
Throughput vs. Area Trade-offs in High-Speed
Architectures of Five Round 3 SHA-3

Candidates Implemented Using Xilinx and
Altera FPGAs?

Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj

ECE Department, George Mason University, Fairfax, VA 22030, U.S.A.
{ehomsiri,mrogawsk,kgaj}@gmu.edu

http://cryptography.gmu.edu

Abstract. In this paper we present a comprehensive comparison of all
Round 3 SHA-3 candidates and the current standard SHA-2 from the
point of view of hardware performance in modern FPGAs. Each algo-
rithm is implemented using multiple architectures based on the concepts
of folding, unrolling, and pipelining. Trade-offs between speed and area
are investigated, and the best architecture from the point of view of the
throughput to area ratio is identified. Finally, all algorithms are ranked
based on their overall performance, and the characteristic features of
each algorithm important from the point of view of its implementation
in hardware are identified.

Keywords: benchmarking, hash functions, SHA-3, hardware, FPGA.

1 Introduction

Performance in hardware has proven to be an important tie-breaker in the con-
tests for new cryptographic standards. For example, in the AES contest [14],
performance in FPGAs and ASICs has played a major role, because all five fi-
nalists have been judged to have adequate security, and their performance in
hardware varied substantially.

In this paper, we focus on comparing hardware performance of the remaining
five final candidates in the SHA-3 contest organized by NIST in the period from
2007 to 2012 [1]. The unique and novel feature of our approach is the investigation
of multiple hardware architectures of each algorithm. Our goal is to analyze
the entire performance space in terms of the throughput to area trade-offs, for
all Round 3 SHA-3 candidates, as well as the current standard, SHA-2. This
investigation is very important because the exact requirements on the speed and
area of a hash function core depend on a particular application and very in a

? This work has been supported in part by NIST through the Recovery Act
Measurement Science and Engineering Research Grant Program, under contract no.
60NANB10D004.



2 E. Homsirikamol, M. Rogawski, and K. Gaj

wide range. Knowledge of alternative architectures may allow the developer to
substantially reduce the relative area of a hash core in a system-on-chip, or move
to a substantially less expensive part in case of a stand-alone implementation of
a hash core in an FPGA.

We perform our investigation using four high-performance FPGA families
from two major vendors: Virtex 5 and Virtex 6 from Xilinx and Stratix III and
Stratix IV from Altera. All algorithms have been implemented based on their
updated Round 3 specifications, published in January 2011.

2 Previous work

Previous results on comparison of Round 2 SHA-3 candidates in hardware are
summarized in [2]. These results are classified into four major categories, based
on the technology (FPGA vs. ASIC), and the optimization target (High-Speed
vs. Low-Area). The previous results most relevant to the subject of this pa-
per belong to the category of High-Speed Implementations in FPGAs. The
most comprehensive results belonging to this category have been reported in
[5][8][12][13]. All these papers include results for all 14 Round 2 candidates.
Majority of published results concern 256-bit variants of the candidates, imple-
mented using Xilinx Virtex 5 FPGAs. In [12], results for 256-bit and 512-bit
variants of all algorithms, implemented using 10 FPGA families from Xilinx and
Altera are discussed. Additionally, pipelined implementations of three Round 2
SHA-3 candidates have been investigated in [4].

Some of the most interesting low-area implementations of the SHA-3 can-
didates have been described in [6][7][15]. The most comprehensive studies of
the ASIC implementations of the Round 2 SHA-3 candidates are presented in
[10][11][16].

All results obtained based on the Round 2 specifications of SHA-3 candidates
carry without any changes for Keccak and Skein. The specifications of BLAKE,
Groestl, and JH have been tweaked at the start of Round 3, in January 2011,
and at the time of writing, we are not aware of any published reports on the
high-speed FPGA implementations of the Round 3 variants of these algorithms.

3 Performance Metrics

Three major performance metrics used in our study are throughput, area, and
throughput to area ratio. Throughput is understood as the throughput for long
messages, or cumulative throughput for a large number of small messages (where
processing and input/output functions overlap in time). The resource utilization
in FPGAs is a vector, with coordinates specific to the given FPGA family, e.g.

Resource UtilizationV irtex 5 = (#CLB slices, #BRAMs, #DSPs) (1)

Resource UtilizationStratix III = (#ALUTs, #memory bits, #DSPs). (2)



Throughput vs. Area Trade-offs in High-Speed Architectures 3

In these formulas: #CLB slices is the number of Configurable Logic Block
slices, BRAM stands for Block RAM, DSP is a Digital Signal Processing unit,
#ALUTs represents the number of Adaptive Look-Up Tables, and #memory bits
is the number of bits placed in dedicated Altera FPGA memories. Taking into
account that vectors cannot be easily compared to each other, we have decided
to opt out of using any dedicated resources in the hash function implementa-
tions used for our comparison. Thus, all coordinates of our vectors, other than
the first one have been forced (by choosing appropriate options of the synthesis
and implementation tools) to be zero. This way, our resource utilization (further
referred to as Area) is characterized using a single number, specific to the given
family of FPGAs, namely #CLB slices for Xilinx Virtex 5 and Virtex 6, and
#ALUTs in Stratix III and Stratix IV. We believe that the capability of using
embedded resources should be treated as a measure of the algorithm flexibility,
and should be investigated independently from this study.

