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Abstract— A novel portable hardware architecture of the Elliptic Cur ve
Method of factoring, designed and optimized for application in the
relation collection step of the Number Field Sieve, is described and
analyzed. A comparison with an earlier proof-of-concept design by
Pelzl, Šimka, et al. has been performed, and a substantial improvement
has been demonstrated in terms of both the execution time andthe
area-time product. The ECM architecture has been ported across five
different families of FPGA devices in order to select the family with
the best performance to cost ratio. A timing comparison withthe highly
optimized software implementation, GMP-ECM, has been performed.
Our results indicate that low-cost families of FPGAs, such as Spartan-3
and Spartan-3E, offer at least an order of magnitude improvement over
the same generation of microprocessors in terms of the performance
to cost ratio, without the use of embedded FPGA resources, such as
embedded multipliers.

Index Terms— Cipher-breaking, factoring, ECM, FPGA, NFS

I. I NTRODUCTION

The fastest known method for factoring large integers is the
Number Field Sieve (NFS), invented by Pollard in 1991 [17], [25].
It has since been improved substantially and developed fromits
initial “special” form (which was only used to factor numbers close
to perfect powers, such as Fermat numbers) to a general purpose
factoring algorithm.

Using the Number Field Sieve, an RSA modulus of 663 bits was
successfully factored by Bahr, Boehm, Franke and Kleinjungin May
2005 [8]. The cost of implementing the Number Field Sieve and
the time it takes for such an implementation to factor ab-bit RSA
modulus, provide an upper bound on the security ofb-bit RSA.

In order to factor a big integerN such as an RSA modulus,
NFS requires the factorization of a large number of moderately sized
integers created during run time, perhaps of size 200 bits [13], [17],
[24]. Such numbers can be quickly factored and a smoothness test
applied. However, because an estimated1010 such factorizations
may be necessary for NFS to succeed in factoring a 1024 bit
RSA modulus, it is of crucial importance to perform these auxiliary
factorizations as fast and efficiently as possible.
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We therefore review existing algorithms which can be used to
factor medium-size numbers. Most practically useful algorithms are
probabilistic (Monte-Carlo) methods. There is no guarantee that a
probabilistic algorithm will terminate successfully, butthe probability
of a successful outcome is large enough that the expected time
needed to factor a given number is considerably lower than that of
any deterministic algorithm. In particular, all known deterministic
factoring methods have exponential asymptotic run time. Inpractice,
they are at best used to remove the smallest prime factors from the
number to be factored.

Trial division by at most a few hundred small primes may be
considered as a first step in factoring random numbers. Whilethere
are asymptotically faster deterministic methods, in practice these are
surpassed by simple probabilistic methods.

Three other probabilistic factoring methods are also of exponential
run time, but with a much smaller overhead than the sub-exponential
algorithms, so that within a certain range they are efficientfactoring
tools. These are Pollard’sp − 1 method, the similarp + 1 method
due to Williams, and Pollard’sρ-method (see for example [5] for a
general introduction to elementary factoring algorithms).

Finally, the Elliptic Curve Method (ECM), which is the main
subject of this paper, is a sub-exponential factoring algorithm, with
expected run time ofO(exp(c

√
log p log log p) M(N)) wherec > 0,

p is a factor we aim to find, andM(N) denotes the cost of
multiplication (mod N). ECM is the best method to perform the
kind of factorizations needed by NFS, for integers in the 200-bit
range, with prime factors of up to about 40 bits [10], [13].

The use of above mentioned smoothness tests has been consid-
ered in the context of the quadratic sieve (see 4.15 in [18]),the
number field sieve [6], [14], and special purpose factoring hardware
(TWIRL [13], or NFS in hardware [2]). Bernstein [3] has pointed
out potentially large performance improvements possible from using a
combination of these techniques with “early aborts” of lesspromising
candidates.

The contribution of this paper is an implementation in hardware
(FPGAs) of the elliptic curve method of integer factoring, originally
proposed by H.W. Lenstra [16] in 1987. We describe in detail
how to optimize the design and compare our work both to an
earlier hardware implementation [24], [27], as well as state-of-the-art
software implementation, GMP-ECM [9], [31].

II. ELLIPTIC CURVE METHOD

Let K be a field with characteristic different from2 and 3. For
example,K = Zq with a prime q > 3, which is a set of integers
{0, 1, . . . , q − 1} with addition and multiplication (mod q). An
elliptic curve E over K is defined as a set of points(X, Y ) ∈ K2



satisfying

Y 2 = X3 + AX + B, (1)

whereA, B ∈ K, 4A3 + 27B2 6= 0, together with a special point
called “the point at infinity” and denotedO. Two points P =
(xP , yP ) and Q = (xQ, yQ) can be added together to give a third
point R = P +Q = (xR, yR), wherexR = f1(xP , yP , xQ, yQ) and
yR = f2(xP , yP , xQ, yQ) for someK-rational functionsf1 andf2.
The point at infinity,O, is an identity element of this operation, i.e.,
P + O = P = O + P . Points of the curveE (including the point at
infinity) together with aforementioned addition form a group, which
is denoted byE(K). The representation of elliptic curve points using
two coordinatesP = (xP , yP ) is called the affine representation.

In order to increase the computational efficiency of point addition,
one may prefer the representation ofE in homogeneous (projective)
coordinates ofE,

Y 2Z = X3 + AXZ2 + BZ3. (2)

With this change,(X, Y, Z) with Z 6= 0 represents(X
Z

, Y
Z

) in affine
coordinates. IfZ = 0, then we have the point at infinityO which is
represented by(0, 1, 0) in projective coordinates.

Montgomery [21] studied elliptic curves of the form,E : by2 =
x3+ax2+x, which allows a more efficient implementation of elliptic
curve operations in software and hardware. This form is obtained
by the change of variables,X = 3x+a

3b
, Y = y

b
, A = 3−a2

3b2
, B =

2a3−9a

27b3
, from Eq. (1). The corresponding expression in projective

coordinates is

E : by2z = x3 + ax2z + xz2, (3)

with b(a2 − 4) 6= 0. Using the above form of elliptic curves,
Montgomery derived an addition formula forP and Q which does
not need anyy-coordinate information, assuming that the difference
P − Q is already known. The choice of parametersa and b for the
given above curve can be simplified using Suyama’s parametrization,
which expressesa, b, and the coordinates(x, y, z) of a point on the
curveP , as a function of a single parameterσ, as described in detail
in [31].

Let N be a composite integer we want to factor. The ECM Method
[4], [21], [31] considers elliptic curves in Montgomery form (3), and
involves elliptic curve operations(mod N), where the elements in
Z are reduced (mod N). SinceN is not a prime,E over ZN is
not really an elliptic curve but we can still do point additions and
doublings as ifZN was a field.

A. ECM Algorithm

The Elliptic Curve Method (ECM) was originally proposed by
Lenstra [16] and subsequently extended by Brent [4] and Mont-
gomery [21]. The original part of the algorithm proposed by Lenstra
is typically referred to as Phase 1 (or Stage 1), and the extension by
Brent and Montgomery is called Phase 2 (or Stage 2). The pseudo
code of both phases is given below as Algorithm (1). Recall that an
integer is calledB-smooth (or simply smooth if the value ofB is
implicit) if it has no prime divisors exceedingB.

Let q be an unknown factor ofN . For any pointP0 belonging to
the curveE, we have|E(Zq)|P0 = O, where|E(Zq)| is the order of
the curveE, i.e., the number of points on the curveE with operations
performed (mod q). This order might be a smooth number, and we
have a good chance of finding an integerk ∈ Z (by multiplying
many small primes) so thatk = l · |E(Zq)| for somel. Therefore
kP0 = l · |E(Zq)|P0 = O. Thus, zkP0

≡ 0 (mod q), and the
unknown factor ofN , q, can be recovered by takinggcd(zkP0

, N).

Montgomery [21], [22] and Brent [4] independently suggested a
continuation of Phase 1 if one haskP0 6= O. Their ideas utilize that
fact that even if one hasQ0 = kP0 6= O, the value ofk might
miss just one large prime divisorp of |E(Zq)|. In that case, one only
needs to compute the scalar multiplication byp to getpQ0 = O. A
second boundB2 restricts the size of possible values ofp.

Let M(N) be the cost of one multiplication(mod N). Then
Phase 1 of ECM finds a factorq of N with the conjectured time
complexity [16]O(exp((

√
2+o(1))

√
log q log log q)M(N)). Phase

2 speeds up Lenstra’s original method by the factorlog q which is
absorbed in theo(1) term of the complexity, but is significant for
small and medium size factorsq.

