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Abstract. The cloud pricing model leaves cloud consumers vulnerable
to Economic Denial of Sustainability (EDoS) attacks. In this type of at-
tacks, an adversary first identifies web resources with high levels of cloud
resource consumption, and then uses a botnet of compromised hosts to
make fraudulent requests to these costly web resources. The attacker’s
goal is to disrupt the economical sustainability of the victim by inflicting
cost through fraudulent consumption of billable cloud resources.
In this paper, we propose two different Markov-based models to profile
the behavior of legitimate users in terms of their resource consumption
and to detect malicious sources engaged in fraudulent use of cloud re-
sources. Our experimental evaluation results demonstrate the effective-
ness of the proposed attribution methodology for identifying malicious
sources participating in EDoS attacks.
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1 Introduction

As a new paradigm, cloud computing is reshaping the entire information tech-
nology industry. Cloud service providers enable their consumers to access shared
computing resources in a flexible way without the need for upfront investment on
infrastructure, platform, and software. Although the adoption of cloud comput-
ing has experienced significant growth in recent years, some concerns regarding
the unique features of cloud computing environments have hindered its broader
adoption. Security and privacy concerns in particular are frequently ranked as
one of the top reasons why some organizations are reluctant to adopt cloud
computing [5, 26,27].

The understanding and mitigation of security and privacy risks of the public
cloud computing model has been an active area of research in recent years. The
research efforts, however, have been primarily focused on protecting the confi-
dentiality and integrity of sensitive data processed in public cloud environments
as well as ensuring the continuous availability of cloud services for their intended
users [23]. Very little attention has been paid to security threats targeting the
cost model of consumers running their services on the public cloud [11].

Services running on public clouds are vulnerable to fraudulent resource con-
sumption attacks aiming at increasing the financial burden of the victim service.
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This is enabled by exploiting the utility-based pricing model of the cloud where
consumers are charged for the actual consumption of computing resources such
as CPU cycles, RAM, bandwidth, and storage [14].

An adversary can conveniently rent a botnet [24] consisting of thousands of
bot machines to incur artificial cost to a victim service. The target of the attack
will have to pay for the cost of fraudulent resource consumption resulted from
requests made by bot clients. By keeping the rate of fraudulent requests made by
individual bots low to mimic the behavior of legitimate users, and intelligently
focusing on requests that are most costly in terms of resource consumption, an
attacker can sustain the attack over an extended period of time and maximize
the effectiveness of the attack.

In practice, any device with an Internet connection is capable of launching
an EDoS attack. The attacker can simply instrument the device to send HTTP
GET requests to the victim service at the highest rate possible. This is basically
the method used in application layer DDoS attacks where the attacker’s goal is
to render a targeted service unavailable to its intended users by overwhelming
victim’s resources. However, this will very quickly result in a significant deviation
from the request rate of normal users and this artifact can be used for detecting
and blocking the offending source [6, 15,30].

In this paper, we focus on an adversarial scenario in which the attacker’s
goal is to increase the financial burden of the victim. This attack is also refereed
to as Fraudulent Resource Consumption (FRC) attack by some researchers in
the literature [11, 14]. In a recent empirical study, Wang et al. [29] show how
practical EDoS attacks can be launched by abusing popular third-party services
provided by companies such as Google, Facebook, etc.

In this paper, we assume that the attacker is intelligent in the sense that she
makes requests that are resource-intensive resulting in higher costs for the victim.
To be effective, an EDoS attack needs to be stealthy and remain undetected
for an extended period of time (e.g., weeks or months). To this end, not only
that malicious requests must not cause any noticeable degradation of service
quality, but also the quantity of requests made by malicious sources should not be
significantly different from those of legitimate users. Although high-rate DDoS
attacks with the intention of overwhelming resources of a victim hosted on a
public cloud can increase the resource consumption cost for the victim, in our
threat model we assume that targets are properly protected against such attacks
and we instead only focus on addressing low-rate and stealth EDoS attacks.

As malicious clients participating in a stealth EDoS attack make requests
in a similar rate as legitimate users, this type of attacks can be challenging to
detect and mitigate. In this paper, we present a method for detecting stealth
EDoS attackers by directly assigning a cost to each user request in proportion
to the resources consumed to serve that request.

The proposed methodology is based on statistical anomaly detection. First,
we process web server logs to identify the sequence of requests made by each
individual user over a predefined period of time. Next, according to the amount
of resources consumed to serve each request, a relative cost value is assigned to
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each request. The result is a dataset consisting of a sequence of request costs
for each of the legitimate users in the processed web access logs. The sequence
of request costs for each user is considered as a random or stochastic process
and this data is used to construct two different Markov-based models to capture
the behavior of users in terms of the cost they incur to a service over time.
We use sequence of request costs collected for normal users as training data
to estimate the model parameters. Once the parameters are estimated, at the
detection phase, the abnormality of a newly observed sequence of request costs
is tested against the trained model to identify malicious sources participating in
an EDoS attack.

