
Consistent Query Plan Generation in
Secure Cooperative Data Access

Meixing Le, Krishna Kant, Sushil Jajodia
Center for Secure Information Systems
George Mason University, Fairfax, VA
{mlep, kkant, jajodia}@gmu.edu

Abstract—In this paper, we consider an environment where a
group of parties have their own relational databases, and provide
restricted access to other parties. In order to implement desired
bushiness services, each party defines a set of authorization rules
over the join of basic relations, and the accessible information is
constrained by these rules. However, authorization rules are given
based on the business requirements and the enforcement issues
of the rules may not have been taken into consideration. In this
paper, we propose an algorithm to check the rule enforceability
for each given authorization rule, and also present mechanisms
to generate a query execution plan for an authorized query
which is consistent with the authorization rules. As finding the
optimal query plan can be very difficult, we propose an algorithm
to generate efficient query plans. In addition, we compare the
generated query plans with the optimal query plans through case
studies. The results show the effectiveness of our approach.

Index Terms—Rule enforcement, Consistent query planning,
Cooperative data access

I. INTRODUCTION

Providing rich services to clients with minimal manual
intervention or paper documents requires the enterprises in-
volved in the service path to collaborate and share data in an
orderly manner. For instance, to arrange automated shipping
of merchandise and to enable automated status checking, the
e-commerce vendor and shipping company should be able to
exchange relevant information, perhaps in the form of database
queries. In such environments, data must be released only
in a controlled way among cooperative parties, subject to
the authorization policies established by them. In this paper,
we expose and study various facets of problem of such a
collaboration problem.

In general, enterprise data may appear in a variety of forms.
However, we assume that all data is stored with relational
tables in a standard form. In such a model, data access
privileges are given by a set of authorization rules, each of
which is defined either on original tables belonging to an
enterprise or over the lossless join of two or more of these. The
join operations, coupled with appropriate projection operations
define the access restrictions. For each query, the system
must ensure that it is allowed only if it satisfies authorization
rules. Although the problem is rather straightforward, there
are many hurdles in properly specifying and implementing the
authorization rules. Since the enterprises are allowed to specify
an arbitrary set of authorization rules, it is possible that there
is no way to derive a safe execution plan for certain rules. The

simplest way to illustrate this problem is by considering the
following situation: a rule specifies access to R ./ S (where R
and S are relations owned by two different parties); however,
no party has access to both R and S individually, and it is
impossible to do the join operation! Thus, a basic problem
is to determine the implementability of the rules and provide
good (perhaps optimal) query plans. If no implementation is
feasible, we may need trusted third parties to enforce the rules.
However, we plan to address this issue in future works.

We address the authorization problem in two steps. First,
we examine each authorization rule and check its possible
enforcement. To achieve that, we propose a constructive
mechanism that works from bottom-up, and it builds a graph
structure that captures the relationships among the enforceable
rules. This can be done once all the rules are given, and
we can do it as a pre-computing step. To actually answer
an authorized query, a query execution plan is needed, and
such a plan should be consistent with the given set of rules
so that no access restriction is violated. Once we know the
enforceability of the rules and the built graph structure, we
can do efficient query planning based on them. Queries that
are authorized by enforceable rules are guaranteed to have
safe execution plans. However, due to the large search space
for possible optimal query plans, finding the best plan for
an authorized query are not always possible. We show the
difficulty of finding optimal answer in our scenario, and how
it differs from classical query processing. To that end, we
propose an efficient algorithm that gives query plans based on
greedy heuristic. In addition, we demonstrate through simple
examples to show the effectiveness of our approach. At last,
we prove that our algorithms are both correct and complete.

The rest of the paper is organized as follows. Section II
briefly discusses the related work. Section III defines the
problem of cooperative access formally, introduces a number
of definitions and concepts, which are illustrated via a running
example. Section IV discusses the mechanism to check rule
enforceability. Section V analyzes the complexity of query
planning. Section VI describes the algorithm for generating
query plans. At last, Section VII is about conclusions and
future works.

II. RELATED WORK

In previous works, researchers proposed models for control-
ling the cooperative data release. The authorization rule model

in our paper is inspired by the study [9]. The main contribution
of that work is an algorithm to check if a query with a given
query plan tree can be safely executed. However, it does not
address the problem of how the given rules are implemented
and query plan trees are generated. We note in this regard that
regular query optimizers do not comprehend access restrictions
and may fail to generate some possible query plans. Thus, we
address these problems in this work.

In another work [8], the same authors evaluate whether a
query can be authorized if the given authorization rules can
be further composed with one another. Their solution uses a
graph model to find all the possible compositions of the given
rules, and checks the query against all the generated rules. In
contrast, we assume authorizations are explicitly given. Data
release is prohibited if there is no explicit authorization.

There are also existing works on distributed query pro-
cessing under protection requirements [4], [10], [14] which
considers a limited access pattern called binding pattern so
that the portion of data that can be accessed depends on the
input data. There are also classical works on query processing
in centralized and distributed systems [3], [13], [5], but they
do not deal with constraints from the data owners, and our
problem is different from these works.

Answering queries using views [12] is closer to our work,
since each authorization rule can be thought of as a view over
basic relations. These works can be used for query optimiza-
tion [6], [11], maintaining physical data independence [17] and
data integration [15]. Queries can also be rewritten using given
views with query rewriting techniques [18], and conjunctive
queries are used to evaluate the query equivalence and infor-
mation containment. The scenario we consider here is different
in that we cannot rewrite the queries in terms of rules without
knowing how the rules can be enforced. Once we know all the
enforcement of the rules and the query does have a consistent
query plan, then some of these works can be used to further
optimize the query plan. There are services such as Sovereign
joins [2] to provide third party join services, we can think this
as one possible third party model in our scenario. In addition,
there are some research [1], [7], [16] about how to secure the
data for out-sourced database services. These methods are also
useful for enforcing the authorization rules, but we consider
the scenario without any involvement of third parties.