Example: We want to factorN = 40586929, usingB1 = 20 and
B2 = 50. Suyama’s parametrization withσ = 6 gives us the point
P0 = (29791 : 48335 : 13824) on the curveE = 3150302y2z =
x3 + 3371272x2z + xz2 (mod N). The product of maximal prime
powers belowB1 = 20 is k = 24·32·5·7·11·13·17·19 = 232792560.
In Phase 1, we computeQ0 = kP0 = (xQ0 :: zQ0) = (3177782 ::
33732517) but do not succeed in recovering any factors fromN
since gcd(zQ0 , N) = 1 (= gcd(xQ0 , N)). (It can be shown that
yQ0 = 37451505, but the implementation described in Algorithm 3
does not compute they-coordinates at all). In Phase 2 we compute
pQ0 = (xpQ0 :: zpQ0) for all large primesp in the rangeB0 =
20 < p ≤ B1 = 50, i.e., p ∈ {23, 29, 31, 37, 41, 43, 47}, and set
d =

Q

B0<p≤B1
zpQ0 mod N. We find d = 20600066, and the

Euclidean algorithm reveals a factorq′ = gcd(d, N) = 8887. With
q′′ = N/q′ = 4567 we have found a factorizationN = 8887 · 4567,
with both factors easily shown to be prime.

In this simple setting we can have a glance at what happens inside
the algorithm. Reducing the curveE and the pointP0 modulo the
two factorsq′ = 8887 and q′′ = 4567 we get two elliptic curves
E′ = 4304y2z = x3 + 3099x2z + xz2 and E′′ = 3639y2z =
x3 +826x2z+xz2 with pointsP ′

0 = (3130 : 550 : 4937) andP ′′
0 =

(2389 : 666 : 123) on them. Schoof’s algorithm can be used to show
that the number of points on these curves is|E′/Fq′ | = 8928 and
|E′′/Fq′′ | = 4572, where8928 = 25 ·32 ·31 and4572 = 22 ·32 ·127.
Here we see the divisor 12 of the group orders due to the fact the
Suyama curves have a torsion subgroup of order 12. Moreover,an
explicit calculation shows thato′ = ord[P ′

0 : E′] = 1116 = 22 ·32 ·31
ando′′ = ord[P ′′

0 : E′′] = 762 = 2 · 3 · 127. (As an aside, this again
reveals the orders ofE′ andE′′ because the only multiple ofo′ in
the Hasse interval[q′ +1−2⌊√q′⌋, q′ +1+2⌊√q′⌋] = [8699, 9076]
is 8o′ = 8928, and the same argument works forE′′.) From the
definition of k, we see thatQ0 = kP0 is of order31 over E′ and
of order 127 over E′′. In both cases, the order ofQ0 is prime, but
because31 < B2 < 127, for p = 31 in Phase 2 we find31Q0 = OE′

overE′, while pQ0 6= OE′′ for all p < B2 overE′′. Thusq′, but not
q′′ shows up as a factor ind and we are able to recover the divisor
8887 = gcd(N, d) in Phase 2.

B. Operations on an Elliptic Curve

The hierarchy of major operations used in the ECM algorithm is
shown in Figure 1. Scalar multiplication,kP , is the basic elliptic
curve operation used in ECM.

An efficient algorithm for computing scalar multiplicationwas pro-
posed by Montgomery [21] in 1987, and is known as the Montgomery
ladder algorithm. This algorithm is especially useful whenan elliptic
curve is expressed in Montgomery form (see Eq. (3)), in projective
coordinates. In this case, all intermediate computations can be carried
on using onlyx andz coordinates, and they-coordinate of the result
can be retrieved, except for the sign, from thex and z coordinates
of the final point. In the ECM method, they-coordinate of the result
is not needed, so this final computation is unnecessary.



Algorithm 1 ECM Algorithm
Require: N : composite number to be factored,E: elliptic curve,P0 = (x0, y0, z0) ∈ E(ZN ): initial point, B1: smoothness bound for Phase 1,B2:

smoothness bound for Phase 2,B2 > B1.

Ensure: q: factor of N, 1 < q ≤ N , or FAIL.
Phase 1.

1: k ←
Q

p≤B1
p⌊logp B1⌋

2: Q0 ← kP0

{Q0 = (xQ0
, yQ0

, zQ0
)}

3: q ← gcd(zQ0
, N)

4: if q > 1 then

5: return q

6: else

7: go to Phase 2

8: end if

Phase 2.

9: d← 1

10: for each primep = B1 to B2 do

11: (xpQ0
, ypQ0

, zpQ0
)← pQ0.

12: d← d · zpQ0
(mod N)

13: end for

14: q ← gcd(d, N)

15: if q > 1 then

16: return q

17: else

18: return FAIL

19: end if

ECM

k·P

P+Q 2P

x·y mod p x+y mod p x-y mod p

Level 3

Level 2

Point

addition

Level 1

Moduar

multiplication

Modular

addition

Modular

subtraction

Scalar multiplication

Point

doubling

Elliptic curve

point operations

Modular arithmetic

(ring operations)

Level 4

Fig. 1. Hierarchy of Elliptic Curve Method Operations

Algorithm 2 Montgomery Ladder Algorithm
Require: P0 = (x0 : : z0) on E with x0 6= 0, an s-bit positive integer

k = (ks−1ks−2 · · · k1k0)2 with ks−1 = 1

Ensure: kP0 = (xkP0
:: zkP0

)

1: Q← P0, P ← 2P0

2: for i = s− 2 downto0 do

3: if ki = 1 then

4: Q← P + Q, P ← 2P

5: else

6: Q← 2Q, P ← P + Q

7: end if

8: end for

9: returnQ

As a result, we denote the starting pointP0 by (x0 :: z0),
intermediate pointsP , Q, by (xP :: zP ), (xQ :: zQ), and the final
point kP0 by (xkP0

:: zkP0
). The pseudo code of the Montgomery

ladder algorithm is shown as Algorithm 2, and its basic step is defined
in detail as Algorithm 3. The algorithm is constructed in such a way
that the difference between the intermediate pointsP andQ, P −Q,
is always constant, and equal to the value of the initial point P0.
Therefore,xP−Q and zP−Q in the formulas in Algorithm 3 can be
replaced byx0 andz0, respectively.

Algorithm 3 Addition and Doubling using Montgomery’s Form of
Elliptic Curve
Require: P = (xP :: zP ), Q = (xQ :: zQ) with xP xQ(xP − xQ) 6= 0,

P0 = (x0 :: z0) = (xP−Q :: zP−Q) = P − Q, a24 = a+2
4

, where

a is a parameter of the curveE in Eq. (3)

Ensure: P + Q = (xP+Q :: zP+Q), 2P = (x2P :: z2P )

1: xP+Q ← zP−Q[(xP − zP )(xQ + zQ) + (xP + zP )(xQ − zQ)]2

2: zP+Q ← xP−Q[(xP − zP )(xQ + zQ) − (xP + zP )(xQ − zQ)]2

3: 4xP zP ← (xP + zP )2 − (xP − zP )2

4: x2P ← (xP + zP )2(xP − zP )2

5: z2P ← (4xP zP )
`

(xP − zP )2 + a24 · (4xP zP )
´

A careful analysis of the formulas in Algorithm 3 indicates that
point additionP +Q requires 6 multiplications, and point doubling 5
multiplications. Therefore, a total of 11 multiplicationsare required in
each step of the Montgomery ladder algorithm. In Phase 1 of ECM,
the initial point, P0, can be chosen arbitrarily. Choosingz0 = 1
implieszP−Q = 1 throughout the entire algorithm, and thus reduces
the total number of multiplications from 11 to 10 per one stepof the
algorithm, independent of thei-th bit ki of k. This optimization is
not possible in Phase 2, where the initial pointQ0 is the result of
computations in Phase 1, and thus cannot be chosen arbitrarily.

C. Montgomery Multiplication

Let N > 0 be an odd integer. In many cryptosystems such
as RSA, computingXY (mod N) is a crucial operation. Taking
the reduction ofXY (mod N) is a more time consuming step
than the multiplicationXY without reduction. Montgomery [20]
introduced a method for calculating products(mod N) without the
costly reduction (mod N), known as Montgomery multiplication.
Montgomery multiplication ofX and Y , MP (X, Y, N), is defined
asXY 2−n (mod N) for some fixed integern.

Since Montgomery multiplication is not an ordinary multiplication,
there is a process of conversion between the ordinary domain(with
ordinary multiplication) and the Montgomery domain.

Despite the initial conversion cost, if we do many Montgomery
multiplications followed by an inverse conversion from theMont-



gomery domain back to the ordinary domain, as in RSA, we obtain an
advantage over ordinary multiplication. In fact, in the ECMmethod,
the inverse conversion is not necessary becausegcd(X ′, N) =
gcd(X2n (mod N), N) = gcd(X, N) for an arbitraryX, and odd
N .

