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Abstract—The NIST competition for developing the new cryp-
tographic hash standard SHA-3 is currently in the third round.
One of the five remaining candidates, Grøstl, is inspired by
the Advanced Encryption Standard. This unique feature can be
exploited in a large variety of practical applications. In order to
have a better picture of the Grøstl-AES computational efficiency
(high-level scheduling, internal pipelining, resource sharing, etc.),
we designed a high-speed coprocessor for Grøstl-based HMAC
and AES in the counter mode. This coprocessor offers high-speed
computations of both authentication and encryption with rela-
tively small penalty in terms of area and speed when compared to
the authentication (original Grøstl circuitry) functionality only.
From our perspective, the main advantage of Grøstl over other
finalists is the fact that its hardware hardware architecture
naturally accommodates AES at the cost of a small area overhead.
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AES; resource sharing; pipelining; scheduling; IPSec.

I. INTRODUCTION

The National Institute of Standards and Technology (NIST)
is currently holding a hash competition [1] to select a new
cryptographic hash function standard, called SHA-3, for the
purpose of superseding the functions in the SHA-2 family.
Performance in hardware has been one of the major factors
taken into account by NIST in the evaluation of Round 2 and
Round 3 candidates during the SHA-3 competition [1], [2],
[3]. This factor is particularly important in the final round of
the contest, because the algorithms qualified to this round are
not very likely to have any significant security weaknesses.

Several studies regarding stand-alone implementations of
Round 2 and Round 3 SHA-3 candidates in FPGAs have
been already reported in the literature [2]. The main objective
of these studies was to evaluate all candidates in a unified
approach, and therefore the unique features of each and every
function were not deeply investigated.

There are relatively few works which discuss distinctive
hardware architectures for the SHA-3 candidates. A copro-
cessor supporting Skein in tree hashing mode was presented
in [4]. Common architectures of the block cipher AES and
the Round 2 versions of Grøstl-0 and Fugue algorithms
were reported in [5]. A compact implementation of block
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cipher Threefish and the Round 3 hash algorithm Skein was
demonstrated in [6].

In this effort we are going to present a new hardware
architecture for Grøstl and AES working in an interleaved-
pipelined fashion. A practical application to IPSec hardware
acceleration will be discussed.

The rest of this paper is organized as follows: In Section
II we discuss previous work. Section III is devoted to the
analysis of the Grøstl-AES structure for the authenticated
encryption based on HMAC and counter mode, respectively.
Section IV describes the proposed coprocessor. Finally, Sec-
tion V discusses and analyzes the results and we draw
conclusions in Section VI.

II. PREVIOUS WORK

A. Grøstl hardware implementation

In January 2011, Grøstl team published tweaks to their
specification of Grøstl [7], [8]. An algorithm described by
the original Grøstl specification [9] has been renamed to
Grøstl-0, and the tweaked version of Grøstl, described by the
revised specification [8], is from this point-on called Grøstl.
The proposed tweaks are aimed primarily at the increase in
the algorithm resistance to cryptanalysis [7]. This increased
resistance in security, typically comes together with some
limited penalty in terms of performance in hardware [10].

Grøstl-0 has been implemented by several groups in FPGAs
and ASICs [2]. In this paper, we focus on implementations
targeting FPGAs and optimized for high speed rather than
low area. High-speed implementations of Grøstl-0 typically
use two major architectures. In the first architecture, reported
first in [9], permutations P and Q are implemented using two
independent units, working in parallel. We call this architecture
parallel architecture. In the second architecture, introduced in
[11], the same unit is used to implement both P and Q. This
unit is composed of two pipeline stages that allow interleaving
computations belonging to permutations P and Q. We call
this architecture quasi-pipeline architecture, as it is based on
the similar principles as the quasi-pipelined architectures of
SHA-1 and SHA-2 reported in [12], [13]. The details of the
quasi-pipelined architecture of Grøstl-0 are described in [11]
(Section 9), [14] (Section 3.8) and [15] (Section V).

