GCD contiouia 81 us 81 us 81 us
Total end-to-end execution time 18,907 us 19,504 118 38,060us

Percentage of the total end-to-end execution time
Pre-computations and postcomputations by the micropsoces 8.03% 0.51% 3.99%
Function call and data transfer overheads 1.33% 1.29% 0.66%
FPGA board computations 90.63% 98.20% 95.35%




TABLE VI
COMPARISON WITH THE DESIGN BYPELZL, SIMKA ,ET AL., BOTH IMPLEMENTED USINGVIRTEX 2000E-6

| Part 1: Execution Time |

Pelzl, Simka, et al. Our design Ratio
Pelzl, Simka / ours
# clk cycles Time # clk cycles Time # clk cycles | Time
Clock period 26.3ns 18.5ns
Modular addition 16 0.62 s 41 0.78 us 0.6 0.8
Modular subtraction 24 0.42 us 41 0.78 us 0.4 0.5
Montgomery 796 20.7 ps 216 4.1 ps 3.7 5.0
multiplication
Point addition & 8200 213.2pus 1212 23.0us 6.8 9.3
doubling (Phase 1)
Phase 1 | 11,266,800 | 292.9ms | 1,713,576 | 31.7ms 66 | 93 |
Point addition & 8998 233.9us 1428 27.1us 5.6 8.6
doubling (Phase 2)
Point addition 4920 127.9 s 924 17.6 us 4.8 7.3
(Phase 2)
Calculation and 4776 124.2 us 648 12.3 us 6.2 10.1
accumulation of
two values ofd;,,
(Phase 2)
[ Phase2 0 =30) | 20,276,060 | 527.2ms | 3,895,013 | 72.1ms | 52 | 74 |
[ Phase 2 D = 210) | - | - | 1915219 | 355ms | 106 | 15.0 |
| Part 2: Resource usage per one ECM unit |
Pelzl, Simka, et al. Our design Ratio
(D = 210) Ours / Pelzl, Simka
Number of # % # %
CLB slices N/A 6.0 3102 16 2.7
LUTs 1754 4.5 4933 13 2.8
FFs 506 1.25 3129 8 6.2
BRAMs 44 27 2 1.25 0.045
Maximum 3 7
number of ECM (limited by BRAMSs) (limited by CLB slices) 2.33
units per chip

TABLE IX
RESULTS OF THEFPGAIMPLEMENTATIONS: RESOURCES AND TIMING FOR THE MAXIMUM NUMBER OFECM UNITS PERFPGADEVICE. EXECUTION
TIME OF PHASE 1 AND PHASE2 FOR198-BIT NUMBERS N, By = 960, B2 = 57,000, D = 210

Results Virtex Virtex Il Spartan 3 Spartan 3E Virtex 4
XCV2000E-6 | XC2V6000-6 XC3S5000-5 | XC3S1600E-5| XC4VLX200-II
Max # of ECM units 7 13 13 5 24
- CLB slices 18,756 (94%) | 33,790 (99%) | 32,278 (99%) | 13,915 (94%) 63,220 (70%)
- LUTs 28,976 (73%) | 53,970 (79%) | 53,880 (80%) | 21,703 (71%) 98,332 (55%)
- FFs 19,270 (50%) | 35,146 (52%) | 35,141 (52%) | 14,092 (47%) 65,052 (36%)
- BRAMs 32/160 14/144 14/104 6/36 26/336
Technology 0.15/0.12um | 0.15/0.12pum 90 nm 90 nm 90 nm
Cost of an FPGA devicé $1230 $2700 $130 $35 $3000
Max clock frequency 48 MHz 120 MHz 80 MHz 96 MHz 104 MHz
Max clock frequency 54 MHz 123 MHz 100 MHz 98 MHz 135 MHz
for single ECM unit
Time for Phase 1 and 2 75.5ms 30.2ms 45.3ms 37.7ms 35.19ms
# of ECM 93 ECM 430 ECM 287 ECM 133 ECM 682 ECM
computations/s operations/s operations/s operations/s operations/s operations/s
# of ECM 8 ECM 16 ECM 221 ECM 380 ECM 22 ECM
computations/s operations/s operations/s operations/s operations/s operations/s
per $100 per $100 per $100 per $100 per $100 per $100