III. PROBLEM AND DEFINITIONS

We consider a group of cooperating parties, and we assume
simple select-project-join queries (e.g., no cyclic join schemas
or queries). The query may be answered by any party that has
the required authorizations. We assume that the join schema
is given – i.e., all the possible join attributes between relations
are known. Each join in the schema is lossless so a join
attribute is always a key attribute of some relations. We assume
the rules to be upwards closed. That is, if two rules expressly
grant permission to access two different relations, say R and S,
then there also exists a rule providing access to their join result
R ./ S including all their attributes. It is reasonable since a
party could do any computation over the information given to

it. The cooperative parties are honestly follow the rules, and we
study the problems only involving existing cooperative parties,
without any third parties. The basic problems considered here
are as follows: Given a set of authorization rules R on N
cooperating parties, (a) identifies the subset of R that can
be enforced along with consistent plans, and determines the
maximal enforceable portions of these rules (b) derives a
query execution plan that is consistent with the rules R for
an incoming authorized query q.

A. A Running Example

Our running example for illustration models an e-commerce
scenario with four parties: (a) E-commerce, denoted as E, is
a company that sells products online, (b) Customer Service,
denoted C, that provides customer service functions (poten-
tially for more than one Company), (c) Shipping, denoted
S, provides shipping services (again, potentially to multiple
companies), and finally (d) Warehouse, denoted W , is the party
that provides storage services. To keep the example simple,
we assume that each party has but one relation described as
follows:

1) E-commerce (order id, product id, total) as E
2) Customer Service (order id, issue, assistant) as C
3) Shipping (order id, address, delivery type) as S
4) Warehouse (product id, location) as W

In the following, we use oid to denote order id for
short, pid stands for product id, and delivery stands for
delivery type. The possible join schema is also given in
figure 1. Relations E, C, S can join over their common
attribute oid; relation E can join with W over the attribute
pid. The relations are in BCNF, and the only FD (Functional
Dependency) in each relation is the underlined key attribute
determines the non-key attributes.

C (oid, issue, assistant)

S (oid, address, d_type)

E (oid, pid, total)

W (pid, location)

oid

oid

oi
d

pi
d

Fig. 1. The given join schema for the example

B. Authorization model and definitions

An authorization rule rt is a triple[At, Jt, Pt], where Jt is
called the join path of the rule, At is the authorized attribute
set, and Pt is the party authorized to access the data.

Definition 1: A join path is the result of a series of join
operations over a set of relations R1, R2...Rn with the spec-
ified equi-join predicates (Al1, Ar1), (Al2, Ar2)...(Aln, Arn)
among them, where (Ali, Ari) are the join attributes from two
relations. We use the notation Jt to indicate the join path of
rule rt. We use JRt to indicate the set of relations in a join
path Jt. The length of a join path is the cardinality of JRt.

We can consider a join path as the result of join operations
without limitations on the attributes. Thus, At is the set of
attributes projection on the join path that is authorized to be

Rule No. Authorized attribute set Join Path Party
1 {pid, location} W PW

2 {oid, pid} E PW

3 {oid, pid, location} E ./pid W PW

4 {oid, pid, total} E PE

5 {oid, pid, total, issue} E ./oid C PE

6 {oid, pid, total, issue, address} S ./oid E ./oid C PE

7 {oid, pid, location, total, address} S ./oid E ./pid W PE

8 {oid, pid, issue, assistant, total, address, delivery} S ./oid E ./oid C ./pid W PE

9 {oid, address, delivery} S PS

10 {oid, pid, total} E PS

11 {oid, pid, total, address, delivery} E ./oid S PS

12 {oid, pid, total, location} E ./pid W PS

13 {oid, location, pid, total, address, delivery} S ./oid E ./pid W PS

14 {oid, pid} E PC

15 {oid, issue, assistant} C PC

16 {oid, pid, issue, assistant} E ./oid C PC

17 {oid, pid, issue, assistant, total, address, location} S ./oid C ./oid E ./pid W PC

TABLE I
AUTHORIZATION RULES FOR E-COMMERCE COOPERATIVE DATA ACCESS

accessed by party Pt. Table I shows the set of rules given to
these parties. The first column is the rule number, the second
column gives the attribute set of the rules, join paths of the
rules are shown in the third column, and the last column shows
the authorized parties of the rules. We assume that each given
authorization rule always includes all of the key attributes
of the relations that appear in the rule join path. In other
words, a rule has all the join attributes on its join path. This
is a reasonable assumption as usually when the information is
released, it is always released along with the key attributes.

When a query is given, it should be answered by one of
the parties that have the authorization. Since our authorization
model is based on attributes, any attribute appearing in the
Selection predicate in an SQL query is treated as a Projection
attribute. In other words, the authorization of a PSJ query is
transformed into an equivalent Projection-Join query autho-
rization. Thus, a query q can be represented by a pair [Aq, Jq],
where Aq is the set of attributes appearing in the Selection and
Projection predicates, and the query join path Jq is the FROM
clause of an SQL query. For instance, there is an SQL query:

“Select oid, total, address From E Join S On E.oid =
S.oid Where delivery = ‘ground’”

The query can be represented as the pair [Aq, Jq], where Aq

is the set {oid, total, address, delivery}; Jq is the join path
E ./oid S. In fact, each join path defines a new relation/view,
and we say two join paths Ji and Jj are equivalent, noted
as Ji ∼= Jj , if any tuple in Ji appears in Jj and vice versa.
As information release is explicitly defined by the rules, an
authorized query must has a matching rule to allow the access.

Definition 2: A query q is authorized if there exists a rule
rt such that Jt ∼= Jq and Aq ⊆ At

The rule and the authorized query must have the equivalent
join paths. Otherwise, the relation/view defined by the rule
will have fewer or more tuples than the query asks for. Here
we don’t consider the situation where the projections on two
different join paths get the same result (e.g., by joining on
foreign keys) since data coming from different parties usually

does not have foreign key constrains. For instance, the example
query Q1 is authorized by r11, but it cannot be authorized by
r13. Although all the required attributes are authorized by r13,
their join paths are not equivalent.

