
COMPUTATION OFFLOADING AND STORAGE AUGMENTATION
FOR MOBILE DEVICES

by

Mohammed A. Hassan
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
(Computer Science)

Committee:

Dr. Songqing Chen, Dissertation Director

Dr. Fei Li, Committee Member

Dr. Robert Simon, Committee Member

Dr. Chaowei Yang, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Fall Semester 2014
George Mason University
Fairfax, VA

Computation Offloading and Storage Augmentation for Mobile Devices

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Mohammed A. Hassan
Bachelor of Science

Bangladesh University of Engineering and Technology, 2006

Director: Dr. Songqing Chen, Associate Professor
Department of Computer Science

Fall Semester 2014
George Mason University

Fairfax, VA

Copyright c© 2014 by Mohammed A. Hassan
All Rights Reserved

ii

Acknowledgments

I would like to thank the following people who made this possible:
Dr. Songqing Chen, Dr. Fei Li, Dr. Robert Simon, Dr. Chaowei Yang, and

Dr. Qi Wei.

iii

Table of Contents

Page

List of Tables . vi

List of Figures . vii

Abstract . ix

1 Introduction . 1

1.1 Computation Offloading . 2

1.2 Storage Augmentation . 4

1.3 Dissertation Contributions . 4

1.4 Dissertation Organization . 5

2 Background and Motivation . 7

2.1 Computation Offloading . 7

2.1.1 Offloading Mechanism . 8

2.1.2 Learning Model for Application Profiling 9

2.1.3 Application Partitioning . 10

2.2 Storage Augmentation . 11

2.2.1 Consistency and Availability . 12

3 FaST: Offloading Mechanism . 13

3.1 Introduction . 13

3.2 Design . 15

3.3 Implementation . 18

3.3.1 Client-side Implementation . 18

3.3.2 Server-side Implementation . 20

3.4 Evaluation . 20

3.5 Parallelization Model . 23

3.5.1 Design . 24

3.5.2 Evaluation . 26

3.6 Summary . 30

3.7 Discussion . 31

4 Lamp: Learning Model for Application Profiling 32

iv

4.1 Introduction . 32

4.2 Classifier Comparison . 35

4.3 Input Features and Impact . 37

4.4 Design and Implementation . 41

4.5 Evaluation . 45

4.5.1 Adaptability Evaluation . 45

4.5.2 Performance Results . 48

4.5.3 Comparing to Other Offloading Approaches and Classifiers 51

4.6 Summary . 53

4.7 Discussion . 53

5 Elicit: Application Partitioning . 54

5.1 Introduction . 54

5.2 Objective and Constraints . 58

5.3 Solution . 60

5.4 An Illustrative Example . 63

5.5 Finding Optimal Partition . 65

5.6 Implementation . 67

5.7 Evaluation . 68

5.8 Summary . 72

6 Storage Augmentation . 73

6.1 Introduction . 73

6.2 vUPS Design . 75

6.3 Consistency and Availability . 79

6.3.1 High Availability with Weak Consistency 80

6.3.2 Limited Availability with Strong Consistency 82

6.4 Implementation . 84

6.5 Evaluation . 85

6.5.1 File I/O Performance . 85

6.5.2 Performance of Metadata Accesses 87

6.5.3 Network Impact . 89

6.5.4 Comparison to Dropbox . 90

6.6 Summary . 91

7 Conclusion . 92

Bibliography . 94

v

List of Tables

Table Page

3.1 Description of Evaluated Applications in FaST 21

3.2 Experimental Environment Setup . 22

4.1 Description of Evaluated Applications in Lamp 49

4.2 Accuracy (%) of Different Classifiers . 51

4.3 Average Response Time (ms) and Energy Consumption (mJ) by Different

Classifiers . 51

5.1 Description of Evaluated Applications in Elicit 69

5.2 Gain Ratios of the Applications in Different Environments 70

6.1 ANOVA Test for Network and Type of Operation 91

vi

List of Figures

Figure Page

3.1 Different Components of Computation Offloading Mechanism: FaST 16

3.2 Offloading Flow Chart . 17

3.3 Comparison of Response time and Energy Consumption 22

3.4 Response Time and Energy consumption for Parallel Processing 23

3.5 Components of Parallel Computation Offloading model 24

3.6 Parallelization Model . 25

3.7 Text Search . 26

3.8 Face Detection . 28

3.9 Image Sub Pattern Search . 29

4.1 A Threshold Policy Fails . 33

4.2 Linear Regression has Low Accuracy . 34

4.3 Comparison between Different Classifiers . 36

4.4 Bandwidth and Latency . 39

4.5 DataSize, CPU, and Memory . 39

4.6 Components of Computation Learning and Offloading Model: Lamp 44

4.7 Lamp Adaptability Evaluation . 46

4.8 Comparison of Response time and Energy Consumption 50

5.1 Methods Consuming the Most of the Execution Time 55

5.2 Call Flow of DroidSlator Application . 55

5.3 Method Call Graph . 62

5.4 Method Selection Graph . 63

5.5 Components of Computation Offloading Model 66

5.6 Response Time and Energy Consumption of Different Applications 71

6.1 The Architecture of vUPS . 75

6.2 vUPS Components . 77

6.3 vUPS User Interface . 84

6.4 File Size vs. Response Time . 86

6.5 Parallel Threads for File Read . 86

vii

6.6 Performance Gain by Bypassing the Main Terminal 88

6.7 Throughput of File Creation . 89

6.8 Network Bandwidth vs File Creation . 89

6.9 Network Bandwidth vs File Read . 90

6.10 DropBox vs vUPS . 90

viii

Abstract

COMPUTATION OFFLOADING AND STORAGE AUGMENTATION FOR MOBILE
DEVICES

Mohammed A. Hassan, PhD

George Mason University, 2014

Dissertation Director: Dr. Songqing Chen

The increasing popularity of mobile devices calls for effective execution of mobile ap-

