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1 Mixed-Integer Constrained Grey-Box Optimization (MICGB) | 3

Optimization of simulations over general constrained mixed-integer sets,
where simulations are expressed as a grey-box, i.e. computations using a
mix of

1 closed-form analytical expressions

2 evaluations of numerical black-box functions that may be

> non-differentiable

> computationally expensive
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Wide-range of real-world applications across diverse commercial and
industrial domains:

Decision Guidance for
Logistics

Decision Guidance for
Manufacturing

Decision Guidance for
Supply Chains
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1 Key Contributions | 6

I GreyOpt algorithmic framework that leverages the partially
analytical structure for MICGB optimization by:

> dynamically constructing surrogates for embedded black-box functions
in multiple regions of the search space

- derivative-based solvers on the surrogates for local improvement
> recursively partitioning regions to refine the best points found

- extends Moore interval arithmetic (Moore, 1966) with quadric
under/over estimators for approximating the intervals of grey-box
objective and constraint functions

I Experimental study of GreyOpt’s performance on a set of 25
MICGB optimization problems

> significantly outperforms three derivative-free optimization algorithms
> significantly outperforms BONMIN with random restart (even for

problems with cheap black-box functions)
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2 MICGB Optimization Problem Formulation | 8

minimize
x∈Rn, y∈Rm

f(x, y) (1a)

subject to gL ≤ g(x, y) ≤ gU (1b)
xL ≤ x ≤ xU (1c)
yL ≤ y ≤ yU (1d)
y ∈ Zm (1e)

where
I f : Rn × Rm → R is the objective function
I g : Rn × Rm → Rq is the vector-valued function of constraints
I x ∈ Rn are the real decision variables
I y ∈ Rm are the integer decision variables
I n, m, q ∈ N0



2 MICGB Optimization Problem Formulation (continued) | 9

Functions f(x, y) and g(x, y) provided as a factorized grey-box simulation
of K ∈ N assignments:

(ei , Ei(ai))K
i=1 (2)

I the values of f(x, y) and g(x, y) correspond to particular ei in the list

I ai is a sequence of zero or more elements from x, y, and (e1, ..., ei−1)

I Ei is one of the following:
> a constant tensor of real-valued numbers
> a tensor of real-valued expressions from ai, or any slice thereof
> a closed-form analytical expression in terms of the elements of input ai

> an evaluation of a black-box function RN → RM on input ai
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3 Sample Restoration for White-Box Constraints | 15

minimize
x∈Rn, y∈Rm

‖x0 − x‖2 + ‖y0 − y‖2 (3a)

subject to wL ≤ w(x, y) ≤ wU (3b)
xL ≤ x ≤ xU (3c)
yL ≤ y ≤ yU (3d)
y ∈ Zm (3e)

where
I (x0, y0) is the sample point to restore
I (x, y) are the decision variables representing the restored point
I w : Rn × Rm → Rq is the vector-valued function of the white-box

constraints from the original problem (i.e. no black-box functions)



3 The GreyOpt Algorithm Framework | 16

Initialize

Terminate

Converged?

Select Region

Sample Region

Calibrate Region 
Surrogates

Cluster

Refine

Any Points 
Improved?

Truncate Regions & 
Update Champion

YES

NO

NO

YES

surrogate-based 
local improvement 

for each sample



3 The GreyOpt Algorithm Framework | 17

Initialize

Terminate

Converged?

Select Region

Sample Region

Calibrate Region 
Surrogates

Cluster

Refine

Any Points 
Improved?

Truncation & 
Update Champion

YES

NO

NO

YES

for each sample

Surrogate Improve 
(IPOPT)

Improved? 
(Surrogate)

Separable Improve 
(BONMIN)

Add Region & 
Update Champion

Integer 
Feasible?

Separable? Improved?

Surrogate Repair 
(BONMIN)

NO

NO

NO NO

YES

YES

YES YES



3 Improvement for Separable Problems | 18

White-Box Decision Variable
A decision variable that does not contribute to the input of any black-box
functions.

Separable Problem
A problem with at least one white-box decision variable.

If the problem is separable, run convex mixed-integer nonlinear solver
directly on the problem:
I uses initial values from improved sample for white-box decision

variables
I fixes all other decision variables to the values of the current region’s

champion point
I uses cached values for black-box functions to prevent costly

re-evaluations
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3 Refinement | 21

Otherwise, the Refine routine replaces current region with a set new
regions by

I expanding the champion point of the current region, one variable at a
time, into a new region until