On the other hand, “authorized” is only a necessary con-
dition for a query to be answered but not sufficient as some
of rules are not enforceable. For it to be sufficient, we need
to give at least one query execution plan to answer the query.
A query execution plan or “query plan” for short, includes
several ordered steps of operations over some information
and provides the resulting information to a party. As our
authorization model does not define selection operation, the
result of a query execution plan pl can also be presented with
a triple [Apl, Jpl, Ppl]. To answer a query, the query plan must
satisfy the following condition: A plan pl answers a query q, if
Jpl ∼= Jq and Aq ⊆ Apl. In the next subsection, we introduce
the notion of consistent query plan, and only consistent plans
are considered safe to answer the queries.

C. Query plan consistency

A query plan recursively contains a series of operations
over subplans until the subplans are access plans getting
information from basic relations. Each operation in the plan
takes the result of subplans as input and generates another plan
as output. In our context, the possible operations on plans are
projection, join and data transmission. For instance, there is an
enforcement plan for r3 in Table I, and such a plan contains
a join over two subplans on the data authorized by r1 and r2
respectively. PW owns the information authorized by r1, and
the subplan for it is an access plan reading the table W . The
sub plan for r2 includes an access plan reading table S at PS ,
and another operation transmitting the data from PS to Pw.
The example plan authorized by r3 has the Jpl = E ./pid W ,
and Apl = {oid, pid, location}. We say a rule rt authorizes
(�) a plan pl, if Jpl ∼= Jt, Ppl = Pt, and Apl ⊆ At.

Definition 3: An operation in a query plan is consistent
with the given rules R, if for the operation, there exist rules

that authorize access to the input tuples of the operation and
to the resulting output tuples.

For the three types of operations in our scenario, we give
the corresponding conditions for consistent operation.

1) Projection (π) is a unary operation. For a projection to
be consistent with the rules, there must be a rule rp
authorizes (�) the input information.

2) Join (./) is a binary operation, and two input subplans
pli1 and pli2 do a join operation and the resulting plan
plo = pli1 ./ pli2. For a join operation to be consistent
with R, all the three plans need to be authorized by
rules. Since join is performed at a single party, and rules
are upwards closed, if the input plans are authorized by
rules, the join operation is consistent.

3) Data transmission (→) is an operation involves two par-
ties. The input is a plan pli on a party Pi, and the output
is a plan plo for a party Po, where plo = pli → Po. In
our scenario, data cannot be freely transmitted between
parties. As each join path defines a different relation,
the receiving party must have a rule that is defined on
the equivalent join path as the information being sent.
Otherwise, the transmission is not safe. Therefore, a
data transmission operation to be consistent with R, if
∃ri, ro ∈ R, Ji ∼= Jo, Pi 6= Po and ri � pli, ro � plo. If
Pi is sending information with attributes not in Ao, Pi

should do a projection operation πAo(pli) first.
In the example, r8 authorizes PE to get information on

(S ./ E ./ C ./ W). If PS sends the information of r11 to
PE , it will not be allowed. Although the attribute set of r11
is contained by r8, there is no rule for PE to get data on the
join path of (E ./ S), and the data transmission is disallowed.

Definition 4: A query execution plan pl is consistent with
the given rules R, if for each step of operation in the plan is
consistent with the given rule set R.

IV. CHECKING RULE ENFORCEMENT

We introduce a few more concepts. A join path can be
enforced if there exists a consistent plan for it which enforces
all the key attributes of the relations in the join path. In some
cases, a rule does not have a total enforcement plan, but only
some partial plans. A partial plan only enforces a rule with an
attribute set that is a proper subset of the rule attribute set. We
say that an attribute set is a maximal enforceable attribute
set for a rule, if it is enforced by a plan of the rule, and there
is no other plan for the same rule that can enforce a superset
of these attributes. If the maximal enforceable attribute set is
equal to rule attribute set, the rule is totally enforceable.

Lemma 1: A rule has only one maximal enforceable at-
tribute set.

Proof: Each rule on a basic relation only has one maximal
enforceable attribute set since it is totally enforceable. A plan
for a rule is composed by subplans from other rules, and we do
not apply projections on any authorized attributes in the plans.
Thus, the join attributes are always preserved in all plans. All
plans for the same rule can be merged by joining over the

key attributes. Therefore, the resulting attribute set is the only
maximal enforceable attribute set for the rule.

A. Finding relevant information

As discussed, it is desired to have a mechanism checking
the rule enforceability for given set of rules so as to tell which
queries can be actually answered. To check the enforceability
of a rule, we check if the join path of the rule can be enforced,
and examine what is the maximal enforceable attribute set of
the rule. We propose a constructive mechanism that checks the
rules in a bottom-up manner.

When examining a rule [At, Jt, Pt], we call such a rule rt as
Target Rule, At as Target Set, Jt as Target Join Path, and Pt as
Target Party. All the other parties are Remote Parties. To check
the enforceability of rt, we first find relevant information that
can be obtained locally at Pt. If it is not enough, we check
the information on remote parties. On the same party, we call
a join path as a sub-join path of Jt if it contains a proper
subset of relations of JRt. Rules not on the sub-join paths
are not relevant to rt since any composition with these rules
results in information more than what rt authorizes. At party
Pt, a plan that is on a sub-join path of Jt is a relevant plan,
and the rule authoring it is a relevant rule of the target rule.
Parties having rules defined on the equivalent join path of Jt
are called Jt-cooperative parties, and information regulated
by Jt is allowed to be exchanged only between these parties.