acost per unit for a batch of 10,000+ devices as of Nov. 2006




TABLE X
COMPARISON OF THE EXECUTION TIME BETWEEN2.8 GHz XEON PENTIUM 4 (W/512KB CACHE) AND TWO TYPES OFFPGADEVICESVIRTEX
I XC2V6000-6AND SPARTAN 3 XC3S5000-5 (19817 NUMBER N, B; = 960, B2 = 57000, D = 210, MAXIMUM NUMBER OF ECM UNITS
PERFPGADEVICE)

Virtex Il Spartan 3 Pentium 4 Pentium 4
XC2V6000-6 | XC3S5000-5 | (testing program) | (GMP-ECM)
Clock frequency 120 MHz 80 MHz 2.8 GHz
No. of parallel ECM computations 13 13 1
Time of Phase 1 14.2ms 21.3ms 18.3ms 11.3ms
Time of Phase 2 15.9ms 24 ms 18.6 ms 13.5ms
Time of Phase 1 & Phase 2 30.2ms 45.3ms 36.9ms 24.8ms
# of Phase 1 computations per second 915 610 55 89
# of Phase 2 computations per second 818 542 54 74
# of Phase 1 & 2 computations per second 430 287 27 40
TABLE XI

RESULTS OF THEASIC IMPLEMENTATIONSUSING SYNOPSYS90 nm GENERICLIBRARY FOR TEACHING IC DESIGN

Number of ECM units 1 2 5 10 13 20 24

Clk frequency in MHz 350 333 325 300 275 250 225
Area in mm? 1.119 1.691 2.900 5.156 6.483 9.762 11.474

Area in gate equivalents | 202,733 | 305,875 | 524,536 | 932,403 | 1,172,505 | 1,765,422 | 2,074,976

simulation. The difference is less than 10%, and can bebatad to In spite of these equalizing measures, our design outpesfdhe
the time needed for control operations and data movemeritsnwi design by PelzlSimka, et al. by a factor 0.3 in terms of the
local memories, and between global memory and local memoriexecution time for Phase 1, by a factoriof in terms of the execution
Two values of the parametdp are considered for Phase B,= 30 time for Phase 2 with the same value of paramdierand by a
and D = 210. The table proves that the choice of the parametéactor of 15.0 for Phase 2 with the increased value Bf = 210,

D = 210, reduces the execution time of Phase 2 in our architectunet reported by Pel&imka. The main improvements in Phase 1
by a factor of two compared to the case Bf= 30. As confirmed come from the more efficient design for a Montgomery muképli
by exhaustive search, the choice Bf= 210 results in the smallest (a factor of 5 improvement) and from the use of two Montgomery
possible execution time for Phase 2 for the given values ef timultipliers working in parallel (a factor of 1.9 improventgnAn
smoothness bound8; = 960 and B> = 57000, assuming execution additional smaller factor is the ability of an adder/subtoa to work
times of basic operations given in Table VI. HOr= 210, the largest in parallel with both multipliers, as well as the higher dtdrequency.
contribution to Phase 2, around 80%, comes from the caloalatf One might expect that such improvement in speed comes at the
the accumulated product cost of substantial sacrifices in terms of the circuit ared eost.