> constraint interval is approximately feasible
> lower bound of objective interval is approximately lower than objectives

of all other feasible champion points
I recursively partitioning this region with fathoming based on

approximated interval analysis
> want to ignore expected non-feasible and sub-optimal regions
> Moore interval arithmetic (Moore, 1966) used with quadric under/over

estimators for embedded black-box functions



3 Calibration of Quadric Surrogates for Underestimation | 22

For each black-box function B : Rn → Rm, fit quadric underestimator:

minimize
A,B,C

‖Y − (AX◦2 + BX + CJ)‖2 (4a)

subject to Y − (AX◦2 + BX + CJ) ≥ ε (4b)
∀i ∀j, Aij ≥ ε (4c)

where
I A ∈ Rm×n, B ∈ Rm×n, C ∈ Rm×1 and J ∈ {1}1×s

I X ∈ Rn×s (i.e. input samples)
I Y ∈ Rm×s (i.e. output samples)
I s is the sample size
I ◦ denotes element-wise exponentiation
I ε small positive number constant to ensure convexity

Corresponding problem for quadric overestimator
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I Currently, no standard benchmark problem sets exist for MICGB
> MINLPLib for mixed-integer nonlinear programming
> MIPLIB for mixed-integer linear programming
> BBOB for black-box optimization

I Developed tool to generate MICGB problems modeled in Python from
MINLP problems modeled in AMPL

> nonlinear terms in the objective and constraints replaced with calls to,
otherwise equivalent, black-box functions

I From all 1704 problems in MINLPLib, study considered problems with
file size less than 10KB (636 problems)

> 310 problems successfully translated by tool (out of the 636)
> 25 problems randomly selected for study (from the 310)

- over 39 CPU days to complete
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I Compared the performance of GreyOpt against all heuristic global
optimization algorithms in Pygmo2 that support mixed-integer
programming:

> GACO – Extended Ant Colony Optimization (Schlüter et al., 2009)

> IHS – Improved Harmony Search (Mahdavi et al., 2007)

> SGA – Simple Genetic Algorithm (Oliveto et al., 2007)
- Using Pygmo2’s self-adaptive constraint handling algorithm

I Also compared against BONMIN (Bonami et al., 2008) with random
restarts

> Gradients computed by CasADi (Andersson et al., 2019)
- Automatic differentiation for analytical expressions
- Finite differences for black-box function calls

I Algorithm parameters were set to their defaults



4 Experimental Setup | 29

I Black-box time (BBT) parameter controls how much additional CPU
seconds for each black-box function call

> three BBT levels tested: 0 seconds, 1 second and 10 seconds
> implemented without wasting additional CPU cycles (i.e. accounting

mechanism)

I All experiments were run on ARGO-1, a research computing cluster
provided by the Office of Research Computing at George Mason
University.

> 3 BBT levels × 25 problems × 5 algorithms = 375 experiments
> 15 trials per experiment (median BBT-adjusted CPU time reported)
> 10 CPU minutes per trial (before BBT-adjustment)
> 937.5 CPU hours on cluster (before BBT-adjustment)
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I No algorithm in the set A of algorithms compared is globally
convergent for the set P of problems of the study

I Relative convergence test used for each algorithm a ∈ A on each
problem p ∈ P:

f∗ − fa >= (1 − τ)(f∗ − f∗) (5)

> f∗: worst objective value of the first feasible points found by each
algorithm in A for problem p

> f∗: best objective value of all feasible points found by each algorithm
in A for problem p

> fa: objective value of best point found by algorithm a for problem p
(∞ if not feasible)

> τ , 10−3 is the tolerance parameter (same as Costa and Nannicini
(2018))



4 Evaluation Methodology (continued) | 31

Data profile (Moré and Wild, 2009) for each algorithm a ∈ A:

da(x) , |{p ∈ P : tp,a ≤ x}|
|P|

(6)

Performance profile (Dolan and Moré, 2002) for each algorithm a ∈ A:

ρa(x) , |{p ∈ P : rp,a ≤ x}|
|P|

(7)

I tp,a: minimum BBT-adjusted CPU seconds that algorithm a needed to
converge for problem p (∞ if it failed to converge)

I rp,a: performance ratio (Dolan and Moré, 2002) for problem p ∈ P
and algorithm a ∈ A

rp,a ,
tp,a

min{tp,a : a ∈ A}
(8)
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4 Results: Black-Box Time (BBT) = 1 second (per call) | 33
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4 Results: Black-Box Time (BBT) = 10 seconds (per call) | 34
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5 Conclusions | 36

I Proposed the GreyOpt algorithmic framework for the heuristic
global optimization of MICGB optimization problems

I GreyOpt shows how the partially analytical structure of MICGB
optimization problems can be used to guide the exploration of the
search space

> dynamically constructed surrogates
> approximated interval analysis

I GreyOpt significantly outperforms three black-box optimization
algorithms, as well as BONMIN with random restarts, on 25 MICGB
optimization problems derived from MINLPLib



5 Future Work | 37

Possible directions for future work include:

I support for user-provided surrogate models

I support for multi-objective optimization

I better support for the optimization of problems with noisy black-box
functions

I incorporating meta-optimization techniques for the problem-specific
configuration of GreyOpt’s parameters
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