plications. Due to the relatively slower CPU speed and smaller memory size, plenty of

research has been conducted on properly splitting and offloading computing intensive tasks

in mobile applications to external resources (e.g., public clouds). Prior research on mobile

computation offloading has mainly focused on how to offload. Moreover, existing solutions

require the application developers to specify the computation intensive segment of the ap-

plications beforehand. In addition, these solutions do not work transparently with existing

applications. In this dissertation, we aim to design and implement a mobile application

offloading framework by addressing these issues. For this purpose, we first design and

implement a transparent offloading mechanism called FaST: a Framework for Smart and

Transparent mobile computation offloading, to allow mobile applications to automatically

offload resource-intensive methods to more powerful computing resources without requiring

any special compilation or modification to the applications’ source code or binary.

We also find the key features that can dynamically impact the response time and the

energy consumption of the offloaded methods and thus design Lamp, a runtime Learning

model for application profiler, based on which we profile the local on-device and the re-

mote on-server executions of the applications. To address the problem of what to offload,

we design and implement an application partitioner, called Elicit, to Efficiently identify

computation-intensive tasks in mobile applications for offloading in a dynamically chang-

ing environment by estimating the applications’ on-device and on-server performance with

Lamp.

In addition to the offloading demand for mobile applications, the increasing popularity

of mobile devices has also caused the demand surge of pervasive and quick accessing files

across different personal devices owned by a user. Most existing solutions, such as DropBox

and SkyDrive, rely on centralized infrastructure (e.g., cloud storage) to synchronize files

across different devices. Therefore, these solutions come with potential risks of user privacy

and data secrecy. In addition, the consistency, synchronization, and data location policies of

these solutions are not suitable for resource-constrained mobile devices. Furthermore, these

solutions are not transparent to the mobile applications. Therefore, in this dissertation,

we design and implement a system Virtually Unify Personal Storage (vUPS) for fast and

pervasive accesses of personal data across different devices.

Chapter 1: Introduction

The year of 2013 had witnessed the smartphone sales exceeding 1 billion for the first time

ever, with 1,004.2 million smartphones shipped worldwide [1]. In addition to that, vendors

shipped a total of 281.5 million smartphones worldwide during the first quarter of year 2014,

which is 28.6% more from the 218.8 million units in the first quarter of 2013 [2].

The pervasive usage of mobile devices has enabled fast growth of mobile applications.

Compared to traditional mobile phones that are mainly used for voice communications, to-

day a smartphone is capable of common tasks that were only possible on desktop computers,

such as surfing the Internet, taking and editing pictures, gaming, document processing, etc.

For example, mobile devices are now widely used for financial tracking [3]. Recently, Ama-

zon released SDK for Android users [4] to develop mobile applications using Amazon cloud

such as uploading images and videos to the Amazon cloud storage, and sharing game,

movies, and other data among users.

However, mobile devices, albeit their fastly increasing CPU speed and memory size,

are not as capable as modern desktop computers when running these applications. In

particular, mobile devices are ultimately constrained by the limited battery supply and a

prolonged computation process or a computation-intensive application can quickly exhaust

the limited battery power. This is worsen by the industrial trend to equip more sensors

on mobile devices for a wider scope of non-traditional applications, such as environment

monitoring [5], health monitoring [6, 7], social applications [8, 9], which are often more

computation-intensive. As mobile devices are constrained by resources, recently a lot of

efforts have been made to augment mobile device capability. For example, prior research [10–

14] has proposed to partition the application and offload computation-intensive segments to

1

more powerful counterparts such as servers [12,14] or cloned VMs [10,11], while application-

specific offloading is considered in [13]. Experimental applications are emerging as well. For

example, Amazon SILK browser [15] splits the browsing task between the server and the

user hand-held devices. But the impact of the system environment factors in the total

response time to a mobile user, on the offloaded applications has not been well investigated

in these studies. Moreover, little attention has been paid on how to efficiently identify the

resource intensive segments of an application (for offloading) to maximize the offloading

benefits.

In addition to the demand of more computing capability, the increasing popularity of

the mobile devices has also caused the demand surge of pervasive data accesses, such as for

photos, across a user’s different storage space, such as her iPhone and desktop computer.

To respond to such a fastly increasing demand, there are many research and industry solu-

tions [16–21] to augment the storage of the resource constrained devices. However, although

providing pervasive access, these solutions are prune to the single point of failure and se-

curity breaches [22, 23]. Moreover, these solutions are not transparent to the applications

with little consideration of the consistency, availability, and location policies of the data.

Placing the data to a high latency-bound server may worsen the applications’ performance,

while maintaining strong consistency between the replicas over a low-bandwidth network

may cause non-trivial overhead.

1.1 Computation Offloading

Current offloading schemes often require the applications or the binary executables to be

modified [12, 14], or require special compilation [24]. In addition to that, these schemes

either require the application developers to provide special notation of the resource in-

tensive methods for offloading, or (implicitly) assume that the resource intensive methods

are already known [12, 14]. Clone-based approaches [10] can offload applications without

modifications to applications, but they require a full mobile image running on the cloud.