In order to estimate the overhead associated with the wamdf In fact, our architecture is bigger, but only by a factor 2f in
control and data between a microprocessor and an FPGA, an E@vms of the number of CLB slices. Additionally, the desigparted
system with 9 ECM units has been ported to the reconfigurable [24], [27] has a humber of ECM units per FPGA device limited
computer SRC 6 from SRC Computers [28], based on 2.8 GHz Xeont by the number of CLB slices, but by the number of internal
microprocessors and Xilinx Virtex [l XC2V6000-4 FPGAs rumg  on-chip block RAMs (BRAMS). If this constraint was not reneoly
at a fixed clock frequency of 100 MHz. The execution times fibr aour design would outperform the design by P&iitka in terms
phases of the ECM computations performed using this reamafide of the amount of computations per Xilinx Virtex 2000E deviog
computer are summarized in Table VII. The data transfer andtion a factor of9.3 - 2.33 ~ 22 for Phase 1 and 35 for Phase 2. If
call overheads have been experimentally measured to btheesd% the memory constraint is removed, the product of time by atila
for the combined Phase 1 and Phase 2 computations. The precanproves compared to the design by Pelzl Sithka by a factor of
putations and postcomputations by the microprocessor af@duo 9.3/2.7 = 3.4 for Phase 1 and 5.6 for Phase 2.
about 4% of the total execution time of the combined Phasesdl a In Table IX, we show the results of porting our design to five
2, and their overhead can be practically eliminated by eyp@ihg families of Xilinx FPGAs. For each family, a representati@vice is
computations in the FPGA and the microprocessor. selected and used in our implementations. For each ECM elewie

In Table VIIl, we compare our ECM architecture to an earliedetermine the exact amount of resources needed for a fagtcircuit
design by Pelzl,Simka, et al., presented at SHARCS 2005, andith one ECM unit, the maximum number of ECM units per chig th
described in subsequent publications [24], [27]. Everysjiids effort maximum clock frequency, and then the maximum number of ECM
was made to make this comparison as fair as possible. Ircpnti computations (Phase 1 and Phase 2) per unit of time. Finady,
we use an identical FPGA device, Virtex 2000E-6. We also db noormalize the performance by dividing it by the cost of a eztpe
take into account any limitations imposed by an externalrogion- FPGA device. From the last row in the table one can see that the
troller used in the PelZimka architecture. Instead, we assume thadw-cost FPGA devices from the Spartan 3 and Spartan3E elevic
the system could be redesigned to include an on-chip céetraind families outperform the high-performance devices, sucNigsx Il
it would operate with the maximum possible speed reportethby and Virtex 4 by a factor of about3.8 and 14.1 respectively, and
authors for their ALUs [24], [27], i.e., 38 MHz (clock period thus are more suitable for cost effective code breaking coatipns.
26.3ns). We also ignore a substantial input/output overheadrteppo  Thus, assuming that only CLB slices and block RAMs are used
by the authors, and caused, most likely, by the use of anredterfor computations, low-cost FPGAs, such as Spartan and &part
microcontroller. 3E are more cost-effective for the implementation of ECMeTh



