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@ Research Problem and Key Contributions
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1 Mixed-Integer Constrained Grey-Box Optimization (MICGB)

Optimization of simulations over general constrained mixed-integer sets,
where simulations are expressed as a grey-box, i.e. computations using a

mix of

1 closed-form analytical expressions

2 evaluations of numerical black-box functions that may be

> non-differentiable

> computationally expensive



1 MICGB Optimization Applications

Wide-range of real-world applications across diverse commercial and
industrial domains:

Decision Guidance for
Logistics

Decision Guidance for

Decision Guidance for
Manufacturing

Supply Chains
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1 Research Problem: Efficiency versus Versatility
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1 Key Contributions

» GREYOPT algorithmic framework that leverages the partially
analytical structure for MICGB optimization by:

dynamically constructing surrogates for embedded black-box functions
in multiple regions of the search space

- derivative-based solvers on the surrogates for local improvement

recursively partitioning regions to refine the best points found

- extends Moore interval arithmetic (Moore, 1966) with quadric
under/over estimators for approximating the intervals of grey-box
objective and constraint functions

» Experimental study of GREYOPT's performance on a set of 25
MICGB optimization problems

significantly outperforms three derivative-free optimization algorithms

> significantly outperforms BONMIN with random restart (even for
problems with cheap black-box functions)
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® MICGB Optimization Problem Formulation
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2 MICGB Optimization Problem Formulation 8

inimize - f(,0) (12)
subject to g1 < g(z,y) < g (1b)
<z <ay (1c)
yL <y < yu (1d)
yezm (1e)

where
> f:R"™ x R™ — R is the objective function
> g:R™ x R™ — R? is the vector-valued function of constraints
» 1 € R™ are the real decision variables
> y € R™ are the integer decision variables

> n,m,q € Ny




2 MICGB Optimization Problem Formulation (continued)

Functions f(z,y) and g(z,y) provided as a factorized grey-box simulation
of K € N assignments:

(e £ Ei(a:))i, (2)

> the values of f(x,y) and g(x,y) correspond to particular e; in the list
> a; is a sequence of zero or more elements from z, y, and (eq, ..., e;—1)

» FE; is one of the following:

> a constant tensor of real-valued numbers

Vv

a tensor of real-valued expressions from a;, or any slice thereof

> a closed-form analytical expression in terms of the elements of input a;
> an evaluation of a black-box function RN — R™ on input a;

Z
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© The GreyOpt Algorithm Framework
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3 The GreyOpt Algorithm Framework
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3 Sample Restoration for White-Box Constraints

,Minimize [z = zll2 + llyo — yll2 (3a)
subject to  wr < w(z,y) < wy (3b)
xp <x<ay (3¢)
yr <Y <yu (3d)
yezm (3e)

where
> (x0,%0) is the sample point to restore
» (z,y) are the decision variables representing the restored point

> w:R™ x R™ — RY? is the vector-valued function of the white-box
constraints from the original problem (i.e. no black-box functions)
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3 The GreyOpt Algorithm Framework
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3 Improvement for Separable Problems

White-Box Decision Variable

A decision variable that does not contribute to the input of any black-box
functions.

Separable Problem

A problem with at least one white-box decision variable.

If the problem is separable, run convex mixed-integer nonlinear solver
directly on the problem:

» uses initial values from improved sample for white-box decision
variables

> fixes all other decision variables to the values of the current region's
champion point

» uses cached values for black-box functions to prevent costly
re-evaluations ~
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3 Refinement

Otherwise, the Refine routine replaces current region with a set new
regions by

» expanding the champion point of the current region, one variable at a
time, into a new region until

constraint interval is approximately feasible

lower bound of objective interval is approximately lower than objectives
of all other feasible champion points

> recursively partitioning this region with fathoming based on
approximated interval analysis

want to ignore expected non-feasible and sub-optimal regions

> Moore interval arithmetic (Moore, 1966) used with quadric under/over
estimators for embedded black-box functions
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3 Calibration of Quadric Surrogates for Underestimation

For each black-box function B : R™ — R™, fit quadric underestimator:

minimize ||V — (AX°? + BX + CJ)||2 (4a)

A,B,C
subject to Y — (AX? + BX +CJ) > ¢ (4b)
Vi VJ,AU >€ (4C)

where
> AeR™n" BeR™" CeR™ ! and Je {1}
> X € R"*? (i.e. input samples)
> Y € R™** (i.e. output samples)
» s is the sample size
» © denotes element-wise exponentiation
» ¢ small positive number constant to ensure convexity