4 Investigated Hardware Architectures

A starting point for our exploration of various architectures of hash functions is
the basic iterative architecture, shown in Fig. 1a. The characteristic features of
this architecture are as follows: a) datapath width = state size (denoted by s), b)
one round is performed in a single clock cycle, c) only one message is processed
at a time. The minimum block processing time is typically given by (3),

Tblock = (r + f) · T (3)

where r is the number of rounds, f is the number of clock cycles required to
finalize computations for a block (typically 0 or 1), and T is the minimum clock
period. The corresponding throughput is given by (4),

Tp = b/Tblock (4)

where b is the size of a message block in bits. We denote the area of this archi-
tecture by Area. The basic iterative architecture is typically an architecture of
choice for high-speed hardware implementations of SHA-1, SHA-2, and SHA-3
candidates.

If a round of a hash function has a symmetric structure, with two or more
similar operations performed one after another, horizontal folding is possible. In
Fig. 1b, horizontal folding by a factor of two is demonstrated. We will denote
this architecture by /2(h). In this architecture, a half of a round is implemented
as combinational logic, and the entire round is executed using two clock cycles.
The datapath width stays the same as in the basic iterative architecture, and is
equal to the state size, s. The block processing time is given by (5),

Tblock−/2(h) = (2 · r + f) · T/2(h) (5)

where T/2 < T/2(h) < T , ideally T/2(h) ≈ T/2, and Area/2 < Area/2(h) <
Area. As a result, the block processing time (and thus also throughput) stays



4 E. Homsirikamol, M. Rogawski, and K. Gaj

b)

0 1

s

s s

s

R

a)

S1

0 1

s

0 1

s

S2

R/2

s

s/2

s/2

s/2

0 1

s

s

s

R/2

s

s/2s/2

s/2

c) s

Fig. 1: Three hardware architectures of a hash function: a) basic iterative: x1, b)
folded horizontally by a factor of 2: /2(h), c) folded vertically by a factor of 2:
/2(v). R – round, S1, S2 – selection functions.

approximately the same, and area decreases. These dependencies lead to the
overall increase of the Throughput to Area ratio. In general, folding by a factor
of k might be possible, and the corresponding architecture will be denoted by
/k(h).

Among the five finalists, the only candidate that can benefit substantially
from horizontal folding is BLAKE. The round of BLAKE consists of two hori-
zontal layers of identical G functions, separated only by a permutation. By im-
plementing only one layer in combinational logic, horizontal folding by a factor
of two can be easily achieved. Additionally, each G function has a very symmet-
ric structure along the horizontal axis, and can be easily folded horizontally by
a factor of 2. As a result a folding factor of 4, is achieved for the entire round.
Other SHA-3 finalists do not demonstrate any similar symmetry.

In case horizontal folding is either not possible or does not achieve the re-
quired reduction in area, vertical folding may be attempted. In Fig. 1c, we
demonstrate vertical folding by a factor of 2, which we denote by /2(v). In
this architecture, the datapath width is reduced by a factor of two. As a result
two clock cycles are required to complete a round. In the first clock cycle, only
bits of the internal state affecting the first half of the round output are provided
to the input of R/2. In the second clock cycle, the remaining bits of the internal
state are processed. The first output is stored in an auxiliary register of the
size of s/2 bits. This output is concatenated with the output from the second
iteration to form a new internal state.

The clock period of this architecture is approximately equal to the clock
period of the basic iterative architecture, T/2(v) ≈ T . As a result, the block
processing time, increases approximately by a factor of two compared to the
basic architecture, as shown in the equation below:

Tblock−/2(v) = (2 · r + f) · T/2(v) ≈ (2r + f) · T. (6)

The area reduction is also smaller than in case of horizontal folding, because of
the need for an extra s/2-bit register and multiplexer. As a result the throughput



Throughput vs. Area Trade-offs in High-Speed Architectures 5

to area ratio is likely to go down. In general, vertical folding by a factor of k
might be possible, and the corresponding architecture will be denoted by /k(v).

Out of five final SHA-3 candidates, BLAKE and Groestl are most suitable
for vertical folding. JH can be folded, but the gain in area is not expected to be
substantial, because the round of JH is very simple, and does not dominate the
total area of the circuit. For Skein and Keccak, the internal round symmetry,
necessary for implementation of vertical folding, is missing.

In order to increase the throughput of a hash function, different architectures
must be applied. The three common approaches are unrolling, pipelining, and
parallel processing. Unrolling is suitable for increasing throughput of a single
long message. Pipelining and parallel processing increase the combined data
throughput in case of processing multiple messages (e.g., multiple packets) at
the same time.