An analysis of the influence of the Round 3 tweaks in Grøstl
on the performance of this algorithm in FPGAs was conducted



TABLE I
RESULTS OF IMPLEMENTATIONS FOR HIGH-SPEED ARCHITECTURES OF GRØSTL-256, USING XILINX VIRTEX 5 FPGAS.

Source Architecture Implementation details Memory Frequency Throughput Area Throughput/Area
[BRAM] [MHz] [Mbps] [Slice] [Mbps/Slice]

Grøstl-0 - Round 2
Gauravaram et al. [9] parallel N/A* N/A* 200.7 10276 1722 5.97
Jungk et al. [15] quasi-pipelined S-boxes in BRAM 17 295.0 7552 1381 5.46
Shahid et al. [16] quasi-pipelined T-boxes in BRAM 48 250.0 6098 1188 5.13
Homsirikamol et al. [14] quasi-pipelined 64-bit interface 0 323.4 7885 1597 4.94
Gaj et al. [17] quasi-pipelined 64-bit interface 0 355.9 8676 1884 4.61
Matsuo et al. [18] parallel S-boxes in distributed memory 0 154.0 7885 2616 3.01
Baldwin et al. [19] parallel ideal interface, no padding unit 0 101.3 5187 2391 2.17
Kobayashi et al. [20] parallel S-boxes decomposed into logic 0 101.0 5171 4057 1.27
Guo et al. [21] parallel S-box decomposed into logic 0 80.2 4106 3308 1.24
Baldwin et al. [19] parallel 32-bit interface, no padding unit 0 101.3 3242 2391 1.36
Baldwin et al. [19] parallel 32-bit interface, padding unit 0 78.1 2498 2579 0.97

Grøstl - Round 3
Sharif et al. [22] quasi-pipelined S-box in BRAM 18 226 5524 1141 4.84
Homsirikamol et al. [23] quasi-pipelined 64-bit interface 0 249 6072 1912 3.18
Homsirikamol et al. [23] parallel 64-bit interface 0 158 8081 2591 3.12

* not reported

in [10]. Comprehensive hardware evaluation across multiple
architectures for all SHA-3 finalists, including Grøstl, was
investigated in [23]. The implementation results of hardware
architectures, for a single stream of data, in both variants of
Grøstl are summarized in Table I.

B. Sharing resources

The idea of hardware resources sharing is very practical
and especially attractive in industrial applications. Several
companies offer so called all-in-one cryptographic solutions.
For example [24] and [25] offer customized cores including
sophisticated AES core, which supports 128, 192 and 256-
bit main key and several different operational modes in a
single chip. The resource sharing concept was also investi-
gated by academia: shared MD5 and SHA-1 implementation
was described in [26]–[28], MD5 implemented together with
RIPEMD-160 was reported in [29], and finally, SHA-1, MD-
5 and RIPEMD-160, implemented together, were discussed
in [30]. It seems that even a more practical is the idea to
build a coprocessor, which could share resources and support
different cryptographic services: confidentiality and authen-
tication. Cryptographic accelerators, in which the datapaths
are combined: Fugue with AES core, and Grøstl-0 with AES
core, were reported in [5]. A typical application for such
coprocessor will be the IPSec protocol suite [31] for securing
the Internet Protocol, the basis of Internet. This suite consists
of the Authentication Header protocol (providing authenti-
cation only) and Encapsulating Security Payload (providing
authentication and confidentiality at the same time).

III. AUTHENTICATED ENCRYPTION BASED ON GRØSTL
AND AES IN A SINGLE COPROCESSOR

The specifications of the block cipher AES and the hash
function Grøstl were described in [32] and [8], respectively.
The round functions for both algorithms are summarized in
Fig. 1.