situation substantially changes when embedded FPGA riefSare [10] was designed to complete the sieving for the factorabf
employed for the implementation of the most time consumipgra- a 1024 bit RSA integer in one year at a cost of $200 million (in
tion of ECM, Montgomery modular multiplication. These nipliers 2005). SHARK uses 2300 identical machines built with cotioeral
are present in both low-cost and high-performance FPGAcdsyi ASICs and a special transport system for communicatione ltile
but their number and the maximum clock frequency is greater fECM architecture proposed here, it uses technologiesadlaitoday.
high-performance FPGAs. In [23], [12], preliminary resufor two  In one year, SHARK producek7 - 10** sieving reports which need
alternative designs based on the use of embedded mulsipliafirtex to be processed by a factoring device such as the one propesed
4 SX FPGAs are presented. In both papers, only the implem@mta for smoothness testing and to obtain a complete factooizati
of Phase 1 of ECM is reported. Both papers demonstrate atmdten Two of the FPGA families shown in Table IX, Virtex 4 and Sparta
for a substantial improvement in terms of the throughput #rel 3E, can perform 682, respectively 133 ECM operations peorskc
throughput to cost ratio based on the use of embedded nieitipl or 2.15 - 10*°, respectively4.19 - 10° such operation per year. If
However, neither paper attempts to quantify the differebetveen we perform 20 ECM operations on each sieving report, we need
the performance of high-end FPGAs and low-cost FPGAs uriter tabout 158,086 Virtex 4 FPGAs, or 810,626 Spartan 3Es to psoce
new assumption that all embedded multipliers can be emglaye the1.7-10' sieving reports generated by SHARK in one year. The
ECM computations for both kinds of FPGAs. In order to answaegrice for those is about $492 million, respectively $29 ioiil
this question, a comprehensive analysis would need to berpesd, Thus, combining the results of SHARK with our architectuse
and the effect of a novel pipelined hardware architecturgleyed estimate the total cost for the relation collection step & #229
in [23], would need to be separated from the effect of emplgyi million to finish in one year, using the most cost efficient FPG
embedded multipliers. This analysis is beyond the scopki®piper, technology (Spartan 3E). In case ASICs are used for implénmen
and is proposed as an interesting future study. ECM, the product of area by time can be reduced by a factor ef ov
In Table X, we compare the execution time of Phase 1 and Phasg&®, as shown for a representative suite of basic data [miogesnits
between the two representative FPGA devices and a highignmetd  in [15]. In this case, the cost of the ECM part (around $29Qkspl
software implementation (GMP-ECM) running on Pentium 4 Xeo about $1 million of non-recurring costs associated withppriang
2.8 GHz. GMP-ECM is one of the most powerful software impleASIC masks) would become an almost insignificant fractiorthef
mentations of ECM and contains multiple optimization téghes cost required for the sieving step of NFS.
for both Phase 1 and Phase 2 [9], [31]. Additionally, we rum ou
own test program in C that mimics almost exactly the behawsfor V. CONCLUSIONS AND FUTURE WORK
hardware, except for using calls to the multiprecision GMFaky for
all low level operations, such as modular multiplicatior audition.
One can see that the algorithmic optimizations used in GNIRAE
matter, and reduce the overall execution time for Phaserh 8.3
ms to 11.3 ms (38%), and Phase 2 from 18.6 ms to 13.5 ms (27%)a) The use of an on-chip optimized controller for Phase 1 and

A novel hardware architecture for the Elliptic Curve Methofi
factoring has been proposed. The main differences as cexhpaan
earlier design by PelzBimka, et al. [24], [27] include the following

Interestingly, the execution time for an ECM unit running\értex Phase 2 (in place of an external controller based on an ARM
Il, 6000E is only slightly greater than the execution timeGi¥1P- processor)
ECM on a Pentium 4 Xeon. At the same time, since this FPGA b) Substantially smaller memory requirements, an optichiae
device can hold up to 13 ECM units, its overall performancabisut chitecture for the Montgomery multiplier

11 times higher for combined Phase 1 and Phase 2 computationst) The use of two (instead of one) multipliers,

However, the current generation of high-end FPGA devicesaioout ~ d) The ability of all arithmetic units (two multipliers andne

10 times as much as comparable microprocessors. Therefwe, adder/subtractor) to work in parallel.

advantage of Virtex Il over Pentium 4 disappears when costkien When implemented on the same Virtex 2000E-6 device, ouiitarzh

into account. In order to get an advantage in terms of theopaeince ture has demonstrated a speed-up by a factor of 9.3 for ECePha

to cost ratio, one must use a low-cost FPGA family, such a;xil and 15.0 for ECM Phase 2, compared to the design by Batzka,

Spartan 3. In this case, the ratio of the amount of computstier et al. At the same time, memory requirements have been rdduyce

chip is about7 in favor of the biggest Spartan 3. Additionally thisa factor of 22, and the requirements for CLB slices have awzd

device is actually cheaper than the state-of-the-art mioessor, so by a factor of 2.7. If the same optimizations regarding themmy

the overall improvement in terms of the performance to casibr usage and the use of an internal controller were appliedet@#sign

exceeds a factor of 10. by PelzlSimka, our architecture would still retain an advantage in
Further gains in terms of absolute performance and coserms of the performance to cost ratio by a factor of 3.4 foadehl

effectiveness of the hardware implementation of ECM carebelied and 5.6 for Phase 2.