In Fig. 2a, architecture with unrolling by a factor of two is demonstrated. We
will denote this architecture by x2. The datapath width stays the same as in the
basic iterative architecture. The combinational logic of a round is replicated, so
now two rounds are performed per clock cycle. Since the total number of clock
cycles is reduced approximately by a factor of two, and the clock period increases
by a factor less than two (due to optimizations on the boundaries of two rounds,
and the smaller relative contributions of the multiplexer delay, the register delay,
and the register setup time), the total throughput increases. Unfortunately, at
the same time, the area of the circuit is likely to increase by a factor close to
the unrolling factor. As a result, in most cases, the throughput to area ratio
decreases substantially compared to the basic iterative architecture. As such,
architectures with unrolling are typically used only when throughput for single
long messages is of the utmost concern, and area is abundant. Nevertheless, there
are exceptions to this rule. Unrolling can improve the throughput to area ratio
when rounds used by an algorithm in subsequent iterations are not the same.
Among the five final SHA-3 finalists, this situation happens only for Skein.

In majority of practical applications of hash functions, the messages that are
processed are relatively short (typically smaller than 1500 bytes), and multiple
messages (packets) are available for processing by a hashing unit at the same
time. For example, in the most widespread Internet security protocols, such
as IPSec, SSL, and WLAN (802.11), the inputs to a hash unit are packets.
The maximum size of a packet for Internet is limited by so called Maximum
Transmission Unit (MTU). The typical size of MTU for Ethernet based networks
is 1500 bytes. The Maximum Transmission Unit for the Internet IPv4 path is
even smaller, and set at 576 bytes. As a result, in a typical internet node, up to
80% of packets processed have the size of 576 bytes or less, and 100% of packets
have sizes equal or smaller than 1500 bytes. Such small sizes of packets mean
that hundreds of packets could be easily buffered in the processing nodes, in the
form of packet queues, without introducing any significant latency to the total
packet travel time from the source to destination. In this paper, we will assume
that the number of messages available in parallel is large (at least 10), and we
will look at the combined throughput for all available streams of data.



6 E. Homsirikamol, M. Rogawski, and K. Gaj

a)

0 1

s

R

s

s

R
s

0 1

s

s R

s

R

s

s

s

b)

0 1

s

s

R/2

R/2

s

s

s

s

c)s

Fig. 2: Three hardware architectures of a hash function a) unrolled by a factor
of 2: x2, b) unrolled by a factor of 2 with 2 pipeline stages: x2-PPL2, c) basic
iterative with 2 pipeline stages: x1-PPL2.

The easiest way to implement pipelining in hash functions is to first unroll,
and then introduce pipeline registers between adjacent rounds. The simplest
case is the architecture that is two times unrolled, and has two pipeline stages,
as shown in Fig. 2b. We will denote this architecture as x2-PPL2. The clock
period of this architecture is approximately equal to the clock period of the
basic iterative architecture, T . Processing a single block takes the same number
of clock cycles as in the basic iterative architecture. However, since two blocks
belonging to two different messages are processed simultaneously, the combined
throughput increases by a factor of two. The throughput to area ratio remains
roughly the same, and may be either larger or smaller than in the basic iterative
architecture, depending on a particular algorithm.

The more challenging way of using pipelining is to introduce pipeline regis-
ters inside of a hash function round. The improvement in throughput compared
to the basic iterative architecture is than equal (either exactly or at least approx-
imately) to the ratio of the new clock frequency to the original clock frequency.
Since the critical path is reduced, the increase in throughput is guaranteed, but
its level depends on how well the critical path has been divided by pipeline reg-
isters into shorter paths with approximately equal delays. At the same time,
the area of the circuit increases by the area of pipeline registers, plus any logic
required for simultaneous processing of multiple streams of data. The through-
put to area ratio may increase, but the improvement is not guaranteed for all
algorithms, and all FPGA families, and may be small or negative in case the
basic iterative architecture operates already at the clock frequency close to the
maximum clock frequency supported by the given FPGA family.

The formulas for the block processing time and the throughput of all afore-
mentioned architectures are summarized in Table 1.

5 Design Methodology and Design Environment

Our designs for the basic, folded, and unrolled architectures use the interface
and the communication protocol proposed in [8]. Our designs for the pipelined
architectures, use the interface and surrounding logic shown in Fig. 3.



Throughput vs. Area Trade-offs in High-Speed Architectures 7

Table 1: Formulas for the time required to process a single message block, Tblock,
and the Throughput, Tp, for all investigated architectures. Notation: b – block
size, r – number of rounds, f – number of clock cycles required to finalize compu-
tations for a block (f = 0 for Keccak and Groestl (P +Q), f = 1 for all remaining
algorithms), k – folding factor or unrolling factor, n – number of pipeline stages,
T – clock period.