2

Regardless which approach is taken, a mobile user often desires the fastest response time

and the minimum battery consumption. While prior studies show that a better response

time and more energy consumption can be achieved by computation offloading, all of them

conclude that the resource constrained mobile devices can benefit from offloading only when

the offloading overhead is less than the local execution cost. Thus, always executing appli-

cations on the server side may increase the response time. Therefore, policies like Aliyun

OS [25] where every computation is offloaded regardless of other conditions may actually

lead to a prolonged response time.

Young et al. [14] suggested to offload the computation when the data size to transfer is

greater than 6 MB. But in practice offloading decision depends on the network bandwidth

and other conditions in addition to the data size. MAUI [12] adopts a linear regression

model to make the offloading decision, but our experimental results (presented later) show

that a linear regression model results in more than 50% wrong decisions, which leads to more

energy consumption and a longer response time. Ionan et al. [26] and Odessa [13] proposed

history based profiling of the applications running on the server and the smartphone, and

leveraged the ratio of them to make the offloading decision. However, it is not practically

possible to find the gain ratio in every possible combinations.

Regardless which offloading mechanism and decision maker is adopted, only the computation-

intensive segments shall be offloaded when appropriate. However, identifying such segments

can be challenging, which received little attention in the current research. Moreover, in prac-

tice, we can not offload every possible methods. Some methods may access to camera or

other sensors of the mobile device, which cannot be offloaded and have to be executed on

the mobile device. Considering these facts and constraints, in this dissertation, we first

design and implement a transparent offloading mechanism for existing applications. We

then profile the applications to find the resource-intensive unconstrained methods suitable

for offloading. Based on the profiling and the system environment, we can offload the most

appropriate computation-intensive methods that can achieve most response time reduction

and energy savings.

3

1.2 Storage Augmentation

Besides the increasing demand of computing power from the external resources, the increas-

ing popularity of mobile devices has also caused the demand surge of pervasive data accesses,

such as for photos, across a user’s different storage space, such as her iPhone and desktop

computer. To respond to such a fastly increasing demand, there have been many research

and industry solutions to augment the storage of the resource constrained devices. The

centralized cloud or server-based approaches [27] [16] [17] typically require a user to store

all files on the storage owned by the service providers, which risks data security, privacy,

and availability. Some recent examples include Mark Zuckerberg’s pictures leak incident in

Facebook [28], DropBox account breach with wrong passwords [29], Amazon’s data center

failure in 2011 [30], etc. Modern file systems [31] [19] [32] have taken into account user’s

space (home computer, laptop, and smartphone) to avoid third party storage compromise.

But these solutions maintain a strong consistency model for different types of files, resulting

in unnecessary performance overhead. For example, smartphones are often associated with

consuming and producing data which are mostly non-editable (photo, music, and video) and

more than 27% pictures are taken by smartphones [33]. For these files, consistency may be

relaxed as the contents are not frequently changed. In addition to that, these solutions do

not define a policy for the location of the data in the server-side considering latency and

usage. Moreover, these solutions are not transparent to the mobile applications and require

the source code to be modified to leverage the systems.

1.3 Dissertation Contributions

In this dissertation, we aim to address these issues by designing and implementing effective

schemes for computation offloading and storage augmentation for pervasive mobile devices.

While details are provided later, our contributions in this dissertation include:

• To transparently offload computation-intensive parts of a mobile application, we first

come up with a transparent offloading mechanism called FaST, (Framework for Smart

4

and Transparent Mobile Application Offloading), through method interception at

the Dalvik virtual machine (VM) level to allow mobile applications to offload their

computation-intensive methods without requiring any special compilation or any mod-

ifications to the application’s source code or binary executable. We further enhance

the offloaded methods’ performance by parallelism.

• Second, we design and implement Lamp, (Learning model for application profiling),

to profile applications in a dynamically changing environment. For this purpose, we

empirically identify pivotal features that impact the application execution time and

design a run-time learning based model to profile the local on-device and the remote

on-server execution times. It adopts a multilayer perceptron based learning model

and dynamically takes into account the key features we have identified that affects

the final offloading decision.

• Third, to identify proper method to offload, we further design a framework: Elicit

(Efficiently identify computation-intensive tasks in Mobile Applications for Offload-

ing) to determine the set of methods that can be offloaded without any constraints.

We propose an algorithm to dynamically choose an optimal partition of the applica-

tions for offloading based on the learning model in changing environments.

• Lastly, to augment the storage and support pervasive accesses of the mobile devices,

we build vUPS, (Virtually Unify Personal Storage), a file augmentation system for

mobile devices with cloud considering the availability and consistency. We implement

vUPS in Android and evaluate it with Android applications and benchmarks to show

that storage augmentation can significantly improve the performance of the mobile

devices.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. After presenting some background and

motivation in Chapter 2, we describe our offloading mechanism FaST in Chapter 3. We

5

present our learning model Lamp for application profiling in Chapter 4 and the optimal

application partitioning model Elicit in Chapter 5. We discuss our storage augmentation

model vUPS in Chapter 6 and conclude the dissertation in Chapter 7.

6

Chapter 2: Background And Motivation

As aforementioned, despite the increasing popularity, mobile devices have limited storage

and computation power and there is plenty of research that aims to augment the storage

and computation power of weaker devices with external resources, such as servers [34–37].

