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Abstract

In this paper, we present results of the comprehensive study devoted to the op-
timization of FPGA implementations of SHA-2 and five SHA-3 finalists using em-
bedded FPGA resources, such as Digital Signal Processing (DSP) units and Block
Memories. Our methodology involves implementing, characterizing, and compar-
ing all algorithms with a focus on minimizing the amount of reconfigurable logic
resources, and achieving a better balance between the use of reconfigurable and
embedded resources. All designs are implemented using four FPGA families, rep-
resenting major low-cost and high-performance families of Xilinx and Altera.

1 INTRODUCTION

Practically all FPGA vendors incorporate in modern FPGAs, apart from basic recon-
figurable logic resources, also embedded resources, such as large memory blocks, DSP
units, microprocessors, etc. Improved hardware performance and good balance in terms
of the overall FPGA utilization can be achieved with the use of these embedded elements
for multiple applications, such communications, digital signal processing, and scientific
computing.

Cryptographic algorithms have been demonstrated in the past to take advantage of
these resources as well. For example, the fastest to date FPGA implementation of the
Montgomery multiplication, a major building block of public key cryptographic algo-
rithms, such as RSA, have been demonstrated using DSP units in Virtex 5 FPGAs [1].
Advanced Encryption Standard, a major secret key cryptosystem used for bulk data en-
cryption, has been sped up first by using Block Memories of Xilinx and Altera FPGAs
[2], and then by using a combination of DSP units and Block RAMs in Virtex 5 FPGAs
[3, 4].

In this paper we focus on the use of embedded resources in efficient implementations
of five Round 3 SHA-3 candidates. Hardware performance evaluation plays a major role
in the evaluation cycle of these hash functions because it provides a clear and objective
measure that can be used to rank all candidates, especially in the absence of security
weaknesses, which are much harder to identify in a relatively short period devoted to
analysis.

Major results generated by multiple groups for FPGA implementations of 14 Round
2 candidates are summarized in [7, 8, 9]. The detailed review of these implementations
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reveals that very few of them take advantage of DSP units or Block Memories of modern
FPGAs. One of the reasons for this approach is the difficulty in optimizing such imple-
mentations in terms of the throughput to area ratio, as area is not easy to define (or
measure) when multiple resources are used.

We believe that our study is the first one in the literature that looks comprehensively
at utilizing embedded resources in a large class of hash functions, including all 5 Round
3 SHA-3 candidates.

2 DESIGN ENVIRONMENT AND METHODOLOGY

All investigated hash functions have been modeled in VHDL-93. Xilinx ISE Design Suite
v.12.3 and Altera Quartus II v.10.0 were used for synthesis and implementation of all
designs. A benchmarking tool, called ATHENa, was used to collect results for each hash
function [10, 11].

Similarly to earlier papers [7, 8, 9], we use Throughput (Mbits/sec) as our major
speed metrics. We use the resource utilization vector to indicate the resource utilization
of each SHA-3 candidate, as shown in Table 1.

Our primary optimization target is the improvement of the ratio: throughput over
the amount of reconfigurable logic resources. We define the amount of reconfigurable
logic resources as the number of Configurable Logic Block slices (#CLB slices) for Xilinx
FPGAs, as the number of Logic Elements (#LEs) for low-cost Altera families, and as the
number of Adaptive Look-Up Tables for high-performance Altera families (#ALUTs).
Our secondary optimization targets are the improvement in throughput, and the reduc-
tion in the amount of reconfigurable logic resources.

Table 1. Resource Utilization Vectors.

Vendor Family Resource Utilization Vector

Xilinx Spartan 3
(#CLB slices, #BRAMs,

#multipliers)

Virtex 5
(#CLB slices, #BRAMs,

#DSP48s)

Altera
Cyclone

II
(#LEs, #BRAMs, #multipliers)

Stratix
III

(#CLB slices, #BRAMs,
#DSP 18s)

3 OVERVIEW OF AVAILABLE EMBEDDED RESOURCES

3.1 DSP Units and multipliers

Xilinx Virtex 5 FPGAs include DSP48E units. Each unit has a two-input multiplier
followed by multiplexers and a three-input adder/subtractor/accumulator. The unit can
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be configured as a 25x18 multiplier and/or 48-bit adder with up to three inputs. The
third input of an adder can be used only when multiple DSP units are cascaded and an
adder output of one DSP unit is connected to an adder input of an adjacent DSP unit.