Architecture Time required to process Throughput
a single message block

Basic iterative, x1 Tblock = (r + f) · T Tp = b/Tblock

Folded by a factor of k, /k Tblock = (k · r + f) · T Tp = b/Tblock

Unrolled by a factor of k, xk Tblock = (r/k + f) · T Tp = b/Tblock

Basic iterative with n pipeline Tblock = (n · r + f) · T Tp = n · b/Tblock

stages, x1-PPLn

Folded by a factor of k with Tblock = (n · k · r + f) · T Tp = n · b/Tblock

n pipeline stages, /k-PPLn

Unrolled by a factor of k with Tblock = (n · r/k + f) · T Tp = n · b/Tblock

n pipeline stages, xk-PPLn

HASH UNIT

SIPO

FSM1

SIPO

FSM1

SIPO

0

1

2

3

PISO

PISO

PISO

PISO

FSM1

0

1

2

3

FIFO

FIFO_CTRL

FIFO

FIFO

FIFO_CTRL

FIFO

FIFO_CTRL

FIFO

FSM2 FSM3

FIFO_CTRL

FIFO_CTRL

DATAPATH

FSM1

SIPO
b

w

w

b

b

b

b

w

w

w

b b

b

w

b w

b

w

w

w

w

w

ww

Fig. 3: Interface, high-level block diagram, and surrounding logic of the Hash Unit
for the pipelined architecture with four pipeline stages. Notation: SIPO – Serial-
In Parallel-Out unit, PISO – Parallel-In Serial-Out unit, w – input/output bus
width, w = 64 for all investigated algorithms, except SHA-2-256, where w = 32.

Input FIFOs serve as packet queues. Each FIFO communicates with the cor-
responding Serial-In Parallel-Out (SIPO) unit and the associated Finite State
Machine 1 (FSM1). FSM 1 is responsible for reading in the next block of data,
using b/w clock cycles, possibly in parallel with the Datapath processing the
previous block under the control of FSM2. Outputs corresponding to four in-
dependent packets are first stored in the corresponding Parallel-In Serial-Out
Units, and then multiplexed to the output FIFO.

All architectures have been modeled in VHDL-93. All VHDL codes have been
thoroughly verified using a universal testbench, capable of testing an arbitrary



8 E. Homsirikamol, M. Rogawski, and K. Gaj

hash function core. A special padding script was developed in Perl in order to
pad messages included in the Known Answer Test (KAT) files, distributed as a
part of each candidates submission package.

For synthesis and implementation, we have used tools developed by FPGA
vendors themselves:

• for Xilinx: Xilinx ISE Design Suite v. 12.4, including Xilinx XST,
• for Altera: Quartus II v. 10.1 Subscription Edition Software.

The generation of a large number of results was facilitated by an open source
benchmarking environment, ATHENa (Automated Tool for Hardware Evalua-
tioN) [3][9]. The details of results and selected source codes are available at [3].

6 Results

The results of our implementations are summarized in Figs. 4-9, and in Tables
2 and 3. In Fig. 4, we present the detailed throughput vs. area graphs for all
implemented architectures of the 256-bit variants of six investigated algorithms
in Xilinx Virtex 5 FPGAs.

For BLAKE (see Fig. 4a), the two best architectures in terms of the through-
put to area ratio are: /4(h)/4(v), i.e., architecture with horizontal folding by a
factor of 4, combined with vertical folding by a factor of 4; and x1-PPL2, i.e.,
basic architecture with two pipeline stages. The good performance of the former
of these two architectures is associated with the significant reduction of the com-
plexity of the BLAKE PERMUTE function as a result of vertical folding by 4.
The good performance of the latter is associated with the perfectly symmetric
structure of the round, which makes it easy to divide the datapath into two
well-balanced pipeline stages. The two less successful architectures include x1
and /2(h)-PPL4. These architectures are not included in our combined graphs
shown in Figs. 5-8.

For Groestl (see Fig. 4b), we consider two major architectures: a) parallel
architecture, denoted (P+Q), in which Groestl permutations P and Q are im-
plemented using two independent units, working in parallel, and b) quasi-pipeline
architecture, denoted (P/Q), in which, the same unit is used to implement both
P and Q, and the computations belonging to these two permutations are inter-
leaved [16]. The best architecture overall appears to be the parallel architecture
(P+Q) in the basic version, with two pipeline stages, x1-PPL2. Vertical folding
by 2 provides quite substantial reduction in area, but at the price of an even
greater reduction in throughput. An attempt to pipeline Groestl using 7 pipeline
stages (x1-PPL7), using logic-only implementation of S-boxes, appeared to be
rather unsuccessful.

For JH (see Fig. 4c), we consider two major types of architectures: a) with
round constants stored in memory, JH (MEM), and b) with round constants
calculated on the fly, JH (OTF). Both approaches seem to result in a very
similar performance for the basic iterative architectures, x1. Neither vertical
folding nor pipelining seem to be efficient when applied directly to the basic



Throughput vs. Area Trade-offs in High-Speed Architectures 9

(a) BLAKE-256 (b) Groestl-256

(c) JH-256 (d) Keccak-256

(e) Skein-256 (f) SHA-256

Fig. 4: Throughput vs. Area graphs for multiple architectures of a) BLAKE-256,
b) Groestl-256, c) JH-256, d) Keccak-256, e) Skein-256, and f) SHA-256, imple-
mented in Xilinx Virtex 5 FPGAs. Notation: x1 – basic iterative architecture,
/k(h) – horizontally folded by a factor of k, /k(v) - folded vertically by a factor
of k, xk – unrolled by a factor of k, PPLn – pipelined with n pipeline stages,
(P + Q) – parallel architecture of Groestl, P/Q – quasi-pipelined architecture
of Groestl, MEM – architecture of JH with round constants stored in memory,
OTF – architecture of JH with round constants calculated on the fly, MU –
multi-unit architecture.