But existing solutions typically target networked or clustered computers with dedicated

networking and guaranteed QoS with high availability. On the contrary, mobile devices are

often connected with WiFi or 3G/4G, which do not guarantee the same connectivity as the

wired network.

In this Chapter, we discuss the background and the current state-of-the-art of mobile

cloud computing and storage. We first discuss in the motivations relevant to computation

offloading in section 2.1, then we elaborate the motivation for a new storage augmentation

system in section 2.2.

2.1 Computation Offloading

A computation offloading model should answer the following questions: i) how to offload,

ii) what to offload, and iii) how to enhance the performance of the offloaded components.

To answer the first question, we should first place a mechanism to transparently offload ap-

plications’ methods to remote servers. Then, we should find the resource intensive segments

of an application for offloading. A decision maker should determine the optimal partition

of the applications for offloading depending on the dynamics of the environment. Then, the

offloading model should further try to enhance the performance by expediting the response

time.

7

2.1.1 Offloading Mechanism

Plenty of research has been conducted on how to offload the computation intensive part of

mobile applications to more powerful counter-part. In general, the proposed schemes can be

classified in two broad categories: i) offloading by application partitioning and ii) offloading

by full VM cloning.

Research efforts [12–14, 38, 39] achieving offloading by application partitioning either

switch the execution [13,38] or invoke RPC [12,14] when approaching any resource intensive

segment in the code. Balan et. al. [38] show that applications’ code can be modified

to achieve cyber foraging, while some others [13, 40, 41] only focus on specific types of

applications. RPC based schemes are more generic, but they require either annotation [12],

binary modification [14], or special compilation [24], which requires modifications to every

application so as to fit into the offloading framework.

On the other hand, VM based cloning maintains a full clone of the smartphone image

in the cloud [10, 11, 42]. To offload computation intensive segment of the applications,

Cloudlets [11] suspend the smartphone execution and transfer the execution in the VM

clone in the Cloudlets. While transferring, it requires a lot of data transfer (∼100 MB) for

synchronization. CloneCloud [10] and Comet [42] support thread level migration that do

not require the smartphone to suspend while offloading. To support thread migration, the

application should be partitioned in such a way that communication and synchronization

overhead remains acceptable [12]. While offloading, the stack, heap, and instructions are

transferred to the cloud for the thread to resume execution there. Any update needs to

be synchronized instantly and sometimes such overhead could be high. For example, the

offloading synchronization overhead for Linpack [43] in Comet [42] is over 1 MB. If simply

the linpack() method is offloaded, the data transfer is only a few KB.

Thus, to minimize the offloading overhead and to support the large number of existing

mobile applications that do not have offloading logic, we argue that a transparent offloading

approach at the method level sometimes are more desirable. As a transparent scheme, it

8

would not require any modifications to the applications source code or binary executables

or special compilation.

In addition to that, mobile applications are expected to have the minimum response

time to enhance the user’s experience and save the battery power. To minimize the response

time to the user, parallel processing the offloaded method is a choice. After investigating

some popular mobile applications, we find that some types of applications can be further

parallelized after being offloaded [13,41].

2.1.2 Learning Model for Application Profiling

While prior studies show that better response time and less energy consumption can be

achieved with computation offloading, offloading is appropriate only when the offloading

overhead and the server side execution cost is less than the local execution cost. Thus,

always offloading [25] may lead to a prolonged response time instead of conserving it.

Young et al. [14] offload the computation when the data size is greater than 6 MB. But

in practice we find that a notable number of resource intensive popular applications, such as

ZXing [44] (Android Barcode reader app) and Mezzofanti [45] (Android optical character

recognition app), always use an input of fixed size, typically ranging from 500 KB to 6

MB, where the offloading decision should also depend on the network bandwidth and other

conditions. MAUI [12] makes offloading decisions based on a linear regression model among

some selected features. In fact, our experimental results presented later show that a linear

regression model results in more than 50% wrong decisions, which leads to more energy

consumption and longer response time.

So to make a proper offloading decision, we need to know the local on-device and the

remote on-server execution times of the method. But it is not possible to profile both

the local on-device and the remote on-server executions for every method in every possible

configuration. So we need a prediction model. To address this research challenge, we

present the design and implementation of Lamp, Learning model for application profiling,

to learn the on-device and on-server execution times gradually and estimate them to make

9

the best offloading decision accordingly. For this purpose, we empirically identify pivotal

features that affect the applications’ execution time. It adopts a multilayer perceptron

based learning model and dynamically takes into account the key features that impact the

execution time of the application. Thus, it assists the offloading decision maker to take the

optimal decision while offloading in a dynamically changing environment.

2.1.3 Application Partitioning

We have mentioned that plenty of research has been conducted on how to efficiently offload

computation-intensive tasks in a mobile application to more powerful counterpart [10–15,

42]. However, to implement the offloading, these models either require the application

developers to provide special notation of the resource intensive methods for offloading, or

(implicitly) assume that the resource intensive methods are already known [12,14]. Clone-

based approaches [10] can offload applications without modifications to applications, but

they require a full mobile image running on the cloud, which brings high synchronization

overhead [11,42]. Such requirements prevent these models from being deployed in practice.

Making the offloading decision based on data size [14] may not necessarily offload the

most computation-intensive methods. In practice, computation-intensive methods do not

necessarily have direct relationship with the size of input data. Moreover, offloading the

resource-intensive methods may not save energy and response time in every circumstance.