We use real-world web access logs of about a month from an academic web-
site to experimentally evaluate the effectiveness of the proposed method. Ex-
perimental results are presented for the two Markov-based detection methods
that we propose, a simple Markov chain model, and a more complex Hidden
semi-Markov Model (HsMM). The experimental results show that our proposed
detection methods are very effective in differentiating normal users and mali-
cious users participating in EDoS attacks. While most of previously proposed
methods require a malicious source to make significantly more requests than
legitimate users to be effective, our proposed attribution methodology can suc-
cessfully detect malicious sources that try to remain undetected by making only
a few resource-intensive requests.

The remainder of this paper is structured as follows. We begin with a dis-
cussion on the exploitation of the cloud pricing model that motivates this work.
Related work is discussed in section 3. Section 4 presents a brief background
on Markov chains and HsMM as well as our proposed Markov-based methods
for identifying malicious sources participating in EDoS attacks. The details of
experiments designed to validate the proposed methodology and their results are
presented in section 5. Finally, discussion and conclusion remarks are presented
in chapters 6, and 7, respectively.

2 Exploitation of the Utility-based Pricing Model

The cloud computing technology provides many attractive benefits such as avoid-
ing the need for upfront spendings on computing infrastructure, improved man-
ageability, security, and elasticity to businesses of various sizes. While the flex-
ibility of the “pay-as-you-go” pricing model adopted by cloud service providers
can be beneficial to cloud consumers, it leaves them vulnerable to financial risks
imposed by EDoS attacks [11,14].

To launch an EDoS attack, all an attacker needs to do is to simply send
seemingly legitimate requests to a victim service to make it consume cloud re-
sources for which the victim will have to pay for the cost. If the attacker is able
to enforce significant fraudulent resource consumption over an extended period
of time, the economical sustainability of the victim service could be threatened.
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In an EDoS attack, the attack target can be a website or web applications
hosted on a third party public cloud and we assume that attack targets predom-
inantly serve public content accessible to all Internet users.

Unlike Distributed Denial of Service (DDoS) attacks, an EDoS attack is not
meant to cause availability issues or noticeable degradation of service quality for
the users of a target service. To be effective, an EDoS attack needs to be stealthy
and remain undetected over an extended period of time (e.g., weeks or months).
To remain undetected, a wise attacker will want to keep the rate of fraudulent
requests low to blend them into the noise of legitimate requests, while trying
to focus on requests resulting in high levels of cloud resource consumption to
achieve the objective of the attack.

As documented in recent studies, DDoS-for-hire services can be readily lo-
cated and rented on underground black markets [4,16,17]. These abusive services
are often supported by botnets consisting of tens of thousands of compromised
hosts and offer both network layer and application layer attacks [28]. With the
availability of DDoS-for-hire services, an attacker does not need to be capable
of building a supporting attack infrastructure.

The potential impact of an EDoS attack can be best quantified by examining
a hypothetical attack on a service hosted on a real public cloud service provider.
In the sequel, we consider a hypothetical attack on a victim service hosted on
Amazon’s Elastic Compute Cloud (EC2) platform. Although cloud consumers
are billed for various cloud resources including computing, network, and storage
resources, for simplicity, this work only focuses on data transferred from the
cloud environment to the Internet to serve received requests. Table 1 shows the
cost of outgoing data transfer for Amazon’s EC2 platform [3].

Table 1. Amazon EC2 outgoing data transfer pricing as of February 2016.

Traffic volume Cost

First 1 GB / month $0.00 Per GB
Up to 10 TB / month $0.09 Per GB
Next 40 TB / month $0.085 Per GB
Next 100 TB / month $0.07 Per GB
Next 350 TB / month $0.05 Per GB

According to the HTTP Archive [2], which regularly measures the Alexa top
10,000 websites [1], the average page size was 2,225 KB for the homepage of
the top 10,000 websites visited in January 2016. However, many websites host
a number of much larger web resources such as videos or large compressed files
that an attacker can focus on to maximize the cost of resource consumption for
a victim operating on a public cloud. For the purpose of our hypothetical EDoS
attack, we assume the average size of web resources requested by malicious bots
participating in the attack to be 100 MB.

At the rate of only 100 requests per month which is too low to raise any red
flags, a single bot would consume about 10 GB of outgoing bandwidth and the
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monthly bill will increase by 90¢. Sending requests with the same characteristics
as the single bot scenario from 1000 bots will approximately cost the victim $900
per month. The inflicted cost grows linearly by increasing the request rate, re-
questing larger files, or employing more malicious bots. For instance, by locating
and requesting files that are 1 GB in size, the fraudulent resource consump-
tion cost of the previous EDoS attack scenario will escalate to about $9000 per
month. As seen from the hypothetical attack scenarios, the resource consump-
tion cost accumulated over time can impose an important financial burden to
public cloud consumers, especially small businesses. As individual bots show no
trace of excessive request rates, most of existing detection schemes that look for
a large number of requests in a short period of time [15, 22] will not succeed at
detecting the described hypothetical attack.