The DSP unit of the Stratix III FPGAs consists of 8 DSP 18 units, each with its own
18x18-bit multiplier. Two neighboring DSP 18 units share a 37-bit adder. The outputs
of two 37-bit adders can be furher combined using the following adder-accumulator.

Xilinx Spartan 3 and Altera Cyclone II contain only embedded multipliers. Spartan
3 devices support 18x18 signed multiplication. Cyclone II devices support 9x9 and 18x18
multiplication for signed and unsigned numbers.

3.2 Block Memory

The Block Memory (BRAM) in Spartan 3 FPGAs has a size of 18 kbits, including parity
bits. Word size is configurable in the range from 1 to 36 bits. The maximum word size is
used in the configuration 512 x 36 bits. The block memory (BRAM) in Virtex 5 FPGAs
can store up to 36 kbits of data. It supports two independent 18 kbit blocks (with the
word size up to 18 bits), or a single 36 kbit memory block (with the word size up to 36
bits).

Altera devices have different capacity of basic embedded memory blocks. The low-
cost Cyclone II family is based on 4 kbit blocks. The high-performance Stratix III family
is less homogenous. It consists of two types of memory blocks - 9 kbits and 144 kbits.
All block memories have single-port and dual-port modes, and can be used to implement
any operations that can be expressed in terms of table look-ups.

4 CATEGORIES

In Table 2, we present a list of internal operations of 5 Round 3 SHA-3 candidates (256-
bit variants), suitable for implementing using embedded resources of modern FPGAs.
The SHA-3 candidates can be divided into the following three categories based on the
potential use of embedded resources.

A. Functions using DSP Units
B. Functions using DSP Units and Block Memories
C. Functions using Block Memories.

Skein is the only algorithm that uses 64-bit addition. BLAKE includes 32-bit additions
and large ROMs used to implement the message expansion tables. JH and Keccak use
Block Memories to store round constants.

For the Advanced Encryption Standard (AES) based algorithm, Groestl, two archi-
tectures were investigated: first based on S-boxes and the second based on T-boxes [2].
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Table 2. Internal operations of 5 Round 3 SHA-3 candidates (256-bit variants),
suitable for implementing using embedded resources of modern FPGAs. Notation:
mADDn - multi-operand addition with n operands, ADD 32-bit addition with two

operands, ADD-64, 64-bit addition with two operands.

Hash
Function

Tables of
Constants

MUL mADDn ADD

DSP Units
Skein ADD-64

DSP Units and Block Memories

BLAKE
Message Expansion

Tables
mADD3 ADD

SHA-2 Round Constants mADD6 ADD
Block Memories

Groestl AES S-box or T-box
JH Round Constants

Keccak Round Constants

5 IMPLEMENTATION DETAILS OF SELECTED FUNCTIONS FROM
EACH CATEGORY

5.1 Functions using DSP Units

5.1.1 Skein

Skein performs 64-bit addition in the main iterative loop of the algorithm. In Xilinx
Virtex 5, each 64-bit addition is performed by utilizing two cascaded DSP48E units be-
cause one DSP adder can add only two operands of the size up to 48 bits. Two adjacent
DSP-based adders are cascaded by connecting the carry output of one adder to the carry
input of the adjacent adder. In Altera Stratix 3, 64-bit addition is performed by using
mega plugin wizard in order to instantiate 64-bit input DSP adder.

5.2 Functions using DSP Units and Block Memories

5.2.1 BLAKE

G-Functions in BLAKE constitute the main iterative task of the algorithm. In the basic
implementation [9], these G-Functions are implemented as combinational logic. Each
of these G-Functions has two 32-bit, 2-operand additions and two 32-bit additions with
three operands. All these additions were implemented using DSP adders for the embed-
ded version of the design.

In the embedded design, the permute block was implemented using block memory.
In this design, SIPO (Serial-in-Parallel-out Unit) from [9] was removed and instead, the
message block gets directly stored into block memory. Two memory banks were used
to allow simultaneous loading of the next message block while the first block is being
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processed. To implement the whole PERMUTE operation, two 16x256 memory block
along with a 28x256 ROM to store constants was required.