MAUI [12] adopts the 0-1 integer linear programming (ILP) to solve the problem of of-

floading to maximize performance gain in terms of energy or response time. However, in

practice, we can not offload every possible method. Some methods may access camera or

other sensors of the mobile device, which cannot be offloaded and have to be executed on

the mobile device locally. While choosing the methods to offload, we have to consider these

constraints that are neglected in previous research.

Therefore, in this dissertation, we aim to offload such methods so that the offloading

overhead is minimized, which comes from the time and the energy consumption for data

sending to the server, and high performance gain is achieved by executing it on the more

10

powerful computer. To achieve this goal, we will formulate our problem, and map our

application partitioning problem to the Project Selection Problem [46] in order to choose

an optimal partition to offload methods.

2.2 Storage Augmentation

Distributed filesystems [36,47,48] have been a research focus in the field of distributed sys-

tems for decades. Large scale distributed file systems, such as Goolge File System (GFS) [35]

and the Hadoop Distributed File System (HDFS) [49, 50], have also been well studied for

distributed computing. Panache [51] also proposes improvement for parallel accesses. These

traditional and research-oriented file systems are designed for local area network and desk-

top terminals, while in modern ages various mobile devices (e.g., smartphones) play a crucial

role for users’ data generation and access over public network.

More recent solutions, such as ZZFS [19], EYO [32], and Volley [21], proposed systems

that can place data in a hybrid cloud to ensure more availability and consistency between

the data. ZZFS [19] is a system to make data more available, while EYO [32] makes data

available from offline devices as well in limited context. On the other hand, Volley [21]

is a system to place data in a geo-distributed cloud system. BlueFS [52] has optimized

the data placement policy where data updates were improved by EnsemBlue [53] from a

centralized server to a peer-to-peer model. ZZFS [19] has specific data placement and the

consistency policies to avoid conflicts, while Eyo [32] does not guarantee any consistency.

PersonalRAID [54] provides device transparency for partial replication, which is not suitable

for public network as it requires users to move a storage physically between the devices.

Cimbiosys [55] provides efficient synchronization with minimized overhead. But it is not

device transparent.

Overall, these studies mainly emphasize on how to keep data available and (more impor-

tantly) consistent between different replicas. Moreover, these solutions do not distinguish

between the users’ files and data according to their usage and access frequency. Therefore,

11

these solutions bring with a lot of network overhead affecting the overall performance.

2.2.1 Consistency and Availability

Mobile devices are exposed to dynamically changing environment. As a result, applying the

same data placement, consistency, and replication policy for cloud computing may not be

suitable for mobile devices. For example, cloud storage like Google Drive [56] uses a strong

consistency policy, while DropBox [16] applies continuous consistency between the replicas.

These models may cost 74KB of data transmission for even 1 byte of data transfer in

our experiments, which is expensive for limited data-plan users and bandwidth-constrained

mobile devices. Observing the fact that strong consistency is not required for every type of

files, we propose different replication and consistency policies for different types of files to

minimize the overhead and increase the data access performance. We divide files into two

broad categories based on their access frequency. Different consistency policies are used for

them to minimize the overhead.

12

Chapter 3: FaST: Offloading Mechanism

3.1 Introduction

Plenty of research [10,12–14,38,39,42] has been conducted on how to offload as well as what

to offload. Balan et. al. [38, 39] proposed to modify existing applications for computation

offloading. They emphasized that developers can revise and inject the offloading mechanism

into existing code with ease. Similarly, MAUI [12] provided an API for the programmers

for offloading. By annotating a method, the developer can offload it. But these proposed

solutions require the source code to be modified. Young et.al. [14] also suggested RPC

based solution for offloading. In fact, they modified the binary executables of existing

applications and injected RPC logic for offloading, which also requires specific modifications

to each application. Kosta et.al. [24] also proposed a solution with special compilation,

which requires applications to be developed and compiled in a unique way. Some other

studies [13, 40] are application specific and they do not provide any guideline for generic

usage. For example, Odessa [13] showed that parallelization can expedite response time,

while they developed their own applications to meet the specific requirement for evaluation.

As a result, these proposed solutions can not be generalized for all the existing applications.

On the other hand, VM based cloning maintains a full clone of smartphone images in the

cloud [10, 11, 42] and allows transparent offloading. For example, Cloudlets [11] suspends

the smartphone execution and transfers it to the VM clone in the Cloudlets. In short, while

offloading, it calculates the difference between the server-side and the smartphone images

and transfers the difference as an overlay. As a result, it requires a lot of data transfer

(∼100 MB) for synchronization.

CloneCloud [10] and Comet [42] support thread level migration with the complete image

cloning. It can offload the resource intensive methods to the cloud image. But migrating

13

a thread requires all the states to be transferred to the server, which incurs too much

overhead. This is confirmed by Comet [42] itself. In the experimental results, it showed that

the synchronization overhead for offloading simple applications is sometimes over hundreds

of megabytes.

Comet [42] also proposes to migrate the thread when its local on-device execution time

exceeds the round trip time to the server. But before that, it requires continuous synchro-

nization with the server. In case of not offloading a thread, this whole synchronization

overhead is wasted. In addition to that, the thread level migration needs separate cloning

for each of the users. If the same method is offloaded by multiple users, multiple separate

copies have to be maintained and synchronized in the server. But with the method level

offloading, the same method can be executed with different parameters from different users,

thus keeping the server overhead minimum. Moreover, not every thread can be offloaded.