Algorithm 4 Radix-2 Montgomery Multiplication

Require: N, n = ⌊log2 N⌋ + 2, X =
Pn−1

j=0 Xj2
j , Y =

Pn−1
j=0 Yj2

j

with 0 ≤ X, Y < 2N

Ensure: Z = MP (X, Y, N) = XY 2−n (mod N) < 2N

1: S[0]← 0

2: for i = 0 to n− 1 do

3: qi ← S[i] + XiY0 (mod 2)

4: S[i + 1]← (S[i] + XiY + qiN) div 2

5: end for

6: returnS[n]

Algorithm 4 uses an improvement over Montgomery’s original
method which avoids the need for an additional conditional sub-
traction at the end, see [30] and [1]. This improvement was first
developed with the goal of avoiding the side-channel risks inherent in
conditional statements, but it also improves performance in hardware
which makes it beneficial in our context. Algorithm 4 shows the
pseudo code for radix-2 Montgomery multiplication where wechoose
n = ⌊log2 N⌋ + 2. It should be mentioned that ourn is slightly
different from⌊log2 N⌋+1 which Montgomery [20] originally used.
This modified algorithm makes all the inputs and output in the
same range, i.e.,0 ≤ X, Y, S[n] < 2N . Therefore it is possible to
implement Algorithm 4 repeatedly without any reduction unlike the
original algorithm [20], where one has to take reduction(mod N)
at the end of the algorithm to make the output value in the same
range as the input values.

D. Implementation of Phase 2

Phase 1 computes one scalar multiplicationkP0, and the imple-
mentation issues are relatively easy compared to Phase 2. For Phase
2, we follow the basic idea of the standard continuation [21]and
modify it appropriately for efficient FPGA implementation.Choose
0 < D < B2, and let every primep, B1 < p ≤ B2, be expressed in
the form

p = mD ± j (4)

wherem changes betweenMMIN = ⌊(B1 + D
2
)/D⌋ to MMAX =

⌈(B2 − D
2
)/D⌉, and j varies between 1 and⌊D

2
⌋. The condition

that p is prime implies thatgcd(j, D) = 1. Thus, possible values
of j form a setJS = {j : 1 ≤ j ≤ ⌊D

2
⌋, gcd(j, D) = 1}, of the

size of φ(D)/2, and possible values ofm form a setMT = {m :
MMIN ≤ m ≤ MMAX}, of the sizeMN = MMAX −MMIN +1,
whereMN is approximately equal toB2−B1

D
. Then, the condition

pQ0 = O, implies (mD ± j)Q0 = O, and thusmDQ0 = ±jQ0.
Writing mDQ0 = (xmDQ0 :: zmDQ0) and jQ0 = (xjQ0 ::

zjQ0), the conditionmDQ0 = ±jQ0 ∈ E(Zq) is satisfied if
and only if xmDQ0zjQ0 − xjQ0zmDQ0 ≡ 0 (mod q). Therefore
existence of such pairm and j implies that one can find a factor of
N by computinggcd (d, N) > 0, where

d =
Y

m,j

(xmDQ0zjQ0 − xjQ0zmDQ0). (5)

In order to speed up these computations, one precomputes oneof
the setsS = {jQ0 : j ∈ JS} or T = {mDQ0 : m ∈ MT }.

D = 30 = 2·3·5 D = 210 = 2·3·5·7

j
mD

j
mD

4

1869

24

267

1    7    11    13 1 103
5

271

32

1900

7476 bits

6408 bits

1

1

4531 of 1’s

61% of 1’s

4361 of 1’s

65% of 1’s

prime_table

prime_table

1 if p = m·D - j is prime or p = m·D + j is prime

0 otherwise

B1 = 960 B2 = 57,000

Fig. 2. Dimensions of primetable and the number of 1’s in this table for
D = 30 andD = 210

Typically, the first of these sets,S, is smaller, and thus only this set
is precomputed. One then computes the productd in the Eq. (5) for a
current value ofmDQ0, and all precomputed pointsjQ0, for which
either mD + j or mD − j is prime. For each pair,(m, j), where
j ∈ JS andm ∈ MT , we can precompute a bit table:

prime table[m, j]

=



1 ⇔ mD + j or mD − j is prime
0 ⇔ else.

This table can be reused for multiple iterations of Phase 2 with the
same values ofB1 andB2, and is of the size ofMN · φ(D)/2 bits.
Similarly, we can precompute a bit table:

GCD table[j] =



1 ⇔ j ∈ JS

0 ⇔ else.

This table will haveD/2 bits for oddD and D/4 for evenD (no
need to reserve bits for even values ofj). The exact pseudocode of
the algorithm used in our implementation of Phase 2, for the case of
evenD, is given in Algorithm 5. Values ofD = 30 = 2 · 3 · 5 and
D = 210 = 2 ·3 ·5 ·7 are the two most natural choices forD as they
minimize the size of setsJS andS. As a result, they minimize the
amount of memory storage and computations required for Phase 2. In
Figure 2, we show the dimensions of primetable and the number of
1’s in this table for these choices ofD. The total size of primetable
in bits determines the memory requirements of the implementation,
while the number of 1’s in the table affects the computation time of
Phase 2.

E. Choice of B1, B2 and D

The subexponential time complexity O(exp((
√

2 +
o(1))

√
log q log log q)M(N)) of ECM is achieved by choosing the

theoretical boundB1 ≈ e
√

1
2

log q log log q [16], where log is the
natural logarithm. However the precise value ofo(1) term is difficult
to estimate. The choice of the boundB1 is closely related with the
Dickman-de Brujin functionρ(u) [22], which gives the probability
that a randomly chosen integerX is X

1
u -smooth. As with the

case ofB1, an optimal boundB2 is related with certain numerical
integrations involving Dickman-de Brujin type functions.However,
it seems that predicting precise values of theoretical optimal bounds,
B1 and B2, is rather difficult. Instead, one usually determinesB1

first (which is more or less close toe
√

1
2

log q log log q) and setsB2

between50B1 and100B1 depending on the computational resources
for Phase 2. For example,Šimka et al. [27] chooseB1 = 960 and
B2 = 57000 to find a 40-bit prime divisor of200-bit integers. By



Algorithm 5 Standard Continuation Algorithm of Phase 2
Require: N : number to be factored,E: elliptic curve,Q0 = kP0: initial point for Phase 2 calculated as a result of Phase 1,B1: smoothness bound

for Phase 1,B2: smoothness bound for Phase 2,B2 > B1, D: parameter determining a trade-off between the computation time and the amount

of memory required;D is assumed even in this version of the algorithm.

Ensure: q: factor of N , 1 < q ≤ N or FAIL
Precomputations:

1: MMIN ← ⌊(B1 + D
2

)/D⌋

2: MMAX ← ⌈(B2 −
D
2

)/D⌉

3: clear GCDtable, clearJS

4: for eachj = 1 to D
2

step 2do

5: if gcd(j, D) = 1 then

6: GCD table[j] = 1

7: add j to JS

8: end if

9: end for

10: clear primetable

11: for eachm = MMIN to MMAX do

12: for eachj = 1 to D
2

step 2do

13: if (mD + j or mD − j is prime) then

14: prime table[m, j] = 1

15: end if

16: end for

17: end for

18: Q← Q0

19: for j = 1 to D
2

step 2do

20: if GCD table[j] = 1 then

21: storeQ in S

{Q = jQ0 = (xjQ0
: : zjQ0

)}

22: end if

23: Q← Q + 2Q0

24: end for

Main computations:

25: d← 1, Q← DQ0, R←MMIN Q

26: for eachm = MMIN to MMAX do

27: for eachj ∈ JS do

28: if prime table[m, j] = 1 then

29: retrievejQ0 from tableS

30: d← d · (xRzjQ0
− xjQ0

zR)

{R = (xR : : zR)}

31: end if

32: end for

33: R← R + Q

34: end for

35: q ← gcd(d, N)

36: if q > 1 then

37: return q

38: else

39: return FAIL

40: end if

settingq = 241, we havee
√

1
2

log q log log q ≈ 988 which is close to
960. The ratioB2/B1 in [27] is 57000/960 ≈ 59. In general, the
larger values ofB1 and B2 increase the probability of success in
Phase 1 and Phase 2 respectively (and thus decrease the expected
number of curves), but at the same time, increase the execution time
per curve of these phases.

A theoretical analysis of the optimal parameter choices is given in
[26], with a view towards software implementations. The techniques
developed there - which use Dickman’s function to estimate the prob-
ability of success of the Elliptic Curve Method - can be adapted to a
hardware setting and make it possible to determine optimal parameter
choices via numerical approximations to Dickman’s function. While
our choices are not strictly optimal, they are fairly good and allow
for direct comparison witȟSimka et al. [24], [27].