5.2.2 SHA-2

Current standard SHA-2 [14] was implemented according the architecture described by
Chaves et al. [12]. This architecture is the best known architecture in terms of the
throughput/area ratio. SHA-2 round constants were implemented for both 256 and 512
bits version by 64x32 and 80x64 ROM respectively. All additions in the SHA-2 round
function were transferred to DSP blocks.

Moreover we decided to use message scheduler architecture proposed in [13] in order
to utilize DSP capabilities.

5.3 Functions using Block Memories

5.3.1 Groestl

For Groestl, which has AES-based round, we have implemented two versions: first, based
on S- boxes, and the second, based on T-boxes [2,3,4].

Each round in Advanced Encryption Standard (AES) has four basic operations: Sub-
Bytes, ShiftRows, MixColumns, and AddRoundKey. The SubBytes operation is equiva-
lent to an 8x8 substitution box (S-box). It can be implemented using a 256x8 bit look-up
table, which is suitable for implementation using block memories. The other approach
is a T-box based architecture. This approach allows the computation of an entire AES
round using only look-up tables and XOR operations [2, 3, 4]. For the computation of
entire round, 256 x 40 bit look-up tables were required.

5.3.2 JH

The key generator unit R6 from the basic implementation [9] computes the value for
each key on the fly, whereas we modified the design to use pre-computed 42 256-bit val-
ues for each round and fed them to R8 block. The exact size and amount of memory
used by Virtex 5, Spartan 3, Stratix III and Cyclone II can be seen in Table 5.

5.3.3 Keccak

Keccak was implemented using Block Memories to store the round constants (see Ta-
ble 5). It required only one block memory to store all constants.
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Table 3. Timing characteristics and resource utilization for basic architectures and
architectures based on the use of embedded FPGA resources for implementations of 5
Round 3 SHA-3 candidates and the current standard SHA-2 in case of Xilinx Virtex 5
FPGAs. Notation: Clk Freq – clock frequency, Tp – throughput, ∆ Tp – relative im-
provement in throughput, ∆ #CLB slices – relative reduction in the number of CLB
slices, ∆ Tp/#CLB slices – relative improvement in throughput/#CLB slices ratio.

6 RESULTS

In this section, we present a comparison between the basic designs, implemented using
reconfigurable logic, and embedded designs, with DSP units and Block Memories. Results
for 256-bit versions of all investigated hash functions and four FPGA families are sum-
marized in Tables 3-8 and Figs 1 and 2. BLAKE and JH results include Round 3 tweaks
introduced by the authors, whereas Groestl results are based on Round 2 specifications.

Addition operations are implemented in DSP units. Although DSP48E units in Vir-
tex 5 slightly reduce the throughput due to the use of cascaded DSP architecture for
64-bit addition, we are able to reduce the number of CLB slices. This in turn helped to
increase the overall throughput to #CLB slice ratio. On the other hand, Skein with 64
bit addition exposes a lack of good support for this precision, especially in Altera Stratix
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III where extra logic needs to be generated on top of the DSP support in order to perform
a 64-bit addition. This affects both throughput and area.

Table 4. Timing characteristics and resource utilization for basic architectures and archi-
tectures based on the use of embedded FPGA resources for implementations of 5 Round
3 SHA-3 candidates and the current standard SHA-2 in case of Altera Stratix III FPGAs.
Notation: Clk Freq – clock frequency, Tp – throughput, Mem-bits – number of memory
bits, ∆ Tp – relative improvement in throughput, ∆ #ALUTs – relative reduction in
the number of ALUTs, ∆ Tp/#ALUTs – relative improvement in throughput/#ALUTs
ratio, #DSP 18s – number of DSP 18 units; one DSP unit consists of 8 such elements.
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Figure 1: Comparison of basic designs with alternative designs based on the use of em-
bedded resources in Xilinx Virtex 5 FPGAs in terms of a) Throughput/#CLB slices b)
#CLB slices. Notation DSP : designs based on DSP units, DSP & BRAM : designs based
on DSP units and Block RAMs, BRAM : designs based on Block RAMs.
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Figure 2: Comparison of basic designs with alternative designs based on the use of em-
bedded resources in Altera Stratix III FPGAs in terms of a) Throughput/#ALUTs b)
#ALUTs. Notation DSP : designs based on DSP units, DSP & BRAM : designs based
on DSP units Block RAMs, BRAM : designs based on Block RAMs.