architecture. Vertical folding, somewhat unexpectedly, increases area, and the
basic architecture with two pipeline stages does not improve throughput. Both
undesired effects can be tracked back to the simplicity of the main round. Folding
does not reduce area, because of extra registers and multiplexers introduced to
a very simple round. Pipelining does not increase throughput, because a simple
basic round is hard to divide into two well balanced pipeline stages. As a result,



10 E. Homsirikamol, M. Rogawski, and K. Gaj

the basic iterative architecture remains most efficient in terms of the throughput
to area ratio.

For Keccak (see Fig. 4d), neither horizontal nor vertical folding applies. Two
pipeline stages increase throughput, but by a factor smaller than the increase in
the circuit area.

For Skein (see Fig. 4e), the unrolled by 4 architecture, x4, appears to be
significantly more efficient than the basic architecture, x1. At the same time,
unrolling by 8 does not give any additional improvement. The best results are
obtained by first unrolling basic architecture by a factor of four, and then pipelin-
ing the obtained circuit using two pipeline stages. Five pipeline stages have been
attempted as well because of an extra addition executed every fourth round, but
did not improve the overall throughput to area ratio.

For SHA-2 (see Fig. 4f), none of the discussed techniques applies. The im-
plementation of this function is already small, so reducing area is not necessary.
The best way to speed up this function is by using multiple independent units
of SHA-2 working in parallel. We denote this architecture by MUn, where n
denotes the number of hash units.

The combined graphs for the 256-bit variants and the 512-bit variants of all
algorithms, implemented using Xilinx Virtex 5 FPGAs, are presented in Figs. 5
and 6. Individual dots placed in regular intervals on the dashed lines represent
multi-unit architectures. Algorithms can be ranked first in terms of the through-
put to area ratio of their best architecture (as identified above). This is because
this architecture can be easily replicated, allowing for processing n streams of
data in parallel. Both throughput and area will increase by a factor of n.

The secondary criterion is the area of the best architecture. The smaller the
area, the denser is the graph representing possible locations of a given function
on the throughput vs. area graph.

The results for the 256-bit variants of hash functions, shown in Fig. 5, indi-
cate that the order of the SHA-3 candidates in terms of throughput, for imple-
mentations using 1500 or more CLB slices is: 1) Keccak, 2) JH, 3) Groestl, 4)
Skein, and 5) BLAKE. Keccak and JH clearly outperform SHA-2, while Groestl
becomes faster only with more than 3000 CLB slices. At the same time, only
BLAKE and SHA-2 have implementations based on basic iterative architecture
and/or folding, with area below 500 CLB slices.

The results for the 512-bit variants of hash functions, shown in Fig. 6, are
quite similar, with the exception that JH performs almost equally well as Keccak
(because of the decrease in the Keccak message block size from 1088 to 576
bits), SHA-2 is ranked third, Skein slightly outperforms Groestl (because of the
increase in the number of rounds of Groestl from 10 to 14), and BLAKE is a
distant sixth.

The performance for Altera devices, shown in Figs. 7 and 8 is somewhat dif-
ferent. For the 256-bit versions of the algorithms, Keccak is the only function
that outperforms SHA-2 in terms of the throughput to area ratio. JH is the third
in ranking, with two architectures offering the similar ratio as SHA-2. BLAKE,
Groestl, and Skein are in tie with each, with Groestl being somewhat disadvan-



Throughput vs. Area Trade-offs in High-Speed Architectures 11

Fig. 5: Combined Throughput vs. Area graph for multiple hardware architec-
tures of the 256-bit variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2,
implemented in Xilinx Virtex 5 FPGAs.

Fig. 6: Combined Throughput vs. Area graph for multiple hardware architec-
tures of the 512-bit variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2,
implemented in Xilinx Virtex 5 FPGAs.

taged by approximately twice as large area of its most efficient architecture. For
the 512-bit versions of the algorithms (see Fig. 8), Keccak and JH outperform
SHA-2, Skein is in tie with SHA-2, Groestl and BLAKE fall significantly behind
the current standard.

The numerical results for all our implementations are summarized in Tables 2
and 3. The best values of the throughput to area ratios and the best architectures
for each hash function are listed in bold in these tables.