TABLE II
NUMBER OF ROUNDS AND THE SECURITY LEVEL RELATIONS FOR GRØSTL

AND AES

Security Grøstl AES
128-bit (Grøstl-256) 10 (AES-128) 10
192-bit (Grøstl-384) 12 (AES-192) 12
256-bit (Grøstl-512) 14 (AES-256) 14

The design described in [23] and the corresponding source
codes from [33] will serve in this work as a starting point for
our investigations.
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A. Grøstl and the AES comparison

In order to extend the original Grøstl hardware architecture
several facts have to be taken into consideration:

• The basic round structures of both algorithms are
demonstrated in Fig. 1. All four corresponding transfor-
mations have the same order in both AES and Grøstl. Due
to this fact a resource sharing between both algorithms is



especially attractive. It is expected that the delay in the
critical path in both cases should be very similar.

• The SubBytes layers in both cases are build upon the
same substitution box (S-box), therefore it can be fully
shared (in Fig. 5, pt. 1). In terms of a circuitry area this
transformation is the most costly out of all round-building
operations.

• The ShiftRow and ShiftBytes transformations in AES
and Grøstl, respectively, can be implemented as a per-
mutation of bytes (simple rewiring). However they are
not similar, both operations have to be implemented
separately and properly multiplexed (in Fig. 5, pt. 2).

• The AddRoundKey and the AddRoundConstant
transformations in AES and Grøstl, respectively, can
be implemented as a simple network of XOR gates.
However they are not similar, both operations have to
be implemented separately and properly multiplexed (in
Fig. 5, pt. 3).

• The MixColumn and the MixBytes in AES and Grøstl,
respectively, share the GF(28) multiplication by con-
stants: 0x02 and 0x03. Therefore they can be completely
merged together. The networks of output XORs require
two separate paths for both algorithms (in Fig. 5, pt. 4).

• The last round of the AES block cipher is different than
the regular round. It is required to build a bypass bus and
multiplex it together with round’s regular output (in Fig.
5, pt. 5).

• For a given security level both Grøstl and AES re-
quire the same number of rounds. This dependency
is summarized in Table II. This fact helps to achieve a
full synchronization of input data for both HMAC and
Encryption module.

• The Grøstl double data flow pipe (P and Q transfor-
mations) vs. the AES one data flow pipe determines the
optimal number of pipeline stages. The high-speed single
stream of data quasi-pipelined hardware architecture of
Grøstl, demonstrated in [14], [15], [11], requires two
pipeline stages for the P and Q permutations intermediate
values. The third pipeline stage is required for the AES
intermediate data (in Fig. 5, pt. 6).

• Both algorithms input block sizes differ. They are
128-bit and 512-bit for AES and Grøstl, respectively.
The encryption of 512-bit single stream of data, by four
instances of algorithm which can accommodate 128-bit
input only, prohibits the feedback mode utilization. In
order to increase the security level of non-feedback mode
based encryption, the counter mode (in Fig. 5, pt. 7) was
applied (in Fig. 3).

• The encryption process requires an extra storage space
for the plain/ciphertext (in Fig. 5, pt. 8).

• For a given security level the output block of both algo-
rithms is different. This fact implies the size extension
(doubling) of the Parallel Input Serial Output (PISO)
module for Grøstl-512 vs. Grøstl-256 (in Fig. 5, pt. 9).

• The Key scheduling algorithm for the AES algorithm
requires an additional circuitry (in Fig. 5, pt. 10).

• Second hashing in the HMAC requires message padding
(in Fig. 5, pt. 11).

Motivated by the above observations, we will show how
to efficiently share the resources of Grøstl and AES in our
coprocessor for an authenticated encryption.

B. HMAC/Grøstl

A mechanism for message authentication using crypto-
graphic hash functions, the HMAC (Hash-based Message
Authentication Code) was originally defined in [34] and
adapted for the IPSec in [35]. Recently this last document
was updated by [36]. HMAC has a generic form and it can
be used with any iterative cryptographic hash function, e.g.
Grøstl, in combination with a secret shared key. The HMAC
cryptographic strength rely on the properties of the underlying
hash algorithm. Fig. 2 demonstrates the HMAC generation
process. Since the combination of HMAC with a current
standard SHA-2 is denoted as HMAC/SHA-2, we are using
corresponding notation for Grøstl algorithm (HMAC/Grøstl).
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Fig. 2. HMAC generation

In order to compute the HMAC value for a given message
(data) and a key (hkey) the selected hash function has to
be used twice. The output from the first computations is a
function of the ipad constant, padded key, and a given message.
The output from the second computations (the hmac-value) is
a function of the opad constant, padded key, and the result
of the first computation. For the sake of simplification of our
circuit (padding of the second hash computation) we restricted
the range of key size up to the Grøstl block size.