As it proceeds bottom-up, when examining a target rule
with join path of length n, all the rules on join paths with
smaller lengths have already been examined. We assume
that each inspected enforceable rule is represented by an
enforcement plan with its maximal enforceable attribute set,
and we consider using these relevant plans to enforce the target
rule being inspected. We say “join among rules” below, which
refers to these enforcement plans. The iteration begins with
the rules defined on the basic relations on various parties.
These rules can always be enforced which only require data
owners sending their data to the authorized parties. Next,
the algorithm checks the rules in the order of join path
length. Meanwhile, it also builds a graph structure capturing
the enforceable information and the relationships among the
rules. Each node in the graph is an enforceable rule with its
maximal enforceable attribute set. All non-enforceable rules
and attributes are discarded. Two nodes on the same party
are connected if one is relevant to the other. Among different
parties, nodes can be connected if they have equivalent join
paths. Figure 2 shows the built graph for our running example.
The different parties are separated vertically. The bold boxes
show the basic relations owned by different parties. The
algorithm starts the iteration with the rules on basic relations
r1, r2, r4, r10, r14 and so on.

B. Checking local information for enforcement

When a target rule rt is inspected, the algorithm first checks
its enforceability locally using relevant rules on Pt. After that,
all the rules with equivalent join paths of Jt on Jt-cooperative
parties are locally checked respectively. Then the algorithm

checks the possible enforcement by exchanging information
among these parties. In figure 2, on the level of join path
length 2, the algorithm checks the rules with the order of r3,
r12, r5, r16, r11. Jt-cooperative parties such as PW and PS

on J3 will check the possible remote enforcement between
r3 and r12. To check local enforceability, the algorithm finds
its local relevant rules in the currently built graph structure.
It only checks with the top level rules in the graph, which
are the ones not connected to any higher level nodes (rules
with longer join paths). For example, in figure 2, when the
algorithm examines r13 on PS , r11, r12 are top level rules.
We take advantage of the upwards closed property, so that the
top level rules cover all possible join results among its lower
level rules, and it has the superset of attributes of its relevant
rules. If these top level rules cannot be composed to enforce
the Jt, there is no need to check other rules locally.

The next step is to check whether the join path Jt can be
enforced locally by performing joins among these top level
relevant rules. The algorithm checks each pair of these rules.
We check it pairwise because if a pair of them can join, the
result must be able to enforce Jt. To see if a pair of rules (rs,
rr) can join, the algorithm first tests their relation sets to check
if JRs

⋂
JRr = ∅. If they have overlapped relations, they can

join over the key attribute of the overlap part, and Jt can be
enforced. Otherwise, we need to further check the attributes
of two rules to see if they can perform the required join. If
Jt can be locally enforced, we mark rt as local enforceable
rules. Otherwise, it has to wait and see if Jt can be enforced
on remote parties. Meanwhile, the algorithm also computes
the union of the attributes from top level relevant rules. The
resulting attribute set Ar includes all attributes that can be
obtained locally if Jt can be enforced. It is always the case
that Ar ⊆ At since rules are upwards closed. If Ar 6= At,
we call the set of attributes At \Ar as missing attribute set
Am. The attributes in Am can only be obtained from it Jt-
cooperative parties. As in the example, the attribute assistant
in r8 cannot be found in its top level rules r7 and r5, so it is
a missing attribute.

oid, issue, pid, location total,
assistant, address,delivery

S �C �E �W

oid, pid,location
total, address, delivery

S �E �W

oid,pid,total
address,
delivery

E �S
oid, pid, issue,

assistant

C �E

oid,issue,
assistant

E
oid, pid,

total

E

oid, pid, total

E

oid, pid

S
oid, address,

delivery

E

oid, pid

C

PE PS
PCPw

oid, pid, location
total, address

S �E �W

W

pid, location

oid, pid, issue, assistant,
total, address, location

C �S �E �W

oid,
pid,total
location

E �W
oid, pid
location

E �W
oid, pid,

total,issue

E �C

oid,pid,issue,
total, address

S �E �C

LL L

L

L

r1 r2

r3

r4

r5

r6 r7

r8

r9 r10

r11
r12

r13

r14

r16

r15

r17

Fig. 2. Graph structure built for the example

C. Checking remote information for enforcement

The algorithm then checks the remote information that party
Pt can use to enforce the rule rt, so only Jt-cooperative

parties are checked. As the algorithm already checked rules
locally on Jt-cooperative parties, if there exists any party that
can enforce Jt, then such a plan can be shared among all
the Jt-cooperative parties. Thus, party Pt can get attributes
from all its Jt-cooperative parties to enforce rt. We take the
union of the attribute sets from all Jt-cooperative parties to
check if rt can be totally enforced. If the missing attribute
set Am ⊂ Ar1

⋃
Ar2 ...

⋃
Ark (where Ari is the relevant

attribute set on a Jt-cooperative party Pi), then rt can be
totally enforced. Otherwise, Am is updated by removing the
attributes appear in any Ari . Consequently, rt has a node in
the graph structure with the attribute set At \Am which is its
maximal enforceable attribute set, and edges are added among
the Jt-cooperative parties. For example, attribute delivery of
r8 cannot be found in its Jt-cooperative party PC either, so
r8 in the graph is represented with the attribute set without
delivery. We use bold font in figure 2 to indicate it is not
enforceable. In addition, since J6 cannot be enforced at any
party, r6 is not enforceable, and it will not be included in
the graph structure. Figure 2 gives the graph structure of the
example built by our algorithm, and the dashed box shows r6
is removed. The local enforceable rules are marked with “L”,
and the detailed algorithm is described in Algorithm 1.