In Phase 2, one needs at mostD point additions for the computa-
tion of the setS and at mostB2/D additions for the tableT . Thus
the time complexity of finding tables ofS andT is O(D + B2/D).
By choosing D ≈

√
B2, one minimizesD + B2/D ≈

√
B2.

Also one may chooseD in such a way that it has many prime
factors so that the size of the setS can be further reduced. However
in memory constrained hardware devices, choosingD ≈

√
B2 is

not always possible because the tableS (or at least one ofS and
T ) should be precomputed and needs to be saved. For hardware
purposes, one may chooseD sufficiently small such asD = 30
or 210 and use the precomputed tableS. The largerD, the larger

the amount of Precomputations in Algorithm 5, but the smaller MN ,
and thus the smaller number of iterations of the outer loop during
Main computations in Algorithm 5.

III. ECM A RCHITECTURE

A. Top-level view: ECM units

Our ECM system consists of multiple ECM units working inde-
pendently in parallel, as shown in Figure 3. Each unit performs the
entire ECM algorithm for one numberN, one curveE and one initial
point P0. All units share the same global control unit and the same
global memory. All components of the system are located on the
same integrated circuit, either an FPGA or an ASIC, depending on
the choice of an implementation technology. The exact number of
ECM units per integrated circuit depends on the amount of resources
available in the given integrated circuit. Multiple integrated circuits
may work independently in parallel, on factoring a single number, or
factoring different numbers. All integrated circuits are connected to
a central host computer, which distributes tasks among the individual
ECM systems, and collects and interprets results.

The operation of the system starts by loading all parameters
required for Phase 1 of ECM from the host computer to the global
memory on the chip. These parameters include:

1) The number to be factored,N , the coordinates of the starting
point P0, and the parametera24 which depends on the coeffi-
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Fig. 3. Block diagram of the top-level unit. Notation: MEM-memory;
M1, M2-multipliers 1 and 2; A/S-adder/subtractor.

cient a of the curveE - all of which can be different for each
ECM unit.

2) Integerk, used as an input in the ECM Phase 1 (see Algo-
rithm 1), its sizekN , and the parametern = ⌊log2 NMAX⌋+2,
related to the size of the largestN, NMAX , processed by the
ECM units - all of which are common for all ECM units.

The contents of the global memory after initialization for Phase 1
is shown in Figure 4a.

Next, N , the coordinates ofP0, and the parametersa24 and n
are loaded to the local memories of their respective ECM units. The
operation of these units is started. All units operate synchronously, on
different data sets, performing all intermediate calculations exactly at
the same time.

The results of these calculations are coordinatesxQ0 and zQ0 of
the ending pointQ0 = kP0, separate for each ECM unit. These
coordinates are downloaded to the host computer, which performs
the final calculation of Phase 1,qi = gcd(zQ0 , N). If qi = 1, no
factor was found by a given ECM unit. Ifqi > 1 andqi 6= N , then
a non-trivial factor ofN , qi, was found. Ifqi is equal toN for all
ECM units working on the sameN , then the computations of Phase
1 need to be repeated for a smaller value of the boundB1.

If no factor ofN was found, the ECM system is ready for Phase 2.
The values ofN , parameters of the curvesa24, and the coordinates
of the pointsQ0 obtained as a result of Phase 1 are already in the
local memories of each ECM unit. The host computer calculates and
downloads to the global memory of the ECM system the following
parameters dependent onB2 andD: MMIN , MN , GCD table, and
prime table, as defined in Section II-D.

The contents of the global memory after initialization for Phase
2 is shown in Figure 4b. Note that the previous contents of the
global memory used for Phase 1 can be overwritten because the
inputs to Phase 1 are either no longer needed(P0, k), or have been
already loaded to the local memories(N, a24). Phase 2 is then
started simultaneously on all ECM units, and produces as final results,
the accumulated productsd (see Eq. (5)). These final results are
then download to the host computer, where the final calculations
gcd(d, N) are performed.

Note that with this top level organization, there is no need to
compute greatest common divisors or divisions in hardware.The
overhead associated with the transfer of data between the ECM
system and the host computer, and the time of computations in
software are both typically insignificant compared to the time used
for ECM computations in hardware, even in the case of a relatively
slow interface and/or a slow microprocessor. Additionally, software
and hardware computations can be done in parallel.
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Fig. 5. Implementation of a basic step of the Montgomery ladder algorithm.
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Fig. 6. Utilization of resources as a function of time duringthe execution
of Phase 1.

B. Medium-level View: Operations of the ECM Unit

1) Medium-level operations: The primary operation constituting
Phase 1 of ECM is a scalar multiplicationQ0 = kP0. As discussed
in Section II-B, this operation can be efficiently implemented in
projective coordinates using Algorithm 2.

The two branches of the if statement in Algorithm 2 can be
calculated using exactly the same sequence of instructions, with a
conditional swap of input and output variables, as shown in Figure 5.

In Phase 1, one coordinate ofP0 can be chosen arbitrarily, and
therefore the computations can be simplified by selectingzP0 =
zP−Q = 1. The remaining computations necessary to simultaneously
computeP + Q and 2P can be interleaved, and assigned to three
functional units working in parallel, as shown in Table I. The entire
step of a scalar multiplication, including both point addition and
doubling can be calculated in the amount of time required for2
modular additions/subtractions and 5 modular multiplications. Note
that because the time of an addition/subtraction is much shorter than
the time of a multiplication, two sequential additions/subtractions can
be calculated in parallel with two multiplications. As a result, as
shown in Figure 6, we obtain over 90% utilization of the area×
time space, which is crucial from the point of view of minimizing
the area× time product.

The storage used for temporary variablesa1, . . . , a4, s1, . . . , s4,
and m1, . . . , m10 can be reused whenever any intermediate values
are no longer needed. With the appropriate optimization, the amount
of local memory required for Phase 1 has been reduced to 11 256-bit
operands, i.e., 88 32-bit words. The remaining portion of this memory
is used in Phase 2 of ECM.
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TABLE I
ONE STEP OF A SCALAR MULTIPLICATION, INCLUDING THE CONCURRENT OPERATIONSP + Q AND 2P , FOR THE CASE OFzP−Q = 1.

NOTATION: A: OPERATION USED FOR ADDITION ONLY, D: OPERATION USED FOR DOUBLING ONLY, A/D: OPERATION USED FOR ADDITION AND

DOUBLING.
Adder/Subtractor Multiplier 1 Multiplier 2

A/D:
a1 = xP + zP

s1 = xP − zP

A/D:
a2 = xQ + zQ

s2 = xQ − zQ
D: m1 = s2

1 D: m2 = a2
1

D: s3 = m2 − m1 A: m3 = s1 · a2 A: m4 = s2 · a1

A:
a3 = m3 + m4

s4 = m3 − m4
D: x2P = m5 = m1 · m2 D: m6 = s3 · a24

D: a4 = m1 + m6 A: xP+Q = m7 = a2
3 A: m8 = s2

4

A: zP+Q = m9 = m8 · xP−Q D: z2P = m10 = s3 · a4

In Phase 2, the initial computation

D · Q0 and MMIN · (D · Q0) (6)

can be performed using a similar algorithm to the one used in Phase
1. The only difference is that now,P − Q = Q0, cannot be chosen
arbitrarily, and thus,zP−Q = zQ0 6= 1 in general. As a result, the
computations will take the amount of time required for 2 modular
additions/subtractions and 6 modular multiplications, asshown in
Table II.

The second type of operation required in Phase 2 is a simple point
additionP + Q. This operation can be performed using the time of
6 additions/subtractions and 3 modular multiplications, as shown in
Table III.

Finally, the last medium level operation required in Phase 2is the
accumulation of the productd as defined in Eq. (5). We can rewrite
the expression ford as

d ≡
Y

i,n

din ≡
Y

i,n

(xnzi − xizn) (mod N) (7)

where

(xi, zi) ∈ {(x, z) : (x, z) = jQ0}, (8)

(xn, zn) ∈ {(x, z) : (x, z) = mDQ0} (9)

and GCD table[j]=1 and prime table[m, j]=1. The repetitive se-
quence of such operations is shown in Table IV.