Threads accessing I/O, camera, and other sensors of the mobile device should not be of-

floaded to the server. A single access to these restricted resources can deter the whole

thread from being migrated, although this access may not be related to the computation-

intensive segment (or method) of the application. While in the method level offloading, we

can constrain only methods what are accessing the restricted resources, thus allowing more

flexibility for offloading. Therefore we argue that instead of the thread level migration, the

method level offloading allows us to find the resource-intensive segments and profile them

to find the constraints from offloading. In addition, the method level offloading allows us

less overhead and it does not cause unnecessary synchronization.

So to support the large number of existing mobile applications that do not have offload-

ing logic, a transparent offloading approach at the method level sometimes may be more

desirable. As a transparent scheme, it should not require any modifications to the applica-

tions source code or binary executables or special compilation. Therefore, in this Chapter,

we propose to design and build FaST, (A Framework for Smart and Transparent Mobile

Application Offloading Mechanism) to transparently offload methods of mobile applications.

While details are presented in later sub-sequences, our contributions in this Chapter are:

14

• Different from previous studies, FaST allows mobile application methods to be of-

floaded at method level transparently without requiring any modifications to the ap-

plications source code, executables, or demanding special recompilation.

• We implement FaST in the Android Dalvik virtual machine and evaluate it with a

few popular mobile applications from Google Play to show that offloading mechanism

works seamlessly with existing applications.

The rest of this Chapter is organized as follows. Section 3.2 presents the design, while

section 3.3 details our implementation. We evaluate FaST in section 3.4 and present the

parallelization model on section 3.5. We then make concluding remark in section 3.6. We

also discuss the limitations of the offloading mechanism in section 3.7 which is addressed in

Chapter 4.

3.2 Design

In this section we present the design of the offloading mechanism model FaST. Figure 3.1

shows the various components of our computation offloading model FaST. While details are

presented in the subsequent sections, at high level we intercept the methods in mInterceptor

and offload them to the server by sInterface. The FaST Interface in the server-side ex-

ecutes the offloaded method there and gives the result back from the server to the mobile

device. After the mobile device gets the result back, it follow its original way of execution.

As we have discussed, it is desirable that computation intensive methods of any existing

application can be offloaded transparently. For this objective, FaST offloading mechanism

consists of several components as shown in Figure 3.2. To describe the components’ re-

sponsibilities and the interaction between them, we use the DroidSlator [57] application

(Android dictionary application) as an example. DroidSlator has a member class ThaiDict

which has a method translate(String inWord, String toLang). The input parameters

of translate(String inWord, String toLang) are two Strings and the return value is

of type String. The DroidSlator class is to create an object dict of ThaiDict class in

15

Figure 3.1: Different Components of Computation Offloading Mechanism: FaST

the translateIt method, and invoke dict’s translate with two Strings. The return value

from translate is placed in the object String. In the following description, we assume the

offloading decision has been made and we are intercepting the translate and offloading it

to the server.

There are two major components for offloading in FaST:

• mInterceptor: The mInterceptor intercepts the method invocation at the Dalvik

VM instruction level and redirects the execution to the server side. After getting the

results back from the server, the application proceeds following its original logic. In

case of a local execution or a remote server failure, mInterceptor lets the application

continue its normal execution flow. While intercepting, mInterceptor gets the current

executing methods’ class and parameter list, return type, etc. If a decision is made to

offload the method, it serializes the input parameters and the reachable objects from

this methods and sends them to the sInterface to offload the method along with

the parameters. In this example, mInterceptor traps the dict.translate(inWord,

16

Figure 3.2: Offloading Flow Chart

toLang) in translateIt method of DroidSlator class, and retrieves the input pa-

rameters (inWord, toLang) and sends them to the server for execution. After the

server side has completed the execution, mInterceptor gets the result back from

sInterface, de-serializes the result to build the appropriate object (String object in

this example) and returns to the invoker of the method.

• sInterface: Once an offloading decision is made, the intercepted method is offloaded

to the server side. For this purpose, a client-side interface sInterface is developed

on the smartphone so that the entire process can be automated and transparent to

mInterceptor. The sInterface is also responsible to get the result back from the

server.

On the server side, FaST requires the same application to be installed (not running)

so that the server can invoke and execute the same method that is offloaded. The mobile

applications can be installed and executed on the application VM or on the desktop machines

17

if supported. These applications are managed by the Application Interface Manager

(AIM). The AIM receives the offloading requests along with the parameters through the FaST

Interface. So in the DroidSlator example, AIM instantiates the appropriate method class

ThaiDict at runtime, creates the input parameters String inWord and String toLang

with the provided information from the mobile device, and executes the method translate.

Once the execution is completed, the server returns the result (a String instance) back to

the mobile device through the FaST Interface.

3.3 Implementation

We have implemented FaST on the Dalvik VM in the CyanogenMod [58] distribution. The

major implementation challenge comes from the offloading mechanism we have designed.

In this section, we present it first and then describe the server side implementation.

3.3.1 Client-side Implementation

Dalvik VM [59] is a virtual machine that allows applications to run on Android devices.

Dalvik supports Java code, but it converts the JVM bytecode to Dalvik bytecode and puts

all the classes of an application to a single .dex file. While executing, Dalvik loads the

definition of the classes from the .dex file and stores relevant information in the classobject

structure. The Java functions in each class is mapped to the method structure. The

method’s definition includes the name and the first instruction address in memory mapped

dex file.