This assumption leads us to the relation between the
throughput of HMAC/Grøstl and the throughput of Grøstl:



throughputHMAC/Grøstl

throughputGrøstl
=

#blocks

5 + #blocks
(1)

where:
#blocks is the number of data blocks for a given message

and throughputGrøstl is the maximum Grøstl hardware ar-
chitecture throughput calculated for long messages.

The constant in the denominator is an overhead from
HMAC/Grøstl and it is a sum of

• two HMAC key injections,
• two Grøstl message finalizations,
• and an injection of a message digest from the first to the

second hash computation.
In case of long messages the effect of HMAC/Grøstl over-

head is marginal, and it can be omitted in the throughput
calculations.

C. AES in Counter mode

NIST has defined five confidentiality modes of operation for
use with an underlying symmetric key block cipher algorithm:
Electronic Codebook (ECB), Cipher Block Chaining (CBC),
Cipher Feedback (CFB), Output Feedback (OFB), and Counter
(CTR) in [37]. Two of aforementioned modes of operation,
namely ECB and CTR, allow parallel computations. In ECB
mode, for a given key any given plaintext block encryption
process always leads to the same ciphertext block. This
property is undesirable in predominant number of applications,
and due to this fact the ECB mode should not be used.

The CTR mode for a block cipher is presented in Fig. 3.
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Fig. 3. Block diagram of counter mode in block ciphers

To encrypt using AES/CTR-mode encryption, one starts
with an arbitrary bit string(a n-block plaintext), a session
key, and an init value for a 128-bit (block size) counter. The
output ciphertext C = {C#1, C#2, ...C#(n−1)} is the XOR
of corresponding plaintext chunks (in Fig. 3 the data blocks
are represented as M = {M#1, M#2 ...M#(n − 1)}, the

extra block M#n and the results of encryption of Ekey(ctr),
Ekey(ctr + 1) ..., Ekey(ctr + n− 1). The ciphertext is a pair
(IV, C), where IV is the starting value for the counter. The
decryption process is the same as encryption with M and C
interchanged.

The biggest advantage of the CTR-mode for any block
cipher, including AES, is the possibility of a full parallelization
of the computations. In order to compute all data chunks:
C#(i), C#(i + 1), ..., C#(i + m − 1) we can instantiate
m AES coprocessors working simultaneously.

Since Grøstl specifies 512-bit (128-bit security level) and
1024-bit (256-bit security level) input block sizes then the
number of corresponding CTR/AES cores is four and eight,
respectively. The maximum throughput in such configuration
is four (eight in case of Grøstl with 1024-bit input block) times
higher than the throughput of the single AES core.

IV. COPROCESSOR DESCRIPTION

A. Block diagram description

A block diagram presented in Fig. 5 shows the datapath
used in the proposed Grøstl/AES coprocessor. The non-shaded
components represent the original Grøstl design, available in
[33]. The original Grøstl quasi-pipelined structure has one
pipeline register inserted between SubBytes and ShiftBytes
operations.

In order to perform in parallel encryption and message di-
gest computation the quasi-pipeline architecture was enriched
by several extra elements. The shaded components show which
elements have to be added in order to accommodate the
HMAC/Grøstl and the AES-CTR functionality.

First of all, we have added additional pipeline register after
the Shared MixColumn/MixBytes operation. Two of pipeline
stages contain intermediate values for the P and Q functions
from Grøstl, one extra stage is responsible for the encryption
of intermediate values of the same block of data.