TABLE IV
ACCUMULATION OF THE PARTIAL RESULTS

Q

i,n

(xnzi − xizn)

(mod N) IN PHASE 2 (FOR FIXEDn AND MOVING i)

Adder/Subtractor Multiplier 1 Multiplier 2
m1 = xn · z0 m2 = x0 · zn

d0n = m1 − m2 m3 = xn · z1 m4 = x1 · zn

d1n = m3 − m4 d = d · d0n m1 = xn · z2

d = d · d1n m2 = x2 · zn

d2n = m1 − m2 m3 = xn · z3 m4 = x3 · zn

d3n = m3 − m4 d = d · d2n m1 = xn · z4

d = d · d3n m2 = x4 · zn

· · · · · · · · · · · · · · · · · ·

As can be seen from Table IV, after the initial delay of one
multiplication, the time required to compute and accumulate any two
subsequent values ofdin is equal to the time of three multiplications.

2) Instructions of the ECM unit: Each ECM unit is composed of
two modular multipliers, one adder/subtractor, and one local memory.
The local memory is 512 32-bit words in size, equivalent to 64256-
bit registers. The contents of the local memory during the execution
of Phase 1 and Phase 2 are shown in Figures 4c and 4d, respectively.
In Phase 1, only 11 out of 64 256-bit registers are in use. In Phase
2, with D = 210 the entire memory is occupied.

Every ECM unit forms a simple processor with its own instruction
set. Since all ECM units execute exactly the same instructions at
the same time, the instructions are stored in the global instruction
memory, and are interpreted using the global control unit, as shown
in Figure 3.



TABLE II
ONE STEP OF A SCALAR MULTIPLICATION, INCLUDING THE CONCURRENT OPERATIONSP + Q AND 2P , FOR THE CASE OFzP−Q 6= 1.

NOTATION: A: OPERATION USED FOR ADDITION ONLY, D: OPERATION USED FOR DOUBLING ONLY, A/D: OPERATION USED FOR ADDITION AND

DOUBLING.
Adder/Subtractor Multiplier 1 Multiplier 2

A/D:
a1 = xP + zP

s1 = xP − zP

A/D:
a2 = xQ + zQ

s2 = xQ − zQ
D: m1 = s2

1 D: m2 = a2
1

D: s3 = m2 − m1 A: m3 = s1 · a2 A: m4 = s2 · a1

A:
a3 = m3 + m4

s4 = m3 − m4
D: x2P = m5 = m1 · m2 D: m6 = s3 · a24

D: a4 = m1 + m6 A: m7 = a2
3 A: m8 = s2

4

A: zP+Q = m9 = m8 · xP−Q D: z2P = m10 = s3 · a4

A: xP+Q = m11 = m7 · zP−Q

TABLE III
ADDITION OF POINTSP + Q

Adder/Subtractor Multiplier 1 Multiplier 2
a1 = xP + zP

s1 = xP − zP

a2 = xQ + zQ

s2 = xQ − zQ

m3 = s1 · a2 m4 = s2 · a1

a3 = m3 + m4

s3 = m3 − m4

m7 = a2
3 m8 = s2

4

zP+Q = m10 = m8 · xP−Q xP+Q = m11 = m7 · zP−Q

C. Low-level View: Modular multiplication and addition/subtraction

The three low level operations implemented by the ECM unit
are Montgomery modular multiplication (defined in Section II-C),
modular addition, and modular subtraction. Modular addition and
subtraction are very similar to each other, and as a result they are
implemented using one functional unit, adder/subtractor.

In order to simplify our Montgomery multiplier, all operations are
performed on inputsX, Y in the range0 ≤ X, Y < 2N , and return
an outputS in the same range,0 ≤ S < 2N . This is equivalent to
computing all intermediate results modulo2N instead ofN , which
increases the size of all intermediate values by one bit, butshortens
the time of computations, and leads to exactly the same final results
as operations (mod N). The algorithms for modular addition and
subtraction are shown as Algorithms 6 and 7 respectively. Inboth
algorithms,S is a result variable,T is a temporary variable, andC1,
C2 are two carry bits.

Algorithm 6 Modular addition
Require: N, X, Y < 2N , all expressed usinge 32-bit words,

X(j), Y (j), N(j), j = 0, . . . , e− 1

Ensure: Z = X + Y mod 2N

1: for j = 0 to e− 1 do

2: (C1, T (j))← C1 + X(j) + Y (j)

3: end for

4: for j = 0 to e− 1 do

5: (C2, S(j))← C2 + T (j) − (2N)(j)

6: end for

7: if S < 0 then

8: returnT

9: else

10: returnS

11: end if

The block diagram of the adder/subtractor unit implementing both

Algorithm 7 Modular Subtraction
Require: N , X, Y < 2N , all expressed usinge 32-bit words

X(j), Y (j), N(j), j = 0, . . . , e− 1

X(j), Y (j), N(j), j = 0, . . . , e− 1

Ensure: Z = X − Y mod 2N

1: for j = 0 to e− 1 do

2: (C2, S(j))← C2 + X(j) − Y (j)

3: end for

4: for j = 0 to e− 1 do

5: (C1, T (j))← C1 + S(j) + (2N)(j)

6: end for

7: if S < 0 then

8: returnT

9: else

10: returnS

11: end if

algorithms is shown in Figure 7. The modulusN is loaded to the
adder/subtractor, using inputX N , one time, during the initialization
stage of Phase 1, and does not need to be changed until the nextrun of
Phase 1 for another numberN . This modulus is stored in the internal
32×32-bit memory, used to hold three numbersN , S, andT , all up
to 256 bits wide. The 32-bit words of operandsX andY are loaded
in parallel, starting from the least significant word, and immediately
added or subtracted, depending on the value of the control input
sub add (with sub add = 1 denoting subtraction). The result is stored
in the internal memory as variableT for addition i.e.X + Y , and
S for subtraction i.e.X − Y . This first operation is followed by the
second operation of the respective algorithm, involving the previously
computed value and the modulus2N computed on the fly, with the
result stored back to the memory. Finally, depending on the sign
of S, stored in the flip-flopC2, eitherT or S is returned as a final
result. For 256-bit operands, the entire operation takes 41clock cycles
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(including writing data back to local RAM), the same amount for
addition and subtraction.

The radix-2 version of the Montgomery Multiplication algorithm,
which calculates the Montgomery product ofX andY is specified as
Algorithm 4 in Section II-C. This algorithm assumes that allwords of
the inputsX, Y , andM , are already available inside of the multiplier,
and can be accessed at the same time. The second instruction inside of
the for loop involves the addition of three long words. If implemented
directly in hardware the operation would result in a long critical path
and a very low clock frequency. In order to prevent that, thisaddition
is performed using carry save adders, and the resultS[i+1] is stored
in the carry save form. Using carry save adders, the sum of three
numbersU , V , W is reduced to the sum of two numbersS (sum)
and C (carry), such thatU + V + W = C + S. Similarly, using a
cascade of two carry save adders, as shown in Figure 8b, the sum
of four numbers,U , V , W , and Y can be reduced to the sum of
two numbersS andC, such thatU + V + W + Y = C + S. Each
carry save adder is composed of a row ofn Full Adders working in
parallel, so it introduces a delay of just a single Full Adder(i.e., a
delay of a single stage of a basic ripple-carry adder).

Algorithm 8 Radix-2 Montgomery Multiplication with Carry Save
Addition
Require: N, n = ⌊log2 N⌋ + 2, X =

Pn−1
j=0 Xj2j , Y =

Pn−1
j=0 Yj2j

with 0 ≤ X, Y < 2N
Ensure: Z = MP (X, Y, N) = X · Y · 2−n (mod N) < 2N ;

Z(j),C[n](j), S[n](j) denote aj-th word of Z, C[n] and S[n]
respectively.

1: S[0]← 0
2: C[0]← 0
3: for i = 0 to n− 1 do
4: qi ← (C[i]0 + S[i]0 + Xi · Y0) (mod 2)
5: (C[i + 1], S[i + 1])← CSA(C[i], S[i], Xi · Y, qi ·N) div 2
6: end for
7: C = 0
8: for j = 0 to 7 do
9: (C, Z(j))← C[n](j) + S[n](j) + C

10: returnZ(j)

11: end for

The modified algorithm, based on carry save addition (CSA) is
shown as Algorithm 8. This algorithm has been described earlier
in [19]. The block diagram of the circuit implementing Algorithm
8 is shown in Figure 8a. The modulusN and the parametern are

loaded in to the multiplier once at the beginning of Phase 1, and do
not need to be changed until the beginning of Phase 1 for another
numberN . At the beginning of multiplication, the inputsX andY are
first loaded in parallel, in 32-bit words, to internal 256-bit registers
X and Y . In the following n clock cycles, the circuit executesn
iterations of the for loop. Finally, in the last 8 clock cycles, the final
result is computed word by word, starting from the least significant
word, and transferred to the output. The total execution time of a
single Montgomery multiplication is equal ton + 16 clock cycles.
For a typical use within ECM,n is greater than100, and thus one
addition followed by one subtraction can easily execute in an amount
of time significantly smaller than the time of a single Montgomery
multiplication.