It is worth noting that leasing a botnet to carry out an EDoS attack will be a
cost factor that an attacker would need to take into consideration. However, due
to the fact that only a very small fraction of resources available to a compromised
host are actually required to make a few requests at a very low rate, the cost of
accessing a botnet can be significantly reduced for an attacker by renting non-
dedicated botnets shared with other cybercriminals using the bots for various
purposes. According to Huang et al. [10], using the pay-per-install marketplace,
an attacker can gain access to 1000 compromised machines for as low as $10.

3 Related Work

So far there are only a few studies in the literature directly concerning the issue
of EDoS attacks.

Khor and Nakao [18] propose a mitigation mechanism based on cryptographic
puzzles to dissuade clients from submitting fraudulent requests. The basic idea
of their proposed scheme called self-verifying Proof of Work (sPoW) is to require
clients to present a proof of work before a protected service commits its resources
to serve clients’ requests. When a client first requests a resource, it receives a
“crypto-puzzle” from sPoW that mediates all communications between clients
and the protected service. The puzzle contains encrypted information necessary
to reach the intended service such as the IP address and port number as well as
a partial encryption key with k bits concealed. The client will have to spend its
resources to discover the encryption key by brute forcing the k concealed bits so
that it can decrypt the information necessary to contact the requested service.

However, sPoW or any other solution based on the “crypto-puzzle” approach
[21] are more relevant when malicious sources are sending requests at a high
rate to a target service. In an intelligent and stealth EDoS attack, malicious
clients can afford to solve the puzzles to submit only a few well-crafted, resource-
intensive requests and succeed at adding financial burden to a victim service
protected by sPoW.

Sqalli et al. propose a mitigation scheme called EDoS-Shield to address the
issue of EDoS attacks in cloud environments [25]. The main idea of EDoS-Shield
is to detect whether an incoming request is initiated by a legitimate user or by
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an automated source. EDoS-Shield depends on CAPTCHA tests to verify the
source of requests. The proposed architecture consists of virtual firewalls (VF)
and verifier nodes (V-Nodes) that are deployed as virtual machines in the cloud.
The V-Nodes are responsible for verification of request sources, and VF nodes
are implemented to decide if incoming packets should be forwarded or dropped
based on the verification results received from the V-nodes. One weakness of
the EDoS-Shield mitigation scheme has to do with the cost of additional cloud
resources required for deploying the verifier nodes and the virtual firewalls. But,
more importantly, this approach requires all users to be verified and research
studies suggest that CAPTCHA tests could be annoying for some users and
even a certain portion of legitimate users may not be able to solve them [7].
In addition, some existing CAPTCHA tests have been shown to be vulnerable
to automated attacks [8], and recently inexpensive CAPTCHA solving services
backed by crowd sourced human labor can be used to effectively defeat the
protection purpose of CAPTCHA tests [20].

In [12] the authors use a number of statistical self-similarity metrics including
Zipf’s law, and Spearman’s Footrule distance to detect the occurrence of FRC
attacks. The proposed detection mechanism only looks at the aggregate pattern
of user requests and does not deal with identification of individual malicious
sources participating in an attack. In contrast, our proposed method is concerned
with identification of malicious sources exhibiting a similar behavior as legitimate
users in terms of request rates, but focusing on resource-intensive requests to
maximize the cost for the victim service.

Idziorek and Tannian propose a method that attempts to model the behav-
ior of individual users based on the number of requests per session generated
by each user over a fixed period of time [11]. A pause of 900 or more seconds
between consecutive requests from the same user is used as the criterion to group
user requests into web sessions. The premise is that malicious users generating
sessions with a random number of requests would be sufficiently different from
the profile of normal users, so that an entropy-based detection method could be
used to identify malicious sources. This method is based on the assumption of
malicious users making more requests/web sessions than legitimate users. How-
ever, as mentioned earlier, an intelligent attacker does not necessarily need to
make malicious sources to send more requests than legitimate users to succeed.
By focusing on web resources that are expensive in terms of resource consump-
tion, malicious sources with similar request rates as legitimate users can be still
effective.

In [13], the authors propose a methodology for identifying malicious sources
trying to inflate the utility bill of a victim by making fraudulent requests. The
proposed methodology combines four different usage metrics including the num-
ber of sessions, the number of requests, and the average number of requests per
session. For the last usage metric, the overall request frequency distribution of
documents hosted on a website is computed, and the requests made by individual
users are compared against this distribution. To evaluate a user, a probability
score is calculated for each of the four metrics and then an overall average prob-
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ability is computed. The more deviation observed from the normal usage, the
higher would be the probability score and the more likely the user would be
a malicious client. Again, this model is heavily influenced by the the quantity
of requests made by individual users, and it will not be effective for detecting
malicious users making a small number of high cost requests. As we will show
in section 5, our proposed method is able to detect both malicious sources mak-
ing an anomalous number of random requests, as well as more subtle malicious
sources with a request rate similar to that of legitimate users but focusing on
requests that are more costly for the victim.