Algorithm 1 Rule Enforcement Checking Algorithm
Require: All given authorization rule set R on all parties
Ensure: Find enforceable rules and build graph

1: Mark rules with length 1 as total enforceable rules
2: Get the maximal length of join path length N
3: for Join path of length 2 to N do
4: for Each join path Jt length equal to i do
5: AJt ← ∅, the set of shared attributes on Jt
6: for Each party Pt has a rule rt on Jt do
7: Obtain the set of top level relevant rules Rv

8: Add connection to these rules in graph
9: Av ← the set of attributes in Rv

10: Missing attribute set Am ← At

11: for Each pair of relevant rule (rs, rr) do
12: if rt is locally enforceable then
13: Am ← Am \Av

14: if Am 6= ∅ then
15: Put rt with Am into the Queue of Jt
16: AJt ← AJt

⋃
Av

17: for Each rule rt in the Queue of Jt do
18: if Jt can be enforced on some party then
19: Add connection to remote party in graph
20: Am ← Am \AJt
21: if Am 6= ∅ then
22: Replace At with At \Am in graph
23: else
24: rt cannot be enforced, remove it from graph
25: Join path length i++

Assuming the total number of rules is Nt, and the maximum
number of relevant rules of a rule is No, and checking attribute
sets takes constant C. Then the worst case complexity for
algorithm 1 is O(Nt ∗ N2

o ∗ C), where No is usually very
small. The algorithm can be used as a pre-compute step once
rules are given.

V. COMPLEXITY OF QUERY PLANNING

The above mechanism tells us which queries can be safely
answered. However, we still need to generate the consistent

plans. From performance perspective, we always want optimal
plans with minimal costs. Unfortunately, finding the optimal
query plan is NP -hard in our scenario.

Theorem 1: Finding the optimal query plan to answer an
authorized query is NP -hard.

Proof: The optimization of set covering problem is know
to be NP -hard. In the set covering problem, there is a set
of elements U = {A1, A2, ..., An}, and there is also a set of
subsets S = {S1, S2, ...Sm} where Si is a set of elements
from U and is assigned a cost. The task is to find C with
minimal total cost that is a subset of S and covers U . We
can convert it into our cooperative query planning problem.
Assuming there are two basic relations R and S which can
join together, we map each element in U into an attribute in
relation R. Attribute A0 is given to R and S as their key
attributes. Thereby, R has the schema {A0, A1, A2, ..., An},
and relation S is {A0, An+1}. We then consider a query with
the attribute set {A1, A2, ..., An} on the join path of R ./ S.
Thus, we can construct rules on m + 1 parties according to
the set covering problem. Party P0 has the rule with join path
R ./ S that authorizing the query. For each other party Pi, it
has a rule ri on R ./ S with the attribute set Si

⋃
{A0}. P0

cannot locally do the join R ./ S, but other parties can enforce
their rules ri locally, and their costs are known. Therefore, for
P0 to answer the query, it needs a plan bringing attributes
from other parties and merging them at P0 (multi-way join on
attribute A0) to answer the query. The optimal plan needs to
choose the rules with minimal costs, and the union of their
attribute sets must cover the query attribute set. If the optimal
query plan can be found in polynomial time, the set covering
problem also has a polynomial solution. Hence, finding the
optimal query plan in our scenario is NP -hard.

A. Query plan cost model

It is reasonable to assume that the numbers of tuples in the
relations are known. In addition, the join selectivity between
the relations are also known so that the size of join paths
can be estimated as well. The cost of a query plan mainly
includes two parts: 1) cost of the join operations, 2) cost of
data transmission among the parties. We assume joins are done
by nested loop and indices on join attributes are available. The
cost of a join operation between R and S can be estimated as:
α(Size(R) ∗ Size(S) ∗ P(R,S)) + (Access(R) + Size(R)),
where Size() is the number of tuples in the relation and
Access() is the cost of retrieving the relation. R is the smaller
relation, α is the cost of generating each tuple in the results,
and P(X,Y) is the known join selectivity. The costs of data
transmission are only decided by the size of the data being
shipped. The cost of moving R ./ S from a party to another
is β(Size(R) ∗ Size(S) ∗ P(R,S)), where β is the per tuple
cost for data transmission. Under such assumption, we can
compare the costs of different query plans.

B. Upper bound complexity of plan enumeration

Although finding an optimal query plan is NP -hard, we
want to see if it is possible to enumerate all possible query

plans and compare them to get the optimal one as the join
path length in our scenario is usually limited. We assume the
longest join path is 5, and we begin the process based on
the graph produced by the previous algorithm. When a query
comes in, we first filter out rules and attributes that are not
relevant. In the classical query processing, the query attributes
are always retrievable from the corresponding relations and
usually the generated plan does not contain repeated joins (two
join operands have overlapped relations). However, additional
join operations may be required in our scenario because of the
constraints of the rules. To enumerate the plans, we should not
only list the different ways to perform the join operations, but
also the different paths to retrieve the query attributes.

To generate a consistent plan for a query, we first need a
plan that enforces the query join path. Once we have such a
plan, it can further join with other plans to get all requested
attributes. Thereby, we first enumerate different possible ways
to enforce the query join path. As we consider the worst
case scenario, we assume the query join path is length of
5, and we examine the possible last join operations among
a pair of relevant rules to enforce the target join path. In
the worst case, the possible pairs of rules with different join
path lengths are (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), where two
numbers in parenthesis are the lengths of two relevant rules.
We cannot discard pairs with overlapped relations such as
(3, 3), (3, 4), (4, 2) because enforcing a longer join path may
be more efficient than a shorter one in our scenario. Next, we
need to recursively search for the possible ways to enforce
the join paths in each possible join pair listed. We give
the possible combinations for this recursive process below.
Moreover, instead of counting the possible ways locally, we
need to further consider the possibility that the join path is
enforced via a remote party.