IV. I MPLEMENTATION RESULTS

Our ECM system has been developed entirely in RTL-level VHDL,
and written in a way that provides portability among multiple families
of FPGA devices and standard-cell ASIC libraries. In the case of
FPGAs, the code has been synthesized using Synplicity Synplify Pro
v. 8.0, and implemented on FPGAs using Xilinx ISE v. 6.3, 7.1 and
8.1. Five different families of FPGA devices have been targeted,
including the high-performance families, Virtex E, VirtexII, and
Virtex 4, as well as low-cost families, such as Spartan 3 and Spartan
3E. The entire design has been thoroughly verified using testvectors
generated by a special test program written in C and by comparison
with the results of GMP-ECM [9], [31].

In Table V, we summarize the memory requirements of our ECM
hardware architecture. The local memory represents memorylocated
within each ECM unit, with a memory map shown in Figure 4cd. In
Phase 1, only 11 256-bit registers are required, taking a total of 88
memory words, and thus a 128x32 bit memory is sufficient to hold all
inputs, outputs, and temporary values. In Phase 2, the same registers
are required, and an additional precomputed tableS of points of the
form jQ0, where 1 ≤ j ≤ ⌊D/2⌋, and gcd(j, D) = 1. Clearly,
the size of this table depends onD, and as a result the total size of
the local memory is equal to 256x32 forD = 30 and 512x32 for
D = 210. In the modern families of FPGA devices, such as Spartan
3 and Virtex II, the smallest size of BRAM (Block RAM) that can
be allocated to a local memory is 512x32, and smaller memories can
be implemented only using distributed RAMs available within CLB
slices. Thus, one BRAM is sufficient to hold local memory for both
Phase 1 and 2. In the older families of Xilinx FPGAs, such as Virtex,
the size of a single Block RAM is equal to 4 kbits, which translates
to the memory of the size 256x16 bits or 512x8 bits. As a result, a
larger number of BRAMs is required to implement local memoryfor
Phases 1 and 2, as shown in the last but one column of Table V.

Global memory is the memory used by the global control unit,
and its map is shown in Figure 4ab. The size of this memory in
Phase 1 is determined primarily by the number of ECM units. In
Phase 2, this memory can be completely overwritten by new values.
It is worth noting that the size of its main component, primetable,
is almost independent of the value ofD, as shown in Figure 2.
For 6 ECM units per each control unit, memory requirements in
Phase 1 and Phase 2 match, and amount to 256 32-bit words, or one
BRAM in modern families of FPGAs. The size of global memory has
been minimized by the use of bit tables, GCDtable and primetable,
defined in Section 2.5.

The execution times of Phase 1 and Phase 2 in the ECM hardware
architecture are shown in Table VI. The generic formulas formajor
component operations are provided, together with the estimated
values of the execution times for the case of198-bit numbersN ,
and the smoothness boundsB1 = 960 and B2 = 57000. The
estimated values are compared with the accurate values obtained from
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TABLE V
AMOUNT OF MEMORY REQUIRED BY THEECM HARDWARE ARCHITECTURE(FOR THE NUMBER OF BITS OFN , n < 254)

# BRAMs # BRAMs
# 32-bit in in

Objects # objects words # # Memory Virtex Spartan 3
per of words of bits size (256 × 16 &

objects or Virtex 2
512 x 8) (512 × 32)

Local memory - Phase 1
Registers 11 8 88 2816 128 x 32 1 1

Local memory - Phase 1 & 2,D = 30

Registers 11 8 88 2816

jQ0 4 16 64 2048

DQ0, mDQ0 2 16 32 1024

184 5888 256 x 32 2 1
Local memory - Phase 1 & 2,D = 210

Registers 11 8 88 2816

jQ0 24 16 384 12288

DQ0, mDQ0 2 16 32 1024

504 16128 512 x 32 4 1

Global memory - Phase 1 (6 ECM units, B1 = 960)
ECM unit 6 × 4 8 192 6144
init values

kN 1 1 1 32

k 1 43 43 1376

236 7552 256 x 32 2 1
Global memory, Phase 2 (D = 30)

GCD table 1 1 1 32

Mmin, MN 2 1 2 64

prime table 1 234 234 7488

237 7584 256 x 32 2 1
Global memory, Phase 2 (D = 210)

GCD table 1 2 2 64

Mmin, MN 2 1 2 64

prime table 1 201 201 6432

205 6560 256 x 32 2 1



TABLE VI
EXECUTION TIME OF PHASE 1 AND PHASE 2 IN THE ECM HARDWARE ARCHITECTURE FOR198-BIT NUMBERSN, B1 = 960 (WHICH IMPLIES

NUMBER OF BITS OFk, kN = 1375), B2 = 57000, AND D = 30 OR D = 210

Operation Notation Formula # clk # clk
cycles cycles

D = 30 D = 210

Elementary operations
Modular addition TA 41

Montgomery TM TM = n + 16 216
multiplication

Point addition and TAD1 TAD1 = 5TM + 2TA + 50 1212
doubling (Phase 1)

Point addition and TAD2 TAD2 = 6TM + 2TA + 50 1428
doubling (Phase 2)

Point addition (Phase 2) TADD2 TADD2 = 3TM + 6TA + 30 924

Phase 1
Phase 1 (estimation) TP1 est TP1 ≈ kN · TAD1 1,666,500
Phase 1 (simulation) TP1 sim 1,713,576

Phase 2
Precalculating TjQ TjQ ≈ 2TAD2 7476 49,056

jQ0 +(⌊D/4⌋ − 2)TADD2 (0.19%) (2.56%)

DQ0 TDQ TDQ ≈ ⌈log2(D + 1)⌉TAD2 7140 11,424
(0.18%) (0.60%)

MMIN DQ0 TMminDQ TMminDQ ≈ 8568 4284
⌈log2(MMIN + 1)⌉TAD2 (0.22%) (0.22%)

Calculating mDQ0 for TmDQ TmDQ ≈ (MN − 2)TADD2 1,725,108 244,860
MMIN < m ≤ MMAX (44.29%) (12.78%)

Number of ones nprime table 4531 4361
in the prime table

Calculating Td Td ≈ ⌈1.5 · nprime table⌉(TM + 12) 1,789,883 1,525,886
accumulated product d +MN (TM + TA)/2 (45.95%) (79.67%)

Phase 2 (estimation) TP2 est TP2 ≈ TjQ + TDQ + TMminDQ 3,538,175 1,835,510
+TmDQ + Td (90.84%) (95.84%)

Phase 2 (simulation) TP2 sim 3,895,013 1,915,219
(100%) (100%)

TABLE VII
EXECUTION TIME OF PHASE 1 AND PHASE 2 USING SRC 6 RECONFIGURABLECOMPUTER HOLDING9 ECM UNITS FOR198-BIT NUMBERS N ;

B1 = 960 (WHICH IMPLIES NUMBER OF BITS OFk; kN = 1375), B2 = 57000, AND D = 210

Phase 1 Phase 2 Phases 1 & 2
One-time pre-computations

Pre-computations by the microprocessor (common to all integers to be factored) 2,249µs

Generation of 9 integers to be factored
Generation of numbers to be factored 7,902µs

ECM computations for one set of 9 integers to be factored
Pre-computations by the microprocessor (specific to a givenset of integers to be factored) 1,368µs 0 µs 1,368µs

Transfer of data-in (from the microprocessor memory to the on-board-memory of the FPGA-based
processor 51 µs 0 µs 51 µs

Calculations performed by the FPGA-based processor 17,136µs 19,152µs 36,289µs

Transfer of data-out (from the on-board-memory of the FPGA-based processor to the microprocessor
memory) 19 µs 19 µs 19 µs

Function call overhead (overhead associated with the transfer of control between the microprocessor
and the FPGA)

252 µs 252 µs 252 µs

Post-computations by the microprocessor (final GCD computation) 81 µs 81 µs 81 µs

Total end-to-end execution time 18,907µs 19,504µs 38,060µs

Percentage of the total end-to-end execution time
Pre-computations and postcomputations by the microprocessor 8.03% 0.51% 3.99%

Function call and data transfer overheads 1.33% 1.29% 0.66%

FPGA board computations 90.63% 98.20% 95.35%



TABLE VIII
COMPARISON WITH THE DESIGN BYPELZL , ŠIMKA , ET AL ., BOTH IMPLEMENTED USINGV IRTEX 2000E-6

Part 1: Execution Time

Pelzl, Šimka, et al. Our design Ratio
Pelzl, Šimka / ours

# clk cycles Time # clk cycles Time # clk cycles Time
Clock period 26.3ns 18.5ns

Modular addition 16 0.62µs 41 0.78 µs 0.6 0.8

Modular subtraction 24 0.42µs 41 0.78 µs 0.4 0.5

Montgomery 796 20.7µs 216 4.1 µs 3.7 5.0
multiplication

Point addition & 8200 213.2µs 1212 23.0 µs 6.8 9.3
doubling (Phase 1)