4 The Proposed Markov-based Models for Detecting
Sources Participating in an EDoS Attack

In this study, our goal is to build an anomaly detection system to identify ma-
licious sources participating in EDoS attacks. In this section we introduce our
proposed detection methodology and describe our formulation of detecting mali-
cious sources participating in an EDoS attack using two different Markov-based
models.

Most web requests are for HTML documents that are meant to be rendered,
and displayed by a user browser. These requests are typically followed shortly by
several subsequent HTTP GET requests to fetch objects such as images, scripts,
and CSS files embedded in the main requested document. The requests can also
be for downloading objects such as binary files over HTTP. Web servers can
be configured to log the details of all user requests including the IP address of
the requesting host, the requested document, the type of request (GET, POST,
etc.), and the size of data transferred to serve the request. Although all the
HTTP request types cause resource consumption on the server side, to simplify
our experimentations, we only focus on HTTP GET requests in our work.

Proportional to the amount of data transferred to serve a request, a relative
cost value can be calculated and assigned to each request. Based on the data size
of various requests, one can decide on a small number of buckets to represent
different cost values to be associated with user requests. We will see an example
of this in section 5 where we use cost values from 1 to 5 for requests in our
dataset.

Using collected web server logs, requests made by each individual user during
a specific period of time can be identified and mapped to request cost values. The
result would be a sequence of request cost values for each user. We assume that
individual users (both legitimate and malicious) can be uniquely identified by
their IP addresses. Using browser fingerprinting techniques [9] can be a potential
solution for cases where some users can not be reliably identified by their IP
addresses.

The sequence of request costs from individual users during a specific period of
time can be considered as a discrete-time stochastic process and a Markov-based
model can be used to describe the behavior of users in terms of the cost they
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incur to a service over time. A much simpler approach to distinguish between
legitimate and malicious users would be to calculate the sum of request costs
per user over a predefined period of time and apply a threshold value to identify
users exceeding the threshold as malicious. However, as we will show in section 5,
such a naive approach will result in high positive rates where legitimate users
are incorrectly identified as malicious.

We use requests made by legitimate users to estimate the parameters of the
Markov model and then use the trained model to compute the likelihood of new
request cost sequences generated by users. The request cost sequences generated
by malicious users would be different from legitimate users and this will result
in much smaller likelihood values than those of legitimate users. As we will
show in section 5, using the right threshold likelihood value, legitimate users
and malicious users can be effectively distinguished.

In this paper, we propose and evaluate the detection performance for two
different Markov-based models. The first one is a simple Markov chain model
in which the observed request costs are considered as the states of the Markov
chain. We also evaluate a HsMM which has more complexity and computational
cost but can outperform the simple Markov chain model for detecting low rate
attacks focusing on high cost requests. In our HsMM, the request cost values
are the observable outputs and the hidden states represent different levels of
resource consumption by users. The models that we propose and evaluate are
both discrete-time and the discrete points in time correspond to user requests as
recorded in the web access logs. In the subsequent subsections, we give a brief
background on the theory of Markov chains and HsMM and briefly discuss the
process of learning model parameters using training data.

4.1 Markov Chain Model

A Markov chain models the state of a system with a random variable taking
states from a finite state space as the time passes. Given the current state of
a Markov chain denoted as st, the state of the chain at time t + 1 will only
depend on st. In a stationary Markov chain, the state transition probabilities
are assumed to be constant and independent of time. Consider a Markov chain
model with M states denoted as S = {s1, s2, ..., sM}. A Markov chain model can
then be specified by its parameters as λ = ({πm}, {amn}) where:

– πm ≡ Pr[s1 = m] is the initial state probability distribution. st denotes the
state taken by the model at time t and m ∈ S. The sum of initial state
probabilities adds up to 1( Σmπm = 1).

– amn ≡ Pr[st = n|st−1 = m] is the state transition probability for m,n ∈ S,
satisfying Σnamn = 1.

Given the model parameters, the probability of a particular sequence of states
s1, s2, ..., sT to be taken by the model is computed as follows:
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P (s1, s2, ..., sT ) = πs1

T∑
t=2

ast−1st

The initial state probability distribution and the state transition probability
matrix can be readily learned from historical observations of the system states.
These two model parameters can be learned using the formulas below [19]:

amn =
Nmn

Nm

πm =
Nm

N

where:

– Nmn is the number of observed direct transitions from state m to state n.
– Nm is the number of observations where the Markov chain is in state m.
– N is the total number of observations.

In our context, we process web access logs to compute the sequence of request
costs for normal users and then use this data to learn the parameters of a Markov
chain model representing the resource consumption behavior of normal users. At
the detection phase, newly observed sequences of request costs are analyzed to
compute the likelihood of those sequences being supported by the trained Markov
chain model. The resource consumption behavior of users participating in EDoS
attacks would be different from that of normal users and the requests from these
users are therefore expected to receive low likelihood of support when analyzed
by the trained model.