E

PA

O,P,T,I,A

E C

O,P,T,I,A,D,Y
S E C

O,P,T,D,Y

E S

O,P

C

O,I

S

O,D

O,I,A,D,Y

C S

E

O,P,I

E C

O,P,I,Y
S E C

O.P,Y

E S

O,P

C

O,I

S

O,Y

O,I,Y

C S

PT

E

O,P,A

E C

O,P,A,Y
S E C

O.P,Y

E S

O,P

C

O,A

S

O,D

O,A,D

C S

E

O,T,I

E C

O,T,I,D
S E C

O.T,D

E S

O,T

C

O,I

S

O,D

O,I,D

C S

PB PC

R1 R2 R3

R4 R5 R6

R7

R8 R9 R10

R11 R12 R13

R14

R15 R16 R17

R18 R19 R20

R21

R22 R23 R24

R25 R26 R27

R28

Attribute names: O oid; P pid; T total; I issue; A assistant; D address; Y delivery

Fig. 3. A simple worst case example

We have to enumerate all possible ways of join path
enforcement instead of keeping only the optimal way to
do it because the optimal query plan does not necessarily
have the optimal enforcement plan for the query join path.
Besides the join path enforcement, additional steps are needed
to retrieve the missing attributes which are query attributes
but not enforced by the chosen join path enforcement plan.
Different join path enforcement plans may result in different
sets of missing attributes. Therefore, for each missing attribute
set, we need to further enumerate the steps that retrieve these
attributes via relevant rules on the cooperative parties. As
each missing attribute may appear in multiple relevant rules,
choosing the optimal set of relevant rules is similar to a set

covering problem. Thus, we need to enumerate all the possible
sets of relevant rules that cover the missing attributes to find
the optimal answer. Since it is similar to set covering problem,
given Nr relevant rules that have the missing attributes, there
are 2Nr -1 combinations to check. In addition, once we select a
set of rules, we still need to further find plans enforcing these
rules to known their costs.

To illustrate the complexity, we construct a simple example
with join path length of 3. In figure 3, there are four parties
and they all have rules on different join paths. The attribute
names are simplified to save space, and edges connecting
the rules with equivalent join paths across the parties are
also omitted to keep the graph clear. In the example, the
query asks for all the attributes and only r7 (dashed box)
can authorize the query. For various plans enforcing the target
join path, none of them can enforce all the query attributes.
The possible ways to enforce the join path locally on Pt

is 3 ∗ (1 + 2) = 9. Considering other 3 parties, we have
(3 ∗ 4 ∗ (1 + 2 ∗ 4)) ∗ 4 = 432 different ways of enforcing
the join path, and these plans result in 6+4 =10 different
missing attribute sets. For each of them, we need to check
the ways to get missing attributes. For example, if the missing
attribute set is {total, assistant, delivery}. Then, there are 12
relevant rules having the missing attributes, and the possible
combinations to consider are 212-1.

In table II, we list the maximum numbers of possible join
path enforcement plans for each join path length. Notation
Si indicates the number of plans for a join path of length i.
We assume there are at most Tn parties having the rules on
equivalent join paths.

JoinPath
Length

Maximum number of join path enforcement plans

S1 1
S2 Tn
S3 (C2

3 ∗ S2 ∗ (1 + 2 ∗ S2)) ∗ Tn
S4 (C3

4 ∗S3 ∗ (1+C1
3 ∗S2 +C2

3 ∗S3)+C2
4 ∗S2 ∗S2) ∗Tn

S5 (C4
5 ∗ S4 ∗ (1 + C1

4 ∗ S2 + C2
4 ∗ S3) + C3

5 ∗ S3 ∗ (S2 +
C1

3 ∗ S3)) ∗ Tn
TABLE II

MAXIMUM NUMBER OF PLANS FOR EACH JOIN PATH LENGTH

To sum up, in the worst case, to enumerate all the possible
plans for a query, the total number of cases is:
S5 +Ne ∗ (2Cm ∗ −1) ∗ Cm ∗ S4

Cm is the number of missing attributes that should be the
number of all non-key attributes in the worst case. Ne is the
different number of missing attribute sets based on all the join
path enforcement plans that can be very large.

VI. CONSISTENT QUERY PLANNING

Due to the difficulties in enumerating all possible ways of
answering a query, we consider using a greedy algorithm.

A. Query planning algorithm

To find an efficient consistent query plan, we always choose
the optimal join path enforcement plan first, and then apply

the set covering greedy mechanism on the missing attributes
to find required relevant rules. The optimal enforcement plan
for a join path on a specified party can be pre-determined
by extending the rule enforcement checking algorithm in a
dynamic programming way. When checking a rule rt, instead
of inspecting only top level relevant rules, all the possible join
pairs at Pt are inspected. These possible plans are compared
and only the one with minimal cost is kept. As Jt-cooperative
parties find their optimal local enforcement plans respectively,
each party finds its optimal way of enforcing Jt. As discussed,
the selected plan pl usually results in a missing attribute set.
To get these attributes, we explore the graph structure to
decompose rt into a set of relevant rules that can provide
these attributes. We record the required operations among
these rules, and then recursively find ways to enforce these
rules to generate a query plan.

Firstly, as the plan enforces Jt, it can be extended to
get missing attributes that appear in the relevant rules of
basic relations on all Jt-cooperative parties. This can be done
through semi-join operations. In such cases, the party Pt can
send only the join attributes to the Jt-cooperative party, and
the receiving party does a local join to get these attributes
and sent it back. Pt then performs another join to add these
attributes to the query plan. In this way, we can reduce the
missing attribute set by removing these attributes.

The remaining missing attributes can always be found in
the relevant rules on Jt-cooperative parties. However, these
relevant rules are defined on join paths instead of basic
relations. Similar to the above case, the missing attributes
carried by these relevant rules can be brought to the final
plan by performing semi-join operations. Our next effort is
to determine these relevant rules. Here, we always pick the
relevant rule that covers the most attributes in the missing
attribute set until all the missing attributes are covered by
the picked rules. This is a greedy approach, and is similar in
spirit to the approximate algorithms used for the set covering
problem. The relevant rules effectively allow us to decompose
the rule (i.e., express in terms of) rules with smaller join
paths. The missing attributes are also reduced in the process
by considering the rules involving basic relations. During the
decomposition, the algorithm associates the set of attributes
with the decomposed rule that are the missing attributes
expected to be delivered by this rule. We record the operations
between the existing plan and these decomposed ones. If
they are on the same party, a join operation between them
is recorded. Otherwise, a semi-join operation is recorded.
Since each decomposed rule can be iterated decomposed, the
algorithm uses a queue to process the rules until all the rules
are on basic relations. This decomposition process gives the
hierarchal relationships among rules that indicate how required
attributes can be added to the final plan.