In Dalvik, each kernel thread is dispatched to one user level thread. Each thread pro-

ceeds instruction by instruction. Similar to any other instruction, a method invocation has

its own instruction (dalvik opcode). There are several types of methods (direct, virtual,

static, super class, etc.) and each of them has different opcode for invoking. When Dalvik

interpretor reaches any method invoking instruction, it jumps to the address of the method’s

instruction and starts to execute it. Before jumping to the method’s instruction, Dalvik

saves the frame page and the program counter of the current method to restart from the

18

same point after returning from the invoked method. Then it makes the invoked method as

the current method. The input parameters of the invoked method is saved in the invoked

method’s frame page. The frame page saves the values for primitive and the address of the

object input parameters. This address of an object (string, array, or complex object) points

to a structure which holds the memory address and content of the object’s member fields.

Once the input parameters are set, Dalvik jumps to the invoked method’s instruction to

start execution. At this point, mInterceptor intercepts the method call and offload the

method.

While offloading, FaST gets all the fields values of the input parameters and packs them

in a byte array. For each parameter, in the byte array, FaST puts the name, the type,

the length of the content, and the actual content of the fields. If any object refers to a

superclass or has another class object as a member, FaST recursively copies the contents of

their fields as well. The name of the application, method, and class; the parameters’ type

are also encoded in the byte array.

Once packed, mInterceptor sends the byte stream to the sInterface and suspends

for the return value. The sInterface communicates with the server side to execute with

the provided parameters and gets the result back. It follows the same protocol to con-

struct the return object out of the byte stream sent from the server. After de-serializing

the return object, mInterceptor returns it to the invoking method. To return from the

invoked method, mInterceptor puts the value (for primitive data types) or the address (for

other objects) in the return value field of the Dalvik interpreter. Similar to the program

counter of frame page, the return value is a field for the current executing thread where

the returned entity from an invoked method is saved. mInterceptor then re-starts normal

execution of the application. It first retrieves the invoking method’s frame page and the

program counter (which were saved before), and sets the invoking method as the current

method and starts the execution from where it was suspended.

In the entire process, sInterface is responsible for communicating with the server to

offload computation. sInterface uses socket programming to communicate with the server

19

to send and receive raw data.

3.3.2 Server-side Implementation

To facilitate the offloading, FaST also has a simple server side interface. The FaST Interface

is a component on the sever side, which communicates with the sInterface on the mobile

device to exchange data for computation offloading. We have implemented this component

with socket programming.

Application Interface Manager (AIM) gets the raw byte stream from the FaST Interface

and unpacks according to the protocol discussed before. Based on the received information,

AIM can find the appropriate application to bring in context and uses Java reflection to

invoke the particular class’s method dynamically. It also reconstructs the input parame-

ters of the invoked method. After the invoked method returns the result, AIM packs the

return object’s values following the same protocol and sends the resultant byte stream to

the mobile devices.

FaST server side implementation runs on an Android ASUS R2 virtual machine in Vir-

tualBox [60].

3.4 Evaluation

We evaluate FaST with eight popular Android applications. Table 3.1 gives a brief descrip-

tion of these applications as well as the candidate methods for offloading. Among these

applications: DroidSlator, LinPack, Picaso, and NQueen are computation-intensive. The

data transfer time is negligible compared to the computing time. In contrast, ZXing is

data-intensive. Therefore, the offloading overhead mainly comes from the data transfer

time. Mezzofanti and MatCal are both data- and computation-intensive. The size of each

image in Mezzofanti is around 3 MB. It also takes significant time to filter the text from

the image. Matrix operations are time-consuming in MatCal, and the data size could be

large for large matrices. Compared to other applications, MathDroid is not computation-

or data-intensive.

20

Table 3.1: Description of Evaluated Applications in FaST

Application Offloading Candidate Description

DroidSlator [57] translate(String inWord, String
toLang) method of ThaiDict class

Android translation applica-
tion

Zebra Xing(ZXing) [44] decodeWithState (BinaryBitmap)
method of MultiFormatReader class

Android product bar code
reader

Mezzofanti [45] ImgOCRAndFilter(int[] bw img,
int width, int height, boolean
bHorizontalDisp, boolean
bLineMode) method of OCR class

Android optical character
recognition application

MatCal [61] times(Matrix B) method of Matrix class Android application for ma-
trix operation

Picaso [62] project and compare(Bitmap bm)
method of ReadMatlabData class

Android face recognition ap-
plication

MathDroid [63] computeAnswer(String query) method
of MathDroid class

Android Calculator applica-
tion

LinPack [43] → linpack() method of
LinpackJavaActivity class

Android CPU and Memory
Benchmark

NQueen → findSolution(int board[],int n,
int pos) method of NQueen class

Android application for
NQueen problem

We evaluate FaST in a dynamically changing environment where the network band-

width, latency, input data size, server CPU and memory change. On the server side, we

run Android ASUS R2 virtual machine in Virtual Box [60]. We change the server’s CPU

availability and memory by utilizing CPU and memory cap of the Virtual Box. We have

five different configurations to emulate five different environments in practice, where the

network bandwidth, CPU availability, memory size, and network latency are set as the fol-

lowing Table 3.2. For experiments, we collected one-month traces of three users from these

applications using a Google Nexus One phone with 1 GHz CPU and 512 MB RAM and we

use PowerTutor [64] to measure the power consumption of the applications.