Phase 1 11,266,800 292.9ms 1,713,576 31.7ms 6.6 9.3

Point addition & 8998 233.9µs 1428 27.1 µs 5.6 8.6
doubling (Phase 2)

Point addition 4920 127.9µs 924 17.6 µs 4.8 7.3
(Phase 2)

Calculation and 4776 124.2µs 648 12.3 µs 6.2 10.1
accumulation of

two values ofdin

(Phase 2)

Phase 2 (D = 30) 20,276,060 527.2ms 3,895,013 72.1ms 5.2 7.4

Phase 2 (D = 210) - - 1,915,219 35.5ms 10.6 15.0

Part 2: Resource usage per one ECM unit

Pelzl, Šimka, et al. Our design Ratio
(D = 210) Ours / Pelzl, Šimka

Number of # % # %

CLB slices N/A 6.0 3102 16 2.7
LUTs 1754 4.5 4933 13 2.8

FFs 506 1.25 3129 8 6.2

BRAMs 44 27 2 1.25 0.045
Maximum 3 7

number of ECM (limited by BRAMs) (limited by CLB slices) 2.33
units per chip

TABLE IX
RESULTS OF THEFPGA IMPLEMENTATIONS: RESOURCES AND TIMING FOR THE MAXIMUM NUMBER OFECM UNITS PERFPGADEVICE. EXECUTION

TIME OF PHASE 1 AND PHASE 2 FOR 198-BIT NUMBERS N , B1 = 960, B2 = 57, 000, D = 210

Results Virtex Virtex II Spartan 3 Spartan 3E Virtex 4
XCV2000E-6 XC2V6000-6 XC3S5000-5 XC3S1600E-5 XC4VLX200-ll

Max # of ECM units 7 13 13 5 24
- CLB slices 18,756 (94%) 33,790 (99%) 32,278 (99%) 13,915 (94%) 63,220 (70%)

- LUTs 28,976 (73%) 53,970 (79%) 53,880 (80%) 21,703 (71%) 98,332 (55%)
- FFs 19,270 (50%) 35,146 (52%) 35,141 (52%) 14,092 (47%) 65,052 (36%)

- BRAMs 32/160 14/144 14/104 6/36 26/336
Technology 0.15/0.12µm 0.15/0.12µm 90 nm 90 nm 90 nm

Cost of an FPGA devicea $1230 $2700 $130 $35 $3000
Max clock frequency 48 MHz 120 MHz 80 MHz 96 MHz 104 MHz
Max clock frequency 54 MHz 123 MHz 100 MHz 98 MHz 135 MHz
for single ECM unit

Time for Phase 1 and 2 75.5 ms 30.2 ms 45.3 ms 37.7 ms 35.19ms

# of ECM 93 ECM 430 ECM 287 ECM 133 ECM 682 ECM
computations/s operations/s operations/s operations/s operations/s operations/s

# of ECM 8 ECM 16 ECM 221 ECM 380 ECM 22 ECM
computations/s operations/s operations/s operations/s operations/s operations/s

per $100 per $100 per $100 per $100 per $100 per $100

acost per unit for a batch of 10,000+ devices as of Nov. 2006



TABLE X
COMPARISON OF THE EXECUTION TIME BETWEEN2.8 GHZ XEON PENTIUM 4 (W/512KB CACHE) AND TWO TYPES OFFPGADEVICESV IRTEX

II XC2V6000-6AND SPARTAN 3 XC3S5000-5 (198-BIT NUMBER N, B1 = 960, B2 = 57000, D = 210, MAXIMUM NUMBER OF ECM UNITS

PERFPGADEVICE)

Virtex II Spartan 3 Pentium 4 Pentium 4
XC2V6000-6 XC3S5000-5 (testing program) (GMP-ECM)

Clock frequency 120 MHz 80 MHz 2.8 GHz
No. of parallel ECM computations 13 13 1

Time of Phase 1 14.2 ms 21.3 ms 18.3 ms 11.3 ms

Time of Phase 2 15.9 ms 24 ms 18.6 ms 13.5 ms

Time of Phase 1 & Phase 2 30.2 ms 45.3 ms 36.9 ms 24.8 ms

# of Phase 1 computations per second 915 610 55 89
# of Phase 2 computations per second 818 542 54 74

# of Phase 1 & 2 computations per second 430 287 27 40

TABLE XI
RESULTS OF THEASIC IMPLEMENTATIONS USING SYNOPSYS90 nm GENERICL IBRARY FOR TEACHING IC DESIGN

Number of ECM units 1 2 5 10 13 20 24
Clk frequency in MHz 350 333 325 300 275 250 225

Area in mm
2 1.119 1.691 2.900 5.156 6.483 9.762 11.474

Area in gate equivalents 202,733 305,875 524,536 932,403 1,172,505 1,765,422 2,074,976

simulation. The difference is less than 10%, and can be attributed to
the time needed for control operations and data movements within
local memories, and between global memory and local memories.
Two values of the parameterD are considered for Phase 2,D = 30
and D = 210. The table proves that the choice of the parameter
D = 210, reduces the execution time of Phase 2 in our architecture
by a factor of two compared to the case ofD = 30. As confirmed
by exhaustive search, the choice ofD = 210 results in the smallest
possible execution time for Phase 2 for the given values of the
smoothness boundsB1 = 960 andB2 = 57000, assuming execution
times of basic operations given in Table VI. ForD = 210, the largest
contribution to Phase 2, around 80%, comes from the calculation of
the accumulated productd.

In order to estimate the overhead associated with the transfer of
control and data between a microprocessor and an FPGA, an ECM
system with 9 ECM units has been ported to the reconfigurable
computer SRC 6 from SRC Computers [28], based on 2.8 GHz Xeon
microprocessors and Xilinx Virtex II XC2V6000-4 FPGAs running
at a fixed clock frequency of 100 MHz. The execution times for all
phases of the ECM computations performed using this reconfigurable
computer are summarized in Table VII. The data transfer and function
call overheads have been experimentally measured to be lessthan 1%
for the combined Phase 1 and Phase 2 computations. The precom-
putations and postcomputations by the microprocessor amounted to
about 4% of the total execution time of the combined Phases 1 and
2, and their overhead can be practically eliminated by overlapping
computations in the FPGA and the microprocessor.

In Table VIII, we compare our ECM architecture to an earlier
design by Pelzl,Šimka, et al., presented at SHARCS 2005, and
described in subsequent publications [24], [27]. Every possible effort
was made to make this comparison as fair as possible. In particular,
we use an identical FPGA device, Virtex 2000E-6. We also do not
take into account any limitations imposed by an external microcon-
troller used in the Pelzl/Šimka architecture. Instead, we assume that
the system could be redesigned to include an on-chip controller, and
it would operate with the maximum possible speed reported bythe
authors for their ALUs [24], [27], i.e., 38 MHz (clock period=
26.3ns). We also ignore a substantial input/output overhead reported
by the authors, and caused, most likely, by the use of an external
microcontroller.

In spite of these equalizing measures, our design outperforms the
design by Pelzl,Šimka, et al. by a factor of9.3 in terms of the
execution time for Phase 1, by a factor of7.4 in terms of the execution
time for Phase 2 with the same value of parameterD, and by a
factor of 15.0 for Phase 2 with the increased value ofD = 210,
not reported by Pelzl/Šimka. The main improvements in Phase 1
come from the more efficient design for a Montgomery multiplier
(a factor of 5 improvement) and from the use of two Montgomery
multipliers working in parallel (a factor of 1.9 improvement). An
additional smaller factor is the ability of an adder/subtractor to work
in parallel with both multipliers, as well as the higher clock frequency.

One might expect that such improvement in speed comes at the
cost of substantial sacrifices in terms of the circuit area and cost.
In fact, our architecture is bigger, but only by a factor of2.7 in
terms of the number of CLB slices. Additionally, the design reported
in [24], [27] has a number of ECM units per FPGA device limited
not by the number of CLB slices, but by the number of internal
on-chip block RAMs (BRAMs). If this constraint was not removed,
our design would outperform the design by Pelzl/Šimka in terms
of the amount of computations per Xilinx Virtex 2000E deviceby
a factor of 9.3 · 2.33 ≈ 22 for Phase 1 and 35 for Phase 2. If
the memory constraint is removed, the product of time by areastill
improves compared to the design by Pelzl andŠimka by a factor of
9.3/2.7 ≈ 3.4 for Phase 1 and 5.6 for Phase 2.