4.2 Hidden Semi-Markov Model

A hidden Markov model (HMM) is a Markov model in which the states of the
system being modeled are not directly observable (hidden). HsMM extends the
traditional HMM by allowing states to have variable durations [31]. The dura-
tion of a state represents the number of observations made while in that state.
Consider a HsMM with M states denoted as S = {s1, s2, ..., sM}. A HsMM can
be specified by its parameters as λ = ({πm}, {amn}, {bm(k)}, {pm(d)}) where:

– πm ≡ Pr[s1 = m] is the initial state probability distribution. st denotes the
state taken by the model at time t and m ∈ S. The sum of initial state
probabilities adds up to 1( Σmπm = 1).

– amn ≡ Pr[st = n|st−1 = m] is the state transition probability for m,n ∈ S,
satisfying Σnamn = 1.

– bm(k) ≡ Pr[ot = k|st = m], for m ∈ S, k ∈ {1, ...,K} is the state output
distribution. The observable output at t is denoted by ot and k is the index
into the observable output set with cardinality K. The output distribution
satisfies Σkbm(k) = 1.
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– pm(d) ≡ Pr[τt = d|st = m] is the state residual time distribution, for m ∈
S, d ∈ 1, ..., D. D represents the maximum interval between any consecutive
state transitions and the residual time distribution satisfies Σdpm(d) = 1.

Then, if at time t, the pair process (st, τt) takes on the value (m, d),
where d >= 1, the semi-markov chain will remain in state m until time
t + d − 1 and will transit to the next state at time t + d. The states them-
selves are not directly observable. The observables are a sequence of observa-
tions O = (o1, ..., oT ). The notation oba represents the observation sequence from
time a to time b and conditional independence of observed outputs is assumed
so that bm(oba) = Πb

t=abm(ot). The model parameters are initially estimated and
are then updated as new observations ot are collected. This process is known as
parameter reestimation and it can be done by following the forward and back-
ward algorithm proposed by Yu and Kobayashi [32]. The forward and backward
variables are defined as follows:

αt(m, d) ≡ Pr[ot1, (st, τt) = (m, d)|λ]

βt(m, d) ≡ Pr[oTt+1, (st, τt) = (m, d)|λ]

which can be recursively computed by forward and backward algorithms. Next,
the three following joint probabilities are defined that can be expressed and com-
puted in terms of the model parameters and the forward and backward variables
defined above. These probabilities are used to readily derive the reestimation
formulas to update the model parameters after collecting new observation se-
quences.

ζt(m,n) ≡ Pr[oT1 , st−1 = m, st = n|λ]

ηt(m, d) ≡ Pr[oT1 , st−1 6= m, st = m, τt = d|λ]

γt(m) ≡ Pr[oT1 , st = m|λ]

Now, using the joint probabilities defined above, the model parameters can
be reestimated by the following formulas:
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π̂m = γ1(m)
/ M∑

m=1

γ1(m)

âmn =

T∑
t=1

ζt(m,n)
/ T∑

t=1

M∑
n=1

ζt(m,n)

b̂m(k) =
∑

t:ot=k

γt(m)
/∑

k

∑
t:ot=k

γt(m)

p̂m(d) =

T∑
t=1

ηt(m, d)
/ T∑

t=1

D∑
d=1

ηt(m, d)

The model parameters are reestimated for each observation and after pro-
cessing all observation sequences, the trained model can be used to compute the
likelihood of a new observation sequence by the following formula:

Pr[oT1 |λ] =
∑
m

∑
d

Pr[oT1 , (sT , τT ) = (m, d)|λ]

=
∑
m

∑
d

αT (m, d)

For our HsMM, the request cost values are the observable outputs and the
hidden states represent different levels of resource consumption by users. In our
implemented model, we use 5 hidden states where the model is always initialized
in the first state. Also, in our model a transition can only happen from a lower
state to a higher state.

Similar to the Markov chain model, we use requests made by legitimate users
to estimate the parameters of the HsMM and then use the trained model to com-
pute the likelihood of new request cost sequences generated by users. The request
cost sequences generated by malicious users would be different from legitimate
users and this will result in much lower likelihood values than those of legitimate
users. As we will show in the next section, using the right threshold likelihood
value, legitimate users and malicious users can be effectively distinguished.

5 Experimental Evaluation

We conduct experiments to evaluate the effectiveness of the proposed method for
detecting malicious sources engaged in fraudulent use of cloud resources. This
section provides a description of our experiments and presents the obtained
results.
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5.1 Dataset Description

Our experiments are based on request logs from a university department’s public
web server collected over 32 days from Nov 8, 2015 to Dec 9, 2015. We use the
rules below to filter out requests that are irrelevant for our purpose:

– Requests that are not HTTP GET.
– HTTP GET requests with a response code other than 200 (OK).
– Requests with a user agent string indicating access from a non-user entity

(e.g., Googlebot, wget, etc.).
– Request sources making requests using 10 or more different user agent strings.