by employing standard-cell ASIC technology. In order tareate this Our architecture has been implemented targeting four iaddit

effect, we have ported our VHDL code to Synopsys 90nm Geneff@milies of FPGA devices, including high-performance féwsi

Library for Teaching IC Design [29]. Synopsys Design Comp¥. (Virtex Il and Virtex 4), as well as low-cost families (Spant 3

A-2007.12-SP4 was used for synthesis and static timing/aisalThe and Spartan 3E). Our analysis revealed that within the twere

results of our implementation are summarized in Table Xle Gain generations of FPGA families (older: Spartan3, Virtex Ilhdathe

in terms of the clock frequency by a factor&fi4 was demonstrated, more recent: Spartan 3E, Virtex 4), the low-cost devicepatdibrm

for a circuit composed of 13 ECM units, when compared to $peBt  the high-performance devices in terms of performance to lops

implemented using simil&d0 nm technology. This gain is consistentfactor of ~ 14.

with the ASIC to FPGA speed gains reported earlier in [15]dor We have also compared the performance of our hardware archi-

representative set of digital system benchmarks, reptiegeareas of tecture implemented using Virtex 1l XC2V6000-6 and Sparan

cryptography, DSP, and communications. XC3S5000-5 with the optimized software implementationniog
While there is considerable uncertainty about the costabfang on Pentium 4 Xeon, with a 2.8 GHz clock. Our analysis shows tha

a 1024 bit RSA number, it might be interesting to project asuits the high performance FPGA device outperforms the same gtoer

to such an effort. The SHARK device proposed by Franke et. ahicroprocessor by a factor of about 11, but looses its adgent



when the cost of both devices is taken into account. On theroth19] C. Mclvor, M. McLoone, J. McCanny, A. Daly and W. Marnarféast

hand, the low-cost FPGA device Spartan 3 achieves aboutdzn of MO?]tgomefy MOdU'gf rl:/lultiplicgtion andschA ny{?togfapchift?eessor

; ; : Architectures,Proc. 37th IEEE Computer iety Asilomar Conference
_magmtude advantage over the same generation Pentium éqsr_nc on Signals, Systems and Computers, Monterey, USA. pp. 379-384, Nov.
in terms of both performance and the performance to cogt.rati 2003,

All of the described results have been reached under thengégun  [20] P.L. Montgomery, Modular multiplication without tiad division, Math-
that only CLB slices and Block RAMs are used in computations. ematics of Computation, vol. 44, pp. 519-521, 1985.
Future work will include the comprehensive analysis of iefioe [21] P.L. Montgomery, Speeding the Pollard and elliptic veumethods of

- . factorization, Mathematics of Computation, vol. 48, pp. 243-264, 1987.
of embedded multipliers and DSP units on the results of ECMZ] P.L. Montgomery, An FFT extension of the elliptic curmeethod of

implementations using both low-cost and high-performaRB&As. factorization, Ph.D. Thesis, UCLA, 1992.
Additionally, the choice of optimum hardware architectirge.g. [23] G. de Meulenaer, F. Gosset, G.M. de Dormale, J.-J. Qaisq, Integer
iterative [11] vs. fully pipelined [23]), best matching aksources FaCtO{'éat'O”fBasegIOT_'E"cljpﬂC &%?I’:VAe lethltécll_::ET%ds_ BEEXEI%:?-
H : _ . 10N Of Recontigurable Harawar nnu 0SIlum on Flela-
available in modern FPGAs and standard-cell ASICs will behfer Progr le Custom Computing Machines, FCCM 2007, pp.197-206,
investigated. 23-25 April 2007.
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