In Table IX, we show the results of porting our design to five
families of Xilinx FPGAs. For each family, a representativedevice is
selected and used in our implementations. For each ECM device, we
determine the exact amount of resources needed for a factoring circuit
with one ECM unit, the maximum number of ECM units per chip, the
maximum clock frequency, and then the maximum number of ECM
computations (Phase 1 and Phase 2) per unit of time. Finally,we
normalize the performance by dividing it by the cost of a respective
FPGA device. From the last row in the table one can see that the
low-cost FPGA devices from the Spartan 3 and Spartan3E device
families outperform the high-performance devices, such asVirtex II
and Virtex 4 by a factor of about13.8 and 14.1 respectively, and
thus are more suitable for cost effective code breaking computations.

Thus, assuming that only CLB slices and block RAMs are used
for computations, low-cost FPGAs, such as Spartan and Spartan
3E are more cost-effective for the implementation of ECM. The



situation substantially changes when embedded FPGA multipliers are
employed for the implementation of the most time consuming opera-
tion of ECM, Montgomery modular multiplication. These multipliers
are present in both low-cost and high-performance FPGA devices,
but their number and the maximum clock frequency is greater for
high-performance FPGAs. In [23], [12], preliminary results for two
alternative designs based on the use of embedded multipliers in Virtex
4 SX FPGAs are presented. In both papers, only the implementation
of Phase 1 of ECM is reported. Both papers demonstrate a potential
for a substantial improvement in terms of the throughput andthe
throughput to cost ratio based on the use of embedded multipliers.
However, neither paper attempts to quantify the differencebetween
the performance of high-end FPGAs and low-cost FPGAs under the
new assumption that all embedded multipliers can be employed in
ECM computations for both kinds of FPGAs. In order to answer
this question, a comprehensive analysis would need to be performed,
and the effect of a novel pipelined hardware architecture employed
in [23], would need to be separated from the effect of employing
embedded multipliers. This analysis is beyond the scope of this paper,
and is proposed as an interesting future study.

In Table X, we compare the execution time of Phase 1 and Phase 2
between the two representative FPGA devices and a highly optimized
software implementation (GMP-ECM) running on Pentium 4 Xeon,
2.8 GHz. GMP-ECM is one of the most powerful software imple-
mentations of ECM and contains multiple optimization techniques
for both Phase 1 and Phase 2 [9], [31]. Additionally, we run our
own test program in C that mimics almost exactly the behaviorof
hardware, except for using calls to the multiprecision GMP library for
all low level operations, such as modular multiplication and addition.
One can see that the algorithmic optimizations used in GMP-ECM
matter, and reduce the overall execution time for Phase 1 from 18.3
ms to 11.3 ms (38%), and Phase 2 from 18.6 ms to 13.5 ms (27%).

Interestingly, the execution time for an ECM unit running onVirtex
II, 6000E is only slightly greater than the execution time ofGMP-
ECM on a Pentium 4 Xeon. At the same time, since this FPGA
device can hold up to 13 ECM units, its overall performance isabout
11 times higher for combined Phase 1 and Phase 2 computations.
However, the current generation of high-end FPGA devices cost about
10 times as much as comparable microprocessors. Therefore,the
advantage of Virtex II over Pentium 4 disappears when cost istaken
into account. In order to get an advantage in terms of the performance
to cost ratio, one must use a low-cost FPGA family, such as Xilinx
Spartan 3. In this case, the ratio of the amount of computations per
chip is about7 in favor of the biggest Spartan 3. Additionally this
device is actually cheaper than the state-of-the-art microprocessor, so
the overall improvement in terms of the performance to cost ratio
exceeds a factor of 10.

Further gains in terms of absolute performance and cost-
effectiveness of the hardware implementation of ECM can be reached
by employing standard-cell ASIC technology. In order to estimate this
effect, we have ported our VHDL code to Synopsys 90nm Generic
Library for Teaching IC Design [29]. Synopsys Design Compiler v.
A-2007.12-SP4 was used for synthesis and static timing analysis. The
results of our implementation are summarized in Table XI. The gain
in terms of the clock frequency by a factor of3.44 was demonstrated,
for a circuit composed of 13 ECM units, when compared to Spartan 3,
implemented using similar90 nm technology. This gain is consistent
with the ASIC to FPGA speed gains reported earlier in [15] fora
representative set of digital system benchmarks, representing areas of
cryptography, DSP, and communications.

While there is considerable uncertainty about the cost of factoring
a 1024 bit RSA number, it might be interesting to project our results
to such an effort. The SHARK device proposed by Franke et. al.

[10] was designed to complete the sieving for the factorization of
a 1024 bit RSA integer in one year at a cost of $200 million (in
2005). SHARK uses 2300 identical machines built with conventional
ASICs and a special transport system for communication. Like the
ECM architecture proposed here, it uses technologies available today.
In one year, SHARK produces1.7 · 1014 sieving reports which need
to be processed by a factoring device such as the one proposedhere
for smoothness testing and to obtain a complete factorization.

Two of the FPGA families shown in Table IX, Virtex 4 and Spartan
3E, can perform 682, respectively 133 ECM operations per second,
or 2.15 · 1010, respectively4.19 · 109 such operation per year. If
we perform 20 ECM operations on each sieving report, we need
about 158,086 Virtex 4 FPGAs, or 810,626 Spartan 3Es to process
the 1.7 · 1014 sieving reports generated by SHARK in one year. The
price for those is about $492 million, respectively $29 million.

Thus, combining the results of SHARK with our architecture,we
estimate the total cost for the relation collection step to be $229
million to finish in one year, using the most cost efficient FPGA
technology (Spartan 3E). In case ASICs are used for implementing
ECM, the product of area by time can be reduced by a factor of over
100, as shown for a representative suite of basic data processing units
in [15]. In this case, the cost of the ECM part (around $290k plus
about $1 million of non-recurring costs associated with preparing
ASIC masks) would become an almost insignificant fraction ofthe
cost required for the sieving step of NFS.

V. CONCLUSIONS ANDFUTURE WORK

A novel hardware architecture for the Elliptic Curve Methodof
factoring has been proposed. The main differences as compared to an
earlier design by Pelzl,̌Simka, et al. [24], [27] include the following

a) The use of an on-chip optimized controller for Phase 1 and
Phase 2 (in place of an external controller based on an ARM
processor)

b) Substantially smaller memory requirements, an optimized ar-
chitecture for the Montgomery multiplier

c) The use of two (instead of one) multipliers,
d) The ability of all arithmetic units (two multipliers and one

adder/subtractor) to work in parallel.

When implemented on the same Virtex 2000E-6 device, our architec-
ture has demonstrated a speed-up by a factor of 9.3 for ECM Phase 1
and 15.0 for ECM Phase 2, compared to the design by Pelzl/Šimka,
et al. At the same time, memory requirements have been reduced by
a factor of 22, and the requirements for CLB slices have increased
by a factor of 2.7. If the same optimizations regarding the memory
usage and the use of an internal controller were applied to the design
by Pelzl/̌Simka, our architecture would still retain an advantage in
terms of the performance to cost ratio by a factor of 3.4 for Phase 1
and 5.6 for Phase 2.

Our architecture has been implemented targeting four additional
families of FPGA devices, including high-performance families
(Virtex II and Virtex 4), as well as low-cost families (Spartan 3
and Spartan 3E). Our analysis revealed that within the two recent
generations of FPGA families (older: Spartan3, Virtex II; and the
more recent: Spartan 3E, Virtex 4), the low-cost devices outperform
the high-performance devices in terms of performance to cost by a
factor of≈ 14.

We have also compared the performance of our hardware archi-
tecture implemented using Virtex II XC2V6000-6 and Spartan3
XC3S5000-5 with the optimized software implementation running
on Pentium 4 Xeon, with a 2.8 GHz clock. Our analysis shows that
the high performance FPGA device outperforms the same generation
microprocessor by a factor of about 11, but looses its advantage



when the cost of both devices is taken into account. On the other
hand, the low-cost FPGA device Spartan 3 achieves about an order of
magnitude advantage over the same generation Pentium 4 processor
in terms of both performance and the performance to cost ratio.

All of the described results have been reached under the assumption
that only CLB slices and Block RAMs are used in computations.
Future work will include the comprehensive analysis of influence
of embedded multipliers and DSP units on the results of ECM
implementations using both low-cost and high-performanceFPGAs.
Additionally, the choice of optimum hardware architectures (e.g.
iterative [11] vs. fully pipelined [23]), best matching allresources
available in modern FPGAs and standard-cell ASICs will be further
investigated.
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