This is to remove aggregate request sources such as NAT boxes or web proxies
making requests on behalf of their clients. About 90% of all request sources
in the dataset only use a single user agent string.

– The access logs are split into two 16-day periods. We only include requests
from users making at least 3 requests in one of the 16-day periods.

A request for an HTML document and the subsequent requests for fetching
objects embedded in the same HTML document are combined and treated as
a single request. Table 2 presents a summary of the normal dataset used for
training and testing the proposed methodology.

Table 2. Summary of the normal experimental dataset.

Metric Train dataset Normal test dataset

Number of days 16 16
Total number of unique users 4,933 5,252
Total number of requests 36,466 36,474
Avg number of requests per user 7.39 6.94

To generate the normal training dataset, requests in the first half of the logs
are grouped based on the request source, and then, proportional to the amount
of data transferred to serve the requests, they are mapped to relative cost values.
The same process is applied to the requests in the second period of the logs to
generate the test dataset representing users with normal resource usage behavior.
Based on our observation of the user requests in the dataset, we choose to use the
values from 1 to 5 to represent the relative cost of user requests. Thus, the final
dataset is a sequence of request costs ranging from 1 to 5 in value for each user.
Table 3 summarizes the mapping from the request size to relative cost values
and the distribution of requests in terms of their cost values in our dataset.

Although in our experiments we use an observation window of 16 days to
profile the behavior of normal users and the same observation period is used for
detection of malicious users, the proposed methodology is only sensitive to the
resource usage pattern of users and is not restricted to a specific observation
period.
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Table 3. Mapping of request sizes to relative cost values.

Request size Relative cost Percentage of requests

<500KB 1 86.7
≥ 500KB and <5MB 2 11.4
≥ 5MB and <50MB 3 1.9
≥ 50MB and <500MB 4 0.1
≥ 500MB 5 5.4e-03

5.2 Attack Scenarios

To conduct an EDoS attack, an attacker needs to specify the behavior of in-
dividual bots by defining the request rate and the requested resources in term
of their resource consumption cost. By varying these two parameters, various
attack strategies that an attacker is likely to adopt can be constructed and the
effectiveness of the proposed detection methodology can be evaluated for those
attack strategies. We first consider attack strategies where the attacker focuses
on making requests that result in high levels of resource consumption. For these
attack strategies we assume that the attacker has a prior knowledge about the
rate of requests made by legitimate users, and uses this knowledge to avoid
suspicions by making requests with similar rates as legitimate users.

In sequel, we briefly describe a number of various attack scenarios that we use
to generate synthetic malicious request sequences to evaluate the performance
of the proposed attribution methodology. These attack scenarios are ordered in
a decreasing order of attack effectiveness from the attacker’s perspective. For
the attack scenarios listed below the number of requests made by individual
malicious sources is normally distributed with parameters µ=7 and σ=2 which
means the number of requests made by malicious users are not significantly dif-
ferent from those of legitimate users. The lengths of malicious request sequences
drawn for this normal distribution is shared by all of the attack scenarios.

– Scenario 1 (S1): All malicious requests have a cost of 5.
– Scenario 2 (S2): All malicious requests have a cost of 4 or 5.
– Scenario 3 (S3): The request cost is 5 for 75% of malicious requests. The

cost for the remaining 25% of requests is uniformly distributed between 1 and
4.

– Scenario 4 (S4): 75% of malicious requests have a cost of 4 or 5. The cost
for the remaining 25% of requests is uniformly distributed between 1 and 3.

– Scenario 5 (S5): The request cost is 5 for 50% of malicious requests. The
cost for the remaining 50% of requests is uniformly distributed between 1 and
4.

– Scenario 6 (S6): 50% of malicious requests have a cost of 4 or 5. The cost
for the remaining 50% of requests is uniformly distributed between 1 and 3.
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5.3 Experimental Results

For each attack scenario, we generate a dataset of malicious requests according
to the description of that attack scenario. Each test dataset consists of gener-
ated malicious request sequences, combined with the request sequences from the
normal test dataset. The normal test dataset is the same for all attack scenarios.
Also, in our experiments, each test dataset contains the same number of normal
and malicious sources (5,252). False Positive Rate (FPR), and False Negative
Rate (FNR) are the metrics used for performance evaluation of the proposed at-
tribution methodology under various attack scenarios. These metrics are briefly
described in the following:

– FPR: The percentage of request sequences generated by legitimate users clas-
sified as malicious. Keeping the FPR under a low threshold is very important.
Otherwise, legitimate users will be denied access to the protected service.

– FNR: The percentage of malicious request sequences generated by sources
participating in an EDoS attack scenario not detected by the proposed
method. Unlike an Intrusion Detection System (IDS) where it is very cru-
cial not to miss any intrusions, because a single missed intrusion can result
in system compromise, in our context, missed malicious sequences would only
cause some billable fraudulent resource consumption.