The decomposition process gives a set of rules, but we also
need the subplans to enforce the join paths of these rules so
as to generate a complete plan. To achieve that, we inspect
the join paths of these decomposed rules from bottom-up. We
use another priority queue to keep all the join paths from

the decomposed relevant rules, and the shortest join path is
always processed first. This allows the use of results from
the enforcement plans of sub join paths as much as possible.
The algorithm uses the best enforcement plan for each join
path as discussed. When an enforcement plan of a join
path is retrieved, the algorithm combines previously recorded
operations to generate the subplan for the decomposed rule on
such join path. Finally, the algorithm finds the plans for each
join paths in the queue, and generates the final query plan with
a series ordered operations starting from the basic relations,
and it is described in Algorithm 2.

Algorithm 2 Query Planning Algorithm
Require: The structure of rule set R, Incoming query q
Ensure: Generate a plan answering q.

1: if There is a rule rt, Jt ∼= Jq and Aq ⊆ At then
2: Missing attribute set Am ← Aq

3: Initialize queue Q, and priority queue P
4: Enqueue rt to Q with Am

5: while Queue Q is not empty do
6: Dequeue rule rt and the associated Am

7: for Each Jt-cooperative party do
8: Finds the attribute set Ab from basic relations
9: Am ← Am \Ab

10: Record connections between rb and rt
11: while Am 6= ∅ do
12: for Each relevant rule rs on Pco do
13: Find the rule with max Am

⋂
As

14: Enqueue the rule rs with π(Am)
15: Enqueue the join path Js to priority queue P
16: Record connections between rs and rt
17: Am = Am \As

18: while The priority queue P is not empty do
19: Dequeue the rule rs with join path Js
20: Add the path to enforce Js to plan
21: for Each Js-cooperative party do
22: if The party has recorded Ab on Js then
23: Add (./ /→) operations between rb and rs
24: for Each decomposed rule rd from rs do
25: Add (./ /→) operations between rd and rs
26: else
27: The query q cannot be answered

Theorem 2: A query plan generated by Query Planning
Algorithm is consistent with the set of rules R.

Proof: First of all, the subplans to enforce join paths are
consistent. They are generated during the rule enforcement
checking. Each join operation in such a plan is added ac-
cording to a legitimate local join over the relevant rules, and
each data transmission operation happens only between Jt-
cooperative parties. In the iteration of decomposing rules, there
are join and semi-join operations between the decomposed
rules and the original rule. A join operation between a rule and
its local relevant rule is always consistent. A semi-join between
a rule and a relevant rule on its Jt-cooperative party is also
consistent. It is because the attributes in the relevant rule can
be obtained by the rule with Jt on the same party, and the data
transmission between two parties is consistent as they are Jt-
cooperative parties and the original rule is always authorized
to access these missing attributes. Since each operation in
the plan is consistent, the plan generated by Query Planning
Algorithm is consistent with the rule set R.

Lemma 2: The Rule Enforcement Checking Algorithm finds
all consistently enforceable information.

Proof: As all the information can be obtained on join
results comes from the basic relations, the algorithm works in
bottom-up manner to capture all possibilities. If the join path
of a rule cannot be enforced, then none of the rules on this join
path can be enforced. Thereby, the algorithm first searches for
all the possible ways for a join path to be enforced. As a join
between a rule and its local relevant rule is always consistent,
this step in the algorithm finds all the locally enforceable
attributes. The only other information can be used to enforce
rt must come from Jt-cooperative parties, and the algorithm
considers these possibilities. There is no other way to enforce
more information for rt.

Theorem 3: For a query q and a set of given rules R, if the
Query Planning Algorithm does not give a query plan, then
there does not exist a consistent query plan.

Proof: According to lemma 2, Rule Enforcement Check-
ing Algorithm gives all the enforceable information. Thus,
if there is an enforceable rule rt to authorize q, the Query
Planning Algorithm can always generate a consistent query
plan. Otherwise, q cannot be answered safely.

B. Preliminary performance evaluation of the algorithm

Since our query planning algorithm works in a greedy way,
we want to evaluate the output results. Since the optimal
plan cannot be found in general, we cannot compare our
results with the optimal ones. Thus, we use simple examples,
where manually finding the optimal plans becomes possible,
and we perform preliminary evaluation on these cases. In the
following, we assume the selected join path enforcement plan
carries the maximal attributes along with it.

1) Case 1: Firstly, we can take a look at the example in
figure 3. For simplicity, we assume all the relations have the
same sizes. Given the same query discussed before which only
r7 can authorize, the optimal plan should be as follows: join
two relations at Pt first, and then join with the third one at Pt

to enforce the join path of S ./ E ./ C. Then Pt sends the oid
on the join path of S ./ E ./ C to other parties, and do semi-
joins with each of the party to obtain the missing attributes
{total, assistant, delivery}. Finally, Pt does a local join with
this information got from remote parties and such a plan
answering the query. In this case study, our greedy algorithm
generates the same optimal plan. The optimal way to enforce
join path S ./ E ./ C is the local enforcement at Pt, and our
plan also gets the missing attributes via semi-join operations.