12 E. Homsirikamol, M. Rogawski, and K. Gaj

Table 2: Results for the 256-bit variants of the Round 3 SHA-3 candidates and
SHA-2, implemented using all investigated architectures and four FPGA families:
Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera.
Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV
Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256

/4(h)/4(v) 381 215 1.77 412 181 2.28 370 915 0.40 378 915 0.41

/4(h) 1770 1547 1.14 1784 888 2.01 1708 3153 0.54 1747 3157 0.55

/2(h) 2253 1691 1.33 1956 1247 1.57 2151 3603 0.60 2302 3605 0.64

/2(h)-PPL2 3346 2083 1.61 3069 1792 1.71 3149 4571 0.69 3471 4570 0.76

x1 2561 2306 1.11 2388 1721 1.39 2195 4745 0.46 2305 4742 0.49

/2(h)-PPL4 4609 3261 1.41 5002 2516 1.99 4894 5080 0.96 5312 5049 1.05

x1-PPL2 4714 2666 1.77 5156 2206 2.34 4487 5420 0.83 4704 5431 0.87

x1-PPL4 6596 3784 1.74 7937 2616 3.03 7524 6273 1.20 8186 6278 1.30

Groestl-256 (P+Q)

/8(v) 1042 1197 0.87 1161 980 1.18 1103 2716 0.41 1094 2736 0.40

/4(v) 1948 1287 1.51 2289 1134 2.02 2129 4079 0.52 2058 4093 0.50

/2(v) 4014 1598 2.51 4890 1560 3.13 4623 6130 0.75 4349 6073 0.72

x1 8081 2591 3.12 9340 2630 3.55 9608 11122 0.86 9122 11154 0.82

x1-PPL2 13894 3057 4.55 17084 3034 5.63 13793 11727 1.18 13749 11727 1.17

x1-PPL7 11167 5582 2.00 N/A N/A N/A 13964 14487 0.96 14392 14470 0.99

Groestl-256 (P/Q)

/8(v) 691 973 0.71 808 813 0.99 812 2141 0.38 791 2141 0.37

/4(v) 1322 1477 0.89 1687 996 1.69 1401 3660 0.38 1378 3658 0.38

/2(v) 3136 1270 2.47 3301 1074 3.07 3198 4208 0.76 3209 4216 0.76

x1 6072 1912 3.18 4621 1737 2.66 6041 7498 0.81 5586 7287 0.77

JH-256 (MEM)

/2(v) 2088 1010 2.07 2202 861 2.56 2104 3365 0.63 2066 3377 0.61

x1 4624 909 5.09 5700 847 6.73 5146 3207 1.60 4868 3209 1.52

x1-PPL2 6104 1572 3.88 7176 1382 5.19 6225 5607 1.11 6001 5574 1.08

x2 4728 1891 2.50 4986 1613 3.09 5314 4254 1.25 5378 4262 1.26

x2-PPL2 8487 1851 4.58 8846 1934 4.57 9816 6303 1.56 9522 6259 1.52

JH-256 (OTF)

/2(v) 1981 1064 1.86 2219 915 2.42 2039 3464 0.59 2010 3469 0.58

x1 4725 914 5.17 5306 1039 5.11 5028 3380 1.49 4965 3383 1.47

Keccak-256

x1 12777 1395 9.16 11843 1165 10.17 12971 3909 3.32 13159 4129 3.19

x1-PPL2 15362 1980 7.76 16236 1446 11.23 19193 4955 3.87 18610 4953 3.76

x1-PPL4 12652 3849 3.29 13201 2785 4.74 16019 5391 2.97 17913 5402 3.32

Skein-256

x1 1307 1364 0.96 1382 1127 1.23 1108 3538 0.31 1247 3539 0.35

x4 2937 1476 1.99 3523 1216 2.90 2455 3965 0.62 2621 3968 0.66

x8 2931 1728 1.70 3275 1510 2.17 3178 5586 0.57 3372 5493 0.61

x4-PPL2 4950 2154 2.30 5858 1860 3.15 4273 4421 0.97 4596 4423 1.04

x4-PPL5 7240 3532 2.05 7465 2839 2.63 6772 5920 1.14 7693 5935 1.30

x8-PPL10 12602 8065 1.56 N/A N/A N/A 12283 10994 1.12 11378 10996 1.03

SHA-256

x1 1675 418 4.01 2273 286 7.95 1654 988 1.67 1744 988 1.77



Throughput vs. Area Trade-offs in High-Speed Architectures 13

Table 3: Results for the 512-bit variants of the Round 3 SHA-3 candidates and
SHA-2, implemented using all investigated architectures and four FPGA families:
Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera.
Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV
Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-512

/4(h)/4(v) 563 406 1.39 612 324 1.89 485 1664 0.29 546 1675 0.33

/4(h) 2287 2935 0.78 2709 1936 1.40 2230 6137 0.36 2477 6161 0.40

/2(h) 3159 3337 0.95 3187 2628 1.21 2905 7127 0.41 3288 7128 0.46

/2(h)-PPL2 4544 3912 1.16 4821 3642 1.32 4033 8960 0.45 4780 8962 0.53

x1 3401 3984 0.85 3273 3823 0.86 2947 9251 0.32 3310 9268 0.36

/2(h)-PPL4 6035 5911 1.02 6948 4922 1.41 5535 9698 0.57 7521 9703 0.78

x1-PPL2 6405 5730 1.12 6426 4922 1.31 5549 10616 0.52 6222 10627 0.59

x1-PPL4 3825 7497 0.51 3607 6234 0.58 4952 12100 0.41 5594 12100 0.46

Groestl-512 (P+Q)