For each attack scenario, the trained model is used for computing the log
likelihood for all request sequences in the test dataset of that attack scenario.
In general, the request sequences from legitimate users which are similar to the
data used for training the model are expected to receive higher log likelihood
values. On the other hand, malicious request sequences representing a resource
consumption behavior dissimilar to that of legitimate users are expected to be
assigned lower log likelihood values. Once the log likelihoods are computed for
all request sequences, the detection performance can be evaluated for different
threshold values.

Table 4 shows experimental detection results for the attack scenarios based
on the strategy of focusing on high cost requests using the simple Markov chain
model. Table 5 shows the results for the same attack scenarios using the HsMM.
The results are presented for several different threshold values to demonstrate
the trade-off between higher false positive rates and lower false negative rates
and vice versa. For each threshold value, the resulting FPR and the FNR for
each of the six attack scenarios are presented. As shown, both models can achieve
low FPRs for reasonable FNRs. The HsMM however consistently outperforms
the simple Markov chain model for the same FPR value.

For instance for a FPR of 0.67%, the FNR is 0.00% for the first attack
scenario when the HsMM is used. This means that for a small FPR, all sources
generating malicious requests according to the description of the first attack
scenario (S1) are successfully detected. In comparison, the simple Markov chain
Model produces a FNR of 7.24% for the attack scenario and the same FPR. In
our experiments, the last attack scenario (S6) is the most challenging to detect
as it is more similar to requests from legitimate users. But even for this attack
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Table 4. Experimental results for the Markov chain model for the attack strategy of
focusing on high cost requests.

Attack Scenario
FNR(%)

Threshold FPR(%) S1 S2 S3 S4 S5 S6

-20 2.32 0.00 2.55 0.97 5.79 5.14 13.58
-25 1.35 0.00 6.32 2.30 10.68 8.87 22.51
-30 0.91 0.00 7.81 3.77 14.58 13.40 31.51
-35 0.67 7.24 16.85 11.23 25.08 22.37 43.01
-40 0.46 7.24 21.63 13.08 31.70 28.64 52.36
-45 0.29 16.28 28.66 22.43 42.25 37.93 63.06

Table 5. Experimental results for the HsMM for the attack strategy of focusing on
high cost requests.

Attack Scenario
FNR(%)

Threshold FPR(%) S1 S2 S3 S4 S5 S6

-15 2.32 0.00 0.00 0.44 1.64 2.76 7.52
-20 1.26 0.00 2.57 2.02 5.62 6.84 15.69
-25 0.67 0.00 2.57 3.56 8.95 10.68 23.67
-30 0.51 7.24 9.04 10.95 16.70 20.13 33.80
-35 0.36 7.24 11.18 15.19 23.38 28.87 45.35
-40 0.21 16.28 18.55 23.59 33.45 38.42 57.60

scenario, for a FPR of 0.51%, still close to 70% of malicious request sequences
are successfully detected using the HsMM.

It should be noted that the undetected malicious sequences are usually com-
prised of fewer requests compared to the successfully detected malicious se-
quences. For instance, when applying a threshold value of -25 for the attack
scenario S6 using the HsMM, about 10% of malicious users are not identified
as malicious. The average number of requests for these undetected malicious
users is 3.98 versus 7.23 for the detected malicious users. This implies that the
undetected malicious request sequences are less effective in terms of fraudulent
resource consumption and the more effective malicious request sequences that
are more aggressive in nature run higher risk of detection.

In our experiments, the FPRs are resulted by legitimate users in the test
dataset generating significantly more requests than the other legitimate users.
For instance, when applying a threshold value of -25 for the HsMM, 35 legitimate
users out of 5252 users are incorrectly identified as malicious. On average, each of
these 35 users generates 72 requests. In comparison, the overall average number
of requests for all legitimate users is only 7. Longer request sequences result
in lower log likelihood values and therefore legitimate users generating a large
number of requests contribute to some undesirable false positives. Sometimes a
given website may have legitimate users that use the website in unusual ways.
If unusual request patterns are expected from specific users, false positives can
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be avoided by ignoring requests from these known users. In our experiments,
the legitimate users with an abnormally large number of requests are incorrectly
identified as malicious.
Comparison with the naive detection approach: as mentioned previously,
a naive detection approach based solely on the cumulative sum of request costs
will suffer high positive rates. As a concrete example, to achieve a FNR of 0.00%
for the S1 attack scenario, the naive approach will need to identify all users
with a cumulative sum of request costs of 15 or more as malicious. This however
will result in a very high FPR of 9.96% making this approach inapplicable in
practice. In contrast, as shown in Tables 4 and 5, using the proposed attribution
methodology, for the S1 attack scenario all malicious users can be successfully
detected with FPRs less than 1%.

Table 6. Experimental results for the Markov chain model for the attack strategy of
focusing on high number of requests.