B. Grøstl and AES pipelining

In the very first clock cycle, an input message is loaded
directly to the state register as an input to the operation Q.
A message block is xored with an initialized chain register
to create an input for the operation P in the second cycle of
processing.
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Finally, in the third clock cycle the counter values are loaded
to the state register, R0. At the same time when the first stage
of the pipeline starts executing the first phase of the AES
round, the second stage of the pipeline continues the execution
of the P operation and the third stage is in the last phase of
the Q operation.

The first stage of the pipeline consists of the Grøstl’s P/Q
AddRoundConstant, the AES AddRoundKey units and the
fully shared SubBytes layer (in Fig. 6).

The second stage of the pipeline consists of the Shift-
Bytes/ShiftRows and modified MixBytes units.

The third stage of the pipeline consist of just two multi-
plexers.

A part of the function Q is always performed one cycle
ahead of the corresponding part of the function P and two
clock cycles before CTR-mode AES related data.

Finalization of the hash process in this design takes two

clock cycles. First, the chaining value, h, is xored with the final
value of Q, while P is still being processed. In the subsequent
cycle the final result of P is mixed with the chaining value as
well (in Fig. 4).

In the following clock cycle, the tenth round of the AES
transformation is completed. Finally, the last AES key is xored
with the output from stage register and with the plaintext.
Every time when the encryption process is finished the cipher-
text is ready to be stored in the Parallel Input Serial Output
(PISO) unit. The entire process is repeated until all blocks of
a message are thoroughly hashed and encrypted.

The HMAC process requires also additional data in front
(key xored with the constant ipad value) and at the end (key
xored with the constant opad value) of the message. During
the time when these pre- (M#0) and post- (M#n) data
is processed, the AES module is not producing valid data
(AES(idle) in Fig. 6).
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Finally, a HMAC value is calculated and it is taken from
the bottom half of the chaining value.

For a given chunk of a 512-bit data both Grøstl and
AES cores need 31 clock cycles to complete their operations
(3 pipeline stages per 10 rounds + 1 clock for the Grøstl
finalization and 1 clock cycle for the final xor in the counter
mode).

C. High-level scheduling

In order to make our implementations as practical as
possible, we have followed a 64-bit interface and a simple
handshaking protocol specification from [33]. Thanks to the
assumptions taken from the aforementioned paper, it is pos-
sible to keep proposed coprocessor’s all three pipeline stages
busy almost all the time.

The input-output operations overlap in many cases therefore
the separation of input/output bus and control signals is
necessary.

A higher level scheduling is summarized in Fig. 6. The path
of the very first chunk of message M#1 for the authenticated
encryption is denoted by the shaded blocks.

During the computations of longer messages (more than
three blocks), the coprocessor will be storing result of the
C#(i − 2) block, conducting HMAC/Grøstl and CTR/AES
operations for the block C#(i− 1) and fetching i− th block
of data (M#(i)) at the same time.

D. Throughput discussion

In the most typical scenario the speed of the hardware im-
plementation of cryptographic transformations is understood
as a throughput for long messages. The exact throughput
formula is defined as follows [17]:

throughput =
blocksize

T ∗ (TimeHE(N + 1)− TimeHE(N))
(2)

where blocksize is a input block size, characteristic for each
cryptographic transformation, TimeHE(N) is a total number
of clock cycles necessary to hash/encrypt an N-block input
data and T is the clock period, characteristic for each hardware
coprocessor.

In case of the Grøstl/AES-based hardware accelerator, de-
scribed in this paper the throughput formula for long messages
is:

throughput =
512

31 ∗ T
(3)

The typical application for an authenticated encryption-
oriented, high-speed hardware coprocessor is the Encapsulat-
ing Security Payload (ESP) from the IPSec protocol suite. In
this scenario the throughput has to be calculated for relatively
short messages (40-1536 bytes).

Due to the fact that the HMAC/Grøstl computations take
more time than the CTR/AES encryption, this HMAC/Grøstl
throughput is considered as an effective throughput for a given
message in our coprocessor. The final throughput formula is
a result of both formulas: (1) and (3).

throughput =
512 ∗#blocks

(5 + #blocks) ∗ (31 ∗ T )
(4)

For long messages the formula (4) converges to the formula
(3).