/8(v) 1351 2249 0.60 1484 1837 0.81 1496 5312 0.28 1367 5303 0.26

/4(v) 2533 2263 1.12 2933 2237 1.31 2902 8031 0.36 2692 7945 0.34

/2(v) 4914 3079 1.60 6257 3154 1.98 5985 12295 0.49 5851 12216 0.48

x1 10124 5254 1.93 11566 5106 2.27 12393 21854 0.57 12164 21847 0.56

x1-PPL2 13628 6258 2.18 N/A N/A N/A 17050 22570 0.76 17196 22412 0.77

x1-PPL7 12669 11194 1.13 N/A N/A N/A 17635 29320 0.60 18395 28976 0.63

Groestl-512 (P/Q)

/8(v) 984 1908 0.52 1037 1406 0.74 1052 4749 0.22 1010 4744 0.21

/4(v) 1783 2516 0.71 2145 1787 1.20 1855 6000 0.31 1945 6301 0.31

/2(v) 4139 2161 1.92 4442 2172 2.04 4550 7417 0.61 4352 7426 0.59

x1 7819 3821 2.05 8468 3658 2.31 8029 14445 0.56 7944 14461 0.55

JH-512 (MEM)

/2(v) 2187 1102 1.98 2392 1002 2.39 2199 3621 0.61 2076 3620 0.57

x1 4624 909 5.09 5700 847 6.73 5146 3207 1.60 4868 3209 1.52

x1-PPL2 4610 1973 2.34 5007 1745 2.87 5208 4514 1.15 5261 4527 1.16

x2 6321 1723 3.67 6935 1425 4.87 6309 5769 1.09 6176 5806 1.06

x2-PPL2 8523 2148 3.97 8321 1895 4.39 9704 6335 1.53 9328 6307 1.48

JH-512 (OTF)

/2(v) 2068 1041 1.99 2287 955 2.39 2099 3701 0.57 2134 3816 0.56

x1 4725 914 5.17 5306 1039 5.11 4912 3548 1.38 4860 3549 1.37

Keccak-512

x1 6556 1220 5.37 7225 1231 5.87 6859 3477 1.97 6805 3470 1.96

x1-PPL2 8056 1498 5.38 8853 1470 6.02 9836 4431 2.22 9490 4418 2.15

x1-PPL4 7095 3756 1.89 7202 2650 2.72 9440 5175 1.82 9328 5201 1.79

Skein-512

x1 1325 1457 0.91 1356 1155 1.17 1082 3632 0.30 1229 3631 0.34

x4 2999 1537 1.95 3321 1258 2.64 2398 4074 0.59 2619 4093 0.64

x8 2810 1658 1.70 3113 1591 1.96 3111 5571 0.56 3296 5573 0.59

x4-PPL2 5013 2314 2.17 5649 1818 3.11 4236 4677 0.91 4607 4680 0.98

x4-PPL5 6141 3942 1.56 7664 3209 2.39 6378 6189 1.03 6977 6179 1.13

x8-PPL10 10973 8831 1.24 11982 7323 1.64 10839 11204 0.97 10945 11203 0.98

SHA-512

x1 2267 818 2.77 3081 592 5.20 2146 2072 1.04 2399 2073 1.16



14 E. Homsirikamol, M. Rogawski, and K. Gaj

Fig. 7: Combined Throughput vs. Area graph for multiple hardware architec-
tures of the 256-bit variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2,
implemented in Altera Stratix III FPGAs.

Fig. 8: Combined Throughput vs. Area graph for multiple hardware architec-
tures of the 512-bit variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2,
implemented in Altera Stratix III FPGAs.

Additionally, we have also performed an initial study on the influence of
padding units on the ranking of the candidates. Based on this study, the largest
decrease in the throughput to area ratio caused by adding a padding unit to the
basic architecture of a SHA-3 candidate has not exceeded 16%. So small varia-
tions in this ratio are not likely to affect the overall ranking of the candidates.



Throughput vs. Area Trade-offs in High-Speed Architectures 15

7 Conclusions

In this paper, we have performed a systematic investigation of high-speed hard-
ware architectures for the five final SHA-3 candidates. The investigated archi-
tectures were based on the concepts of the basic iterative architecture, horizon-
tal folding, vertical folding, unrolling, pipelining, and parallel processing using
multiple independent units. Each architecture was implemented using four high-
performance FPGA families: Virtex 5 and Virtex 6 from Xilinx, and Stratix III
and Stratix IV from Altera. Based on the obtained results, we have identified
the most efficient hardware architecture for each of the investigated algorithm,
based on the best throughput to area ratio.

In case of four out of five candidates (all except JH), the most efficient ar-
chitecture appeared to be a pipelined architecture. The optimum number of
pipeline stages was specific to the algorithm, and was equal to two for Keccak
and Groestl, and four for BLAKE. The optimum pipelined architecture for Skein
was the architecture with four rounds unrolled, and n pipeline stages, where the
optimum value of n was equal to two for Xilinx high-performance FPGAs, and
five for Altera high-performance FPGAs.