9



Table 5. Estimate of memory used by implementations ofBLAKE, Groestl, JH, and
Keccak for Spartan 3, Virtex 5, Cyclone II, and Stratix III. Notation: ()d dual-port, ()s
– single-port.

Algo-
rithm

Memory Spartan 3 Virtex 5 Cyclone II Stratix III

BLAKE

2 x
(16 x 256)

+
28 x 256 =

15 kbits

16 x (512 x 32)s +
4 x(512 x 32)d =
20 18kbit BRAMs

8 x (1k x 32)d
+ 4 x (1k x
32)d =
12 36kbit
BRAM

8 x (128 x
32)d ;
13kbits

used

8 x (512 x
32)d ;

13kbits used

Groestl
S-box

64 x (256 x
8) = 128

kbits

32 x (2k x 8)d =
32 18kbit BRAMs

32 x (2k x 8)d =
16 36kbit
BRAMs

32 x (512 x
8)d ;
128kbits

used

16 x (1k x
8)d ;

128kbits used

Groestl
T-box

64 x (256 x
40) = 640

kbits

32 x (512 x 32)d +
32 x (2k x 8bits)d

=
64 18kbit BRAMs

32 x (1k x 32)d
+ 32 x (2k x
8bits)d =

48 36kbit
BRAMs

128 x (128
x 32)s + 64

x (512 x
8)d ;
640kbits

used

64 x (256 x
32)s + 16 x
(1k x 8)d ;

640kbits used

JH
42 x 256 =
10.7 kbits

4 x (512 x 32) d =
4 18k BRAMs

4 x (1k x 32) d
=

4 36k BRAMs

4 x (128 x
32)d ;

9kbits used

4 x (256 x
32)d ;

9kbits used

Keccak
24 x 64 =
1.5 kbits

1 x (512 x 32) d =
1 18k BRAMs

1 x (1k x 32) d
=

1 36k BRAMs

1 x (128 x
32)d ;

2kbits used

1 x (256 x
32)d ;

2kbits used

BLAKE and SHA-2 have 32-bit additions in their data path. Both algorithms have
functions suitable for the use of block memory i.e., BLAKE with message expansion
tables and, SHA-2 with table for constants. As they can use both kinds of embedded
resources, we investigated two versions for each of them, i.e., block memory only and
block memory along with DSP units. BLAKE yields reduction in the throughput of both
embedded designs. However, higher clock frequencies were observed for block memory
only design as compared to the design with additions using DSP units (see Tables 6-8).
DSP addition delays the critical path due to possible routing delays from reconfigurable
logic to DSP cores. An increase in the number of adders involved in the critical path of
BLAKE was also observed. However, more area was saved for the implementations using
both embedded resources (BLAKE greater than 60%).

For all algorithms, except Skein on Altera Stratix III, we were able to move significant
portion of logic into embedded resources. In case of functions using round constant
tables (JH, Keccak), the relative improvement is not significant because those tables are
relatively small (see Table 7).

AES-based function Groestl, in both S-box and T-box architectures, was giving much
bigger area reduction because those operations are a big part of the entire hash function
circuit (see Table 5 for the sizes of the respective tables and embedded memories used
for the implementation).
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Table 6. Relative Improvement in Throughput, ∆ Tp [%], across four FPGA families.
Notation: N/A not applicable

Algorithm
Virtex

5
Spartan

3
Stratix

III
Cyclone

II
DSP Units

Skein -10.1 N/A -39.3 N/A
DSP Units and Block Memory

BLAKE -27.3 N/A -48.5 N/A
SHA-2 14.3 N/A -2.0 N/A

Block Memory
(i) AES Tables

Groestl
(S-box)

-31.4 2.1 -36.9 5.6

Groestl
(T-box)