2) Case 2: In the example shown in figure 2, assuming the
query has the join path S ./ C ./ E ./ W , and the attribute
set includes all the attributes in r8 except delivery. For such a
query, our algorithm first finds the optimal way to enforce the
join path, which can be represented as (((r1 ./ r2 → PS) ./
r9) → PE) ./ (r14 ./ r15 → PE). This plan results in a
missing attribute set {total, assistant}. Next, the algorithm
adds a local join with r4 to retrieve total, and a semi-join
with r15 to obtain the attribute assistant. In fact, there are
only two ways to enforce the query join path in this example.

The other way is to perform r9 ./ r10 first and then join with
r12 at party PS . By doing that, the plan can carry the attribute
total and only has assistant as missing attribute. However,
if we compare the two plans, the difference is that our plan
gets the attribute total via a join among relation E and join
path S ./ C ./ E ./ W , and the latter plan perform the
join among E and S on PS . As the longer join path usually
has much fewer tuples, and no matter the sizes of relation S
and E, the former plan is better than the latter one in this
example case. For the missing attribute assistant, as it can
only be retrieved from party PS , getting it from r15 is better
than r16. Therefore, the query plan generated by our algorithm
is actually the optimal plan is this example case.

E

PA

E C

oid,pid,total,issue,
assistant, address

S E C

oid,pid

C S

E

oid,pid,
total,issue,

assitant

E C

oid,pid,
total

C

oid,issue,
assistant

PT

C
oid,

assistant

S

oid,
address

oid,address,
assitant

C S PB

R1

R2 R3

R4

R5 R6

R7

R8 R9

R10
oid,address,

assitant

oid,pid,
total,issue,

assitant

Fig. 4. A simple non-optimal example

3) Case 3: However, our algorithm cannot guarantee the
generated plan is always optimal. In figure 4, we consider a
query which is the same as r4. The way to enforce the query
join path S ./ E ./ C in our generated plan is labeled with
bold boxes. The other way to enforce it is to enforce r7 at
PA first, and send the results to PT to enforce R2 and join
with R3. As the latter plan requires one more join and data
transmission operation, our plan to enforce the query join path
is better. However, the latter plan has no missing attribute, and
our plan still need to enforce r7 again to retrieve attributes
{total, issue}. Therefore, our plan is not optimal in this case.
Compared to the optimal plan, our generated plan just has one
extra step which is r1 join with r3. Only in extreme situations,
where the sizes of E ./ C and C ./ S are very large and
S ./ E ./ C is very small, our plan can be better.

To sum up, these simple example cases show our query
planning algorithm is effective to find a good query plan for
an authorized query.

4) Complexity of the algorithm: Assuming there are Nq

rules local relevant to the query q, the number of relevant rules
on Jt-cooperative parties is Nr, and C is a constant to record
operations. The overall worst case complexity is O(Nq ∗N2

r ∗
C) which is O(N3)(N is the total number of rules).

VII. CONCLUSIONS AND FUTURE WORK

In previous research work, a flexible data authorization
model has been proposed to meet the security requirements
for collaborative computing among different data owners in
a collaborative environment. As authorization rules are made
based on business requirements, it is possible that some
rules cannot be enforced among the cooperative parties. In

addition, a regular query optimizer cannot give consistent
query plans under the constraints of these rules. In this work,
we first propose an algorithm to check the enforceability of the
given rules, and another algorithm to generate corresponding
efficient consistent query plans for answerable queries.

For the future work, we will study the problem of making
the unenforceable rules to be enforceable. We can consider
using a trusted third party to enforce the rules, and we may
also augment the given set of rules. Trusted third parties can
be also used to improve the consistent query planning. To
evaluate of our approaches comprehensively, we will study
the cooperative relationships among enterprises in various real
world scenarios, and test our mechanism under these cases.

REFERENCES

[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep A
secret: A distributed architecture for secure database services. In CIDR,
pages 186–199, 2005.

[2] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovereign joins. In
Proceedings of the 22nd International Conference on Data Engineering,
ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 26. IEEE Computer
Society, 2006.

[3] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie,
Jr. Query processing in a system for distributed databases (SDD-1).
ACM Transactions on Database Systems, 6(4):602–625, Dec. 1981.

[4] A. Calı̀ and D. Martinenghi. Querying data under access limitations. In
Proceedings of the 24th International Conference on Data Engineering,
ICDE 2008, April 7-12, 2008, Cancún, México, pages 50–59. IEEE,
2008.

[5] S. Chaudhuri. An overview of query optimization in relational systems.
In Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, pages 34–43, 1998.

[6] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Opti-
mizing queries with materialized views. In International Conference on
Database Engineering, pages 190–200. ieee, 1995.

[7] V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati. Keep a few: Outsourcing data while maintaining
confidentiality. In ESORICS, volume 5789 of Lecture Notes in Computer
Science, pages 440–455, 2009.

[8] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Assessing query privileges via safe and efficient permission
composition. In Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, pages 311–322.

[9] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Controlled information sharing in collaborative distributed
query processing. In ICDCS 2008, Beijing, China, June 2008.

[10] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization
in the presence of limited access patterns. In Proc. 15èmes Journées
Bases de Données Avancées, BDA, pages 41–60, 1999.

[11] J. Goldstein and P. Larson. Optimizing queries using materialized views:
a practical, scalable solution. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 331–342.

[12] A. Y. Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270–294, 2001.

[13] D. Kossmann. The state of the art in distributed query processing. ACM
Computer Survey, 32(4):422–469, 2000.

[14] C. Li. Computing complete answers to queries in the presence of limited
access patterns. VLDB Journal, 12(3):211–227, 2003.

[15] R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for
answering queries using views. VLDB J, 10(2-3):182–198, 2001.

[16] R. Sion. Query execution assurance for outsourced databases. In VLDB,
pages 601–612. ACM, 2005.

[17] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The GMAP:
A versatile tool for physical data independence. The VLDB Journal,
5(2):101–118, 1996.

[18] H. Yang and P. A. Larson. Query transformation for PSJ-queries.
In Proc. Int’l. Conf. on Very Large Data Bases, page 245, Brighton,
England, Aug. 1987.