The results for all investigated functions, and the most successful architec-
tures have been then summarized on the comprehensive throughput vs. area
graphs. These graphs have revealed that Keccak is the only candidate that con-
sistently outperforms SHA-2 for all considered FPGA families and two hash
function variants (with 256-bit and 512-bit output). The only drawback of this
function appears to be that it is not suitable for any kind of folding, and thus
requires a quite substantial minimum area (in the range of 1400 CLB slices in
Virtex 5) to be implemented in its basic iterative version.

JH performed better than SHA-2 in three out of four scenarios. It was out-
performed by SHA-2 only for the 256-bit function variants implemented using
Altera FPGAs. Interestingly, JH is most efficient in its basic iterative architec-
ture, and is not suitable for either folding or inner-round pipelining.

Groestl was the only other candidate outperforming SHA-2 in at least one
scenario, for the 256-bit variants implemented using Virtex 5. However this ad-
vantage was reached only for the relatively large area of about 3000 CLB slices.
Although Groestl appeared to be very suitable for vertical folding, the very na-
ture of this technique caused that the decrease in area was accompanied by the
very significant decrease in speed.

Skein is the only finalist that can substantially benefit from unrolling. It is
also the fastest for the pipelined versions of the 4x unrolled architecture, and is
the only algorithm that can be pipelined up to 10 times. It performs particularly
well compared to other algorithms for the 512-bit variants of hash functions
implemented using Altera.

BLAKE is the algorithm with the highest flexibility, and the largest number
of potential architectures. It can be easily folded horizontally and vertically by
factors of two and four. It can also be easily pipelined even in the folded archi-
tectures. It is also the only algorithm that has a relatively efficient architecture
that is smaller than the basic iterative architecture of SHA-2.



16 E. Homsirikamol, M. Rogawski, and K. Gaj

Our future work will include experimental testing of all developed high-speed
architectures of the SHA-3 finalists, using high-performance FPGA boards based
on Xilinx and Altera FPGAs, equipped with high-speed communication inter-
face, such as PCI Express.

Acknowledgments. The authors would like to thank Ambarish Vyas for pre-
liminary results regarding hash cores with padding units, and Rajesh Velegalati
for extensive help with multiple ATHENa runs.

References

1. Cryptographic Hash Algorithm Competition, http://csrc.nist.gov/groups/ST/
hash/sha-3.

2. SHA-3 Hardware Implementations, http://ehash.iaik.tugraz.at/wiki/SHA-3_

Hardware_Implementations.
3. ATHENa Project Website, http://cryptography.gmu.edu/athena.
4. Akin, A., Aysu, A., Ulusel, O.C., and Savas, E.: Efficient Hardware Implementation

of High Throughput SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish for
Single- and Multi-Message Hashing. 2nd SHA-3 Candidate Conf. (2010)

5. Baldwin, B., et al.: FPGA Implementations of the Round Two SHA-3 Candidates.
2nd SHA-3 Candidate Conf. (2010)

6. Beuchat, J.-L., Okamoto, E. , and Yamazaki, T.: A Compact FPGA Implementation
of the SHA-3 Candidate ECHO. Cryptology ePrint Archive, Report 2010/364 (2010)

7. Detrey, J., Gaudry, P., and Khalfallah, K.: A Low-Area Yet Performant FPGA
Implementation of Shabal. Proc. SAC’10 (2010) 99–113

8. Gaj, K., Homsirikamol, E., and Rogawski, M.: Fair and Comprehensive Methodology
for Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates
Using FPGAs. Proc. CHES’10 (2010) 264-278.

9. Gaj, K., Kaps, et al.: ATHENa – Automated Tool for Hardware EvaluatioN: Toward
fair and comprehensive benchmarking of cryptographic hardware using FPGAs.
Proc. FPL’10 (2010)

10. Guo, X., Huang, S., Nazhandali, L., and Schaumont, P.: Fair and Comprehensive
Performance Evaluation of 14 Second Round SHA-3 ASIC Implementations. 2nd
SHA-3 Candidate Conf. (2010)

11. Henzen, L., et al.: Developing a hardware evaluation method for SHA-3 candidates.
Proc. CHES’10 (2010) 248-263

12. Homsirikamol, E., Rogawski, M., and Gaj, K.: Comparing Hardware Performance
of Fourteen Round Two SHA-3 Candidates Using FPGAs. Cryptology ePrint
Archive, Report 2010/445 (2010)

13. Matsuo, S., et al.: How Can We Conduct “Fair and Consistent” Hardware Evalu-
ation for SHA-3 Candidate? 2nd SHA-3 Candidate Conf. (2010)

14. Nechvatal, J., et al.: Report on the Development of the Advanced Encryption
Standard (AES), http://csrc.nist.gov/archive/aes/round2/r2report.pdf.

15. Sklavos, N., and Kitsos, P.: BLAKE HASH Function Family on FPGA: From the
Fastest to the Smallest. Proc. ISVLSI’10 (2010)

16. Tilich, S., et al.: High-speed Hardware Implementations of Blake, Blue Mid-
night Wish, Cubehash, ECHO, Fugue, Groestl, Hamsi, JH, Keccak, Luffa, Shabal,
Shavite-3, SIMD, and Skein, Cryptology ePrint Archive, Report 2009/510 (2009).