V. RESULTS

The HMAC/Grøstl and CTR/AES based hardware copro-
cessor was implemented on four high speed FPGA devices:
65nm Altera Stratix III and Xilinx Virtex 5, and 40nm Altera
Stratix IV and Xilinx Virtex 6. As our tools, we have used
Xilinx ISE 13.1 and Altera Quartus II 11.1. All architectures
have been first modeled in VHDL-93, then synthesized, placed
and routed using tools of the respective vendor. Maximum
clock frequencies have been determined using static timing
analysis tools provided as part of the respective software
packages (quartus sta for Altera and trace for Xilinx). The
tool options were selected in such a way, that no embedded
resources, such as block memories or DSP units, were used
during implementation. This choice was made in order to
enable the comparison of all implementations in terms of area
and throughput to area ratio. Table III summarizes the results
collected after the Place-and-Route and Fitter in Xilinx and
Altera, respectively.



TABLE III
RESULTS OF SHARED-RESOURCES IMPLEMENTATION FOR HMAC-GRØSTL AND AES IN COUNTER MODE ON MODERN FPGA

Family Frequency Area Throughput @40Bytes Throughput @1536Bytes Throughput @infinity
Altera

[MHz] [ALUTs, Memory bits] [Mbps] [Mbps] [Mbps]
Stratix III 271 (9337, 0) 466 3704 4476
Stratix IV 264 (9322, 0) 454 3608 4360

Xilinx
[MHz] [CLB Slices, BRAMs] [Mbps] [Mbps] [Mbps]

Virtex 5 261 (+4.8%) (2505, 0) (+31%) * 449 3567 4310 (-29%) *
Virtex 6 276 (2221, 0) 474 3773 4558

* The relative difference between the reference Grøstl design from [23] and this work

TABLE IV
RESULTS OF SHARED-RESOURCES IMPLEMENTATION FOR GRØSTL-0 (GRØSTL) AND AES IN ALTERA CYCLONE III

Design Functionality Frequency Area Latency Throughput Throughput/Area
[MHz] [Logic Elements] [Cycles] [Mbps] [Mbps/Slice]

Järvinen [5]
reference Grøstl-0 Grøstl-0 57.2 12086 20 1473 0.122

Grøstl-0 and 4*AES
Grøstl-0 56.0 (-2.6%) 13723 (+13.5%) 20 1434 (-2.6%) 0.104
AES 56.0 13723 10 2868 0.209
Grøstl-0 and AES 56.0 13723 30 956* 0.070

Grøstl-0, 3*AES and Key Expansion
Grøstl-0 53.4 (-7.2%) 13453 (+11.3%) 20 1366 (-2.6%) 0.102
AES 53.4 13453 10 2049 0.152
Grøstl-0 and AES 53.4 13453 30 911* 0.068

* Throughput calculated for the authenticated encryption based on HMAC-Grøstl and AES-CTR
This work

reference Grøstl-0 Grøstl-0 141.1 19005 21 3440 0.181
Grøstl-0, 4*AES and Key Expansion Grøstl-0 and AES 159.9 (+13.3%) 23039 (+23.4%) 31 2640 (-23.3%) 0.115
reference Grøstl Grøstl 130.1 19260 21 3171 0.165
reference AES and Key Expansion AES 129.4 4901 11 1505 0.307
Grøstl, 4*AES and Key Expansion Grøstl and AES 144.0 (+10.7%) 23758 (+23.4%) 31 2378 (-25.0%) 0.100

Generally in terms of area, the coprocessor proposed in this
effort can be implemented on the smallest device from every
selected family. In case of small messages, the throughput
is a function of the message size. For the smallest 40-byte
packages, it is just 11% of the long messages throughput, but
in case of 1536-byte messages it reaches almost 83% of long
messages throughput.