-13.4 21.4 -25.6 29.4

(ii) Message Expansion Tables
BLAKE -11.9 -6.0 -13.3 -15.8

(iii) Round Constant Tables
JH -36.5 27.7 -0.07 0.9

Keccak -16.9 -11.1 2.6 -0.6
SHA-2 5.8 -1.3 4.1 0.7

Table 7. Relative Reduction in the amount of Reconfigurable Logic Resources (CLB
slices for Spartan 3 and Virtex 5, LEs for Cyclone II, and ALUTs for Stratix III) across
four FPGA families. Notation: N/A not applicable

Algorithm
Virtex

5
Spartan

3
Stratix

III
Cyclone

II
DSP Units

Skein 18.9 N/A -30.2 N/A
DSP Units and Block Memory

BLAKE 64.2 N/A 62.6 N/A
SHA-2 23.0 N/A 19.5 N/A

Block Memory
(i) AES Tables

Groestl
(S-box)

29.9 54.0 47.3 72.0

Groestl
(T-box)

66.0 64.7 82.2 93.3

(ii) Message Expansion Tables
BLAKE 60.8 61.3 60.0 66.6

(iii) Round Constant Tables
JH -0.9 16.0 17.6 21.7

Keccak 1.0 0.5 -1.3 0.3
SHA-2 8.8 7.5 3.2 19.6
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Table 8. Relative Improvement in the Throughput to the Amount of Reconfigurable
Resources ratio across four FPGA families. Notation: N/A not applicable.

Algorithm
Virtex

5
Spartan

3
Stratix

III
Cyclone

II
DSP Units

Skein 10.9 N/A -53.4 N/A
DSP Units and Block Memory

BLAKE 104.4 N/A 39.5 N/A
SHA-2 49.3 N/A 21.8 N/A

Block Memory
(i) AES Tables

Groestl
(S-box)

-2.2 122.1 19.8 277.6

Groestl
(T-box)

154.8 244.3 318.9 1843.6

(ii) Message Expansion Tables
BLAKE 126.5 142.5 118.6 152.0

(iii) Round Constant Tables
JH -37.2 51.9 22.3 28.9

Keccak -16.0 -10.6 1.3 -0.3
SHA-2 15.4 6.7 4.0 24.3

Our secondary optimization target was an improvement in throughput. For low-cost
families, throughput increased for 7 out of 12 architecture-family pairs (see Table 6). For
high performance families, we observe the frequency and throughput drop for 14 out of
18 cases (see Table 6). This drop was most likely caused by the delays between reconfig-
urable logic (used to implement majority of operations) and embedded resources (used
to implement selected operations). Since the delays of interconnects contribute relatively
more to the overall delay in high-performance families, the throughput is effected in the
opposite directions for these two classes of FPGAs.

All results for basic and embedded architectures were generated using heuristic op-
timization methods of ATHENa [10, 11], which helped to find the best synthesis and
implementation options of FPGA tools. Among all performed runs of these tools (with
single run testing one set of possible options), we decided to report results that were
giving us the best ratio of throughput to the amount of reconfigurable logic resources.
This type of optimization criterion was selected because of two reasons. First, it helped
us to identify designs with the best possible trade-off between the speed and reduction
in reconfigurable logic. Secondly, these selected designs were also easier to compare with
designs from [9], which used the same optimization target.

7 CONCLUSIONS

Six modern cryptographic hash functions have been implemented using four FPGA fami-
lies from Xilinx and Altera. All functions have been optimized using embedded resources
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of the target FPGAs, namely DSP units/ multipliers and Block Memories. Our results
demonstrate significant savings in the amount of reconfigurable logic, especially high for
the function based on large look-up tables, such as the AES-based candidate, Groestl,
as well as BLAKE. The advantage of using DSP units and multipliers was much more
limited, and typically associated with the significant performance drop. The main reason
for that was that the majority of investigated hash functions, use only addition, and
cannot take any advantage of multipliers present in these units.

Overall, embedded resources provide an interesting and important alternative to the
use of basic reconfigurable logic resources in implementations of modern cryptographic
hash functions. We hope that this paper will support the design process involving these
resources, and pave the way to their extended use in future implementations of cryptog-
raphy in modern FPGAs.
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