Number of requests per source
FNR(%)

Threshold FPR(%) 50 60 70 80 90 100

-20 2.32 3.77 0.72 0.00 0.00 0.00 0.00
-25 1.35 17.02 3.41 0.32 0.00 0.00 0.00
-30 0.91 42.19 14.38 3.24 0.32 0.02 0.00
-35 0.67 67.82 34.22 12.20 2.65 0.30 0.02
-40 0.46 86.27 59.12 29.86 10.45 2.21 0.49
-45 0.29 95.00 79.38 51.71 25.46 8.85 2.70

Table 7. Experimental results for the HsMM for the attack strategy of focusing on
high number of requests.

Number of requests per source
FNR(%)

Threshold FPR(%) 50 60 70 80 90 100

-15 2.32 6.51 2.11 0.76 0.15 0.02 0.00
-20 1.26 23.42 10.66 3.27 0.74 0.23 0.06
-25 0.67 49.58 20.91 9.69 4.23 1.52 0.74
-30 0.51 82.77 51.79 25.32 10.62 4.09 2.04
-35 0.36 94.94 79.59 54.72 24.68 12.32 6.78
-40 0.21 98.19 92.90 79.99 53.98 27.88 13.23

As evidenced by the obtained experimental results, attacks based on the
strategy of focusing on requests with high resource consumption costs can not
go undetected. The alternative for an attacker would be to attempt making
requests with a similar distribution of request costs as legitimate users, but in
larger quantities to increase the amount of fraudulently consumed resources.
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Table 6 and 7 show experimental detection results for the attack strategy
where the attacker focuses on making larger numbers of requests that have the
same distribution of request costs as legitimate users. FNRs are reported for
various number of requests per source and the same threshold and FPRs as
the previous experiments. As expected, malicious users are more likely to be
detected when making higher number of requests. For instance, when malicious
clients are making 70 requests, for a FPR of 0.67%, more than 90% of malicious
sources are successfully detected by the HsMM. For the experiments involving
long sequences of malicious requests, the performance of the two models are
comparable and none of them consistently outperforms the other model for the
same FPR value. However, when the number of requests per source is 80 or
more, the simple Markov chain model seems to produce lower FNRs.

It should be noted that from the standpoint of an EDoS attacker, regular
requests not causing high levels of resource consumption are not very helpful and
this attack strategy only makes sense when malicious sources are able to make
a significant number of regular requests and manage to remain undetected.

6 Discussion

The proposed EDoS attribution methodology directly considers the cost of user
requests as the metric to model the behavior of individual users. This makes it
very challenging for malicious users involved in an EDoS attack to be effective
in terms of fraudulent consumption of billable cloud resources and at the same
time managing to remain undetected. As demonstrated experimentally, mali-
cious users exhibiting anomalous resource consumption behavior can be quickly
identified and prevented after making only a small number of suspicious requests.
An attacker can attempt to optimize the requests made by individual participat-
ing bots by learning and mimicking the request pattern of top legitimate users
in terms of higher usage footprint. However, it is unlikely for an attacker to be
able to access historical data on requests of legitimate users or intercept com-
munications to collect such data to optimize the behavior of participating bots.
Even assuming the lack of such restrictions, applying such optimized request
patterns can still significantly limit the effectiveness of the participating bots.
An attacker can try to compensate for the limited utility of individual bots by
employing a much larger botnet. However, larger botnets could be very difficult
to locate, rent and operate and may not be practical in practice.

The proposed EDoS attribution methodology only relies on resource usage
footprint of users for detecting malicious sources. For future work, we plan to
incorporate other aspects of user behavior to further improve detection of ma-
licious sources participating in EDoS attacks. For instance, the popularity of
requested documents can be computed for each request cost bucket, and this
can be considered when computing the likelihood of observed request sequences.
In general, attackers are not expected to know the distribution of document
popularity on victim websites. Focusing on requests involving documents with



18 Mohammad Karami and Songqing Chen

the highest resource consumption can result in deviation from the normal docu-
ment popularity distribution and this additional metric can help to improve the
detection performance.

7 Conclusion

The consumers of public cloud services are charged for computing resources
that they use. This pricing model exposes the cloud consumers to EDoS attacks
where the adversary seeks to increase the financial burden of the victim service by
making fraudulent requests that result in high consumption of billable resources.

We have presented a Markov-based anomaly detection scheme to profile the
behavior of legitimate users in terms of their resource consumption. To detect
users participating in an EDoS attack, the likelihood of request sequences gen-
erated by individual clients during a specific period of time is computed by the
trained model. Users with likelihood values smaller than a threshold are identi-
fied as malicious. The effectiveness of the proposed attribution methodology for
identifying malicious sources engaged in fraudulent use of cloud resources has
been demonstrated using experimental evaluations for various attack scenarios.
While most of previously proposed methods are only effective when malicious
sources make significantly more requests than legitimate users, our proposed
method is able to detect both malicious sources making an anomalous number
of random requests, as well as more subtle malicious sources with a request rate
similar to that of legitimate users but focusing on requests that are more costly
for the victim.
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