A. Comparison to the stand-alone Grøstl implementation

In Table III we have summarized the implementation results
of the proposed Grøstl/AES hardware accelerator.

First of all, in the case of Xilinx Virtex 5 implementation,
the coprocessor investigated in this effort requires 31% more
area than the basic version of quasi-pipelined architecture
presented in [23]. Since this extra pipeline stage refinement
breaks the critical path from the aforementioned design, the
maximum frequency increases by 4.8%. The 3rd stage pipeline
register location was investigated by moving it before the
multiplexer (in Fig. 5, pt. 5). This change helps to improve the
maximum frequency, but at the same time the throughput/area
ratio decreases. However due to the fact that the quasi-
pipelined hardware architecture of Grøstl from [14] and triple-
staged Grøstl/AES in this work require 21 and 31 clock
cycles, respectively, the overall throughput for long messages
decreases by 29%.

In Table III we have presented the impact of IPSec minimum
and maximum size messages on the effective throughput.

In case of selected FPGA devices it varies between 450-
3700Mb/s. The final throughput result depends on the traffic
statistics in a given network.

The coprocessor proposed in this work can be easily im-
plemented on the smallest devices available in every selected
high-speed family.

B. Comparison to the Järvinen design [5]

In order to fairly compare our hardware accelerator with
the circuit described in [5], an additional implementation
in Altera low-cost Cyclone III is provided (In Table IV).
In both our work and [5], one can observe the penalty in
area for introducing extra AES functionality. In case of [5],
negligible frequency penalty was also introduced. This penalty
is due to the fact that basic iterative task (P and Q Grøstl-
0 functions and AES round) of the coprocessor proposed in
[5] is fully combinational and extra multiplexers were added
to the original Grøstl-0 design. In case of our architecture,
an additional pipeline stage enables frequency improvement.
In case of scenario when both encryption and hashing for a
given block of data have to be computed, the design from [5]
and our core will produce output in 30 and 31 clock cycles
respectively. Due to the fact that our core has three pipeline
stages, ideally our circuit should have 3 times higher frequency
than [5]. The obtained result, 2.85x frequency improvement,
proves the validity of this concept. A typical application for
high-speed implementation of the combined confidentiality



and authentication services is the coprocessor from [31]. This
protocol works in two different modes: Encapsulating Security
Payload (ESP) and Authentication Headers (AH). The first
requires the usage of both block cipher and hash function at
the same time for a given chunk of data, second requires a
hash function usage only. Table IV summarizes results for both
modes for our and [5] coprocessors. In case of ESP request
we can observe 57% and in case of AH 10% improvement in
terms of efficiency (throughput/area).

VI. CONCLUSIONS

The hash function Grøstl is one of the five finalists of the
SHA-3 competition. Hardware performance of this function
was investigated thoroughly over the last few years.

In this paper we have investigated very unique feature
among all SHA-3 candidates - Grøstl and the current Ad-
vanced Encryption Standard have similarities and these sim-
ilarities can be exploited very efficiently in hardware. Their
common structure can be utilized in the combined data-path
implementation. The coprocessor was optimized for high-
speed implementation of both functions and can find practical
application to the IPSec-based secure networks. It outperforms
the hardware accelerator proposed in [5] for both IPSec modes:
IP Encapsulating Security Payload (ESP) and Authentication
Headers (AH) by 57% and 10%, respectively.

The fully functional HMAC/Grøstl with CTR/AES hard-
ware accelerator, compared to the stand-alone quasi-pipelined
architecture of Grøstl, described in [17] and later on improved
in [23], pays the price in terms of throughput and the area on
all reported devices and in particular on Virtex 5: 29% in case
of throughput and 31% in terms of area. Not surprisingly, the
maximum frequency of the proposed design increases (+4.8%
for Virtex 5) as the number of pipeline stages was increased
by one stage.

From our point of view, the main advantage of Grøstl
over other SHA-3 finalists is the fact that the relatively
small overhead in its hardware architecture enables a natural
adoption of the most important to date block cipher - the
Advanced Encryption Standard.
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