Corresponding problem for quadric overestimator
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3 Calibration of Quadric Surrogates for Over/Underestimation |23
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4 Test Problems

» Currently, no standard benchmark problem sets exist for MICGB
MINLPLib for mixed-integer nonlinear programming
> MIPLIB for mixed-integer linear programming

BBOB for black-box optimization

» Developed tool to generate MICGB problems modeled in Python from
MINLP problems modeled in AMPL

nonlinear terms in the objective and constraints replaced with calls to,
otherwise equivalent, black-box functions

» From all 1704 problems in MINLPLib, study considered problems with
file size less than 10KB (636 problems)

> 310 problems successfully translated by tool (out of the 636)

25 problems randomly selected for study (from the 310)
- over 39 CPU days to complete

vvvvvvvvvv



4 Test Algorithms

» Compared the performance of GREYOPT against all heuristic global
optimization algorithms in Pygmo2 that support mixed-integer

programming:
>  GACO - Extended Ant Colony Optimization (Schliiter et al., 2009)
> IHS — Improved Harmony Search (Mahdavi et al., 2007)

> SGA — Simple Genetic Algorithm (Oliveto et al., 2007)
- Using Pygmo2's self-adaptive constraint handling algorithm

> Also compared against BONMIN (Bonami et al., 2008) with random
restarts

> Gradients computed by CasADi (Andersson et al., 2019)
- Automatic differentiation for analytical expressions
- Finite differences for black-box function calls

Z
» Algorithm parameters were set to their defaults MASON
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4 Experimental Setup

> Black-box time (BBT) parameter controls how much additional CPU
seconds for each black-box function call
three BBT levels tested: 0 seconds, 1 second and 10 seconds
> implemented without wasting additional CPU cycles (i.e. accounting
mechanism)

> All experiments were run on ARGO-1, a research computing cluster
provided by the Office of Research Computing at George Mason
University.
3 BBT levels x 25 problems x 5 algorithms = 375 experiments
> 15 trials per experiment (median BBT-adjusted CPU time reported)
10 CPU minutes per trial (before BBT-adjustment)
937.5 CPU hours on cluster (before BBT-adjustment)
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4 Evaluation Methodology

» No algorithm in the set A of algorithms compared is globally
convergent for the set P of problems of the study

> Relative convergence test used for each algorithm a € A on each
problem p € P:
fo—=fa>=A=7)(fs = ") (5)

> f«: worst objective value of the first feasible points found by each
algorithm in A for problem p

> f*: best objective value of all feasible points found by each algorithm
in A for problem p

> fq: objective value of best point found by algorithm a for problem p
(o0 if not feasible)

7 £ 1073 is the tolerance parameter (same as Costa and Nannicini P

(2018)) MaEoR
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4 Evaluation Methodology (continued)

31

Data profile (Moré and Wild, 2009) for each algorithm a € A:

da($) é |{p epP ‘:;Tﬂ S ZL'}| (6)

Performance profile (Dolan and Moré, 2002) for each algorithm a € A:

7| ()

p (I)é |{p€’P:T;D7a <IIZH

» t, 4 minimum BBT-adjusted CPU seconds that algorithm a needed to
converge for problem p (oo if it failed to converge)

» 1,4 performance ratio (Dolan and Moré, 2002) for problem p € P
and algorithm a € A

tpa
min{t,:a € A}

Tp,a =




Results: Black-Box Time (BBT) = 0 seconds (per call)
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Results: Black-Box Time (BBT) = 1 second (per call)
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Results: Black-Box Time (BBT) = 10 seconds (per call)
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5 Conclusions

» Proposed the GREYOPT algorithmic framework for the heuristic
global optimization of MICGB optimization problems

» GREYOPT shows how the partially analytical structure of MICGB
optimization problems can be used to guide the exploration of the
search space

dynamically constructed surrogates
approximated interval analysis

» GREYOPT significantly outperforms three black-box optimization
algorithms, as well as BONMIN with random restarts, on 25 MICGB
optimization problems derived from MINLPLib
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5 Future Work

Possible directions for future work include:

>

>

>

support for user-provided surrogate models
support for multi-objective optimization

better support for the optimization of problems with noisy black-box
functions

incorporating meta-optimization techniques for the problem-specific
configuration of GREYOPT’s parameters
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Questions?

https://mason.gmu.edu/~mnachawa

mnachawa@gmail.com
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