Figure 3.3 shows that compared to always local executions (OnDevice), FaST provides

the user faster response time for DroidSlator, MatCal, Picaso, and NQueen (59.62%, 76.26%,

and 97.91%, and 5.16% of local execution time, respectively). The energy consumption is

about 84.98% and 9.14% of the energy consumption when they are executed locally for

DroidSlator and NQueen. However, by offloading, FaST is consuming significantly higher

response time and energy consumption for ZXing, Mezzofanti, and MathDroid compared

21

Table 3.2: Experimental Environment Setup

Simulated
Network

Network
Bandwidth
(Kbps)

CPU Memory
(MB)

Network
Latency
(ms)

LAN 100000 2 GHz 1024 20

WLAN 20 ms 30000 1 GHz 2048 20

LAN 802.11g 25000 2 GHz 2048 50

4G 5000 2 GHz 2048 75

3G 500 2 GHz 2048 200

DroidSlator ZXing Mezzofanti MatCal Picaso MathDroid Linpack NQueen
10

0

10
2

10
4

10
6

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

OnDevice
FaST

(a) Response Time

DroidSlator ZXing Mezzofanti MatCal Picaso MathDroid Linpack NQueen
10

0

10
2

10
4

10
6

E
n
e
rg

y
 (

m
J
)

OnDevice
FaST

(b) Energy Consumption

Figure 3.3: Comparison of Response time and Energy Consumption

to OnDevice execution. So, always offloading the resource intensive method may not favor

the response time and energy consumption of mobile applications. Nevertheless, from our

22

experiments, we can see that FaST can work seamlessly with real world applications.

3.5 Parallelization Model

Parallel processing for computation has been well studied for big data computation and

large clusters [65, 66]. But these solutions mainly focused on high-end scientific and big

data computation for wired computers with stable network. Both the nature of the com-

putation and the network connection are different for mobile devices. The network does

not provide any guarantee and the performance of the computation processed in parallel is

significantly dominated by the bandwidth and latency of the network. Therefore, we design

and implement a model to farther increase the performance by automatic parallelism for

offloaded methods if possible.

1 2 3 4
0

10

20

30

40

50

60

Degree of Parallelism

T
im

e
(S

)

EC2

(a) Response Time

1 2 3 4
0

10

20

30

40

50

Degree of Parallelism

E
ne

rg
y

(J
)

EC2

(b) Energy Consumption

Figure 3.4: Response Time and Energy consumption for Parallel Processing

To study the impact of parallelism on offloading in the server-side, we have conducted

some preliminary experiments for text search application with Amazon EC2. We have

offloaded the method from a Google Nexus One with Android 2.2 OS, 1 GHz CPU, and 512

MB RAM to Amazon EC2 instance with 5 GHz CPU, 1.7 GB RAM, and 300Kbps of network

23

speed. We have further parallelized the offloading into 1, 2, 3, and 4 instances. Figure 3.4(a)

shows the response time, while Figure 3.4(b) shows the energy consumption. Motivated

by our findings, we have designed farther parallelism whenever possible to enhance the

performance of the offloaded method of mobile devices.

To expedite the performance of the offloaded method, FaST farther parallelizes the

offloaded method. Figure 3.5 shows the high level design of the model. While parallelizing,

the mobile device is responsible to divide the offloaded method among multiple servers and

merge the results after getting the results back. In addition to that, the mobile device also

finds the appropriate server-nodes and handles the node failures as well.

Figure 3.5: Components of Parallel Computation Offloading model

3.5.1 Design

Figure 3.6 illustrates the work flow for the parallel processing. After exploring servers where

offloaded methods can be executed, the FaST Scheduler establishes connections between the

24

Figure 3.6: Parallelization Model

mobile device and the servers. The mobile device divides the whole input data into n

small chunks and read input chunks. It then sends the data and the computation to the

appropriate servers. Note here that some data servers may have some data in prior. These

servers are referred by the FaST scheduler so that only the computing program needs to

be sent there, thus reducing the data transferring overhead. Some data chunks may be

executed in the mobile device itself due to security reason. For all the other servers, both

computing program and data need to be sent over. The mobile device also keeps track of the

the processing progress of the job. Currently we send the computation in serializble byte

code from the master node to the data servers. It also defines the return value type as well.

The servers receive the data portion in desired input data format and start the computation

and sends back the output to the mobile device. The mobile device saves the intermediate

results and marks the entry for that particular portion of the input data chunk as finished.

The mobile device sends the next portion of the job to the servers and the server start

25

computation for the next portion of the job. This continues until the job is finished or any

server fails (e.g., a server is shut down or loses the connection from the mobile device). If

any server fails, mobile device tries to get the result for that data portion from the resource

overlay or re-execute that portion of the job by exploring another worker server. After

finishing the remote execution, the mobile device begin merging the intermediate results.

3.5.2 Evaluation

In this section, we describe the performance of the parallelized offloaded method with three

applications. We repeat each experiment five times and present the average of the results.

• Text Search

OD CD CD+F C C+F EC2
0

10

20

30

40

50

60

Ti
m

e
(S

)

Time
Energy

0

10

20

30

40

50

60

E
ne

rg
y

(J
)

(a) Response Time and Energy Consumption

1(CD) 2(CD) 3(CD) 4(CD)
0

10

20

30

40

50

60

Tim
e (

S)
 / E

ne
rgy

 (J
)

Nearby Computer (Time)
Farther Computer (Time)
Nearby Computer (Energy)
Farther Computer (Energy)

(b) Response Time and Energy Consumption for
Parallel Processing

Figure 3.7: Text Search

Figure 3.7 depicts the response time and the energy consumption of the text search

application when it is executed on the Android and the computation is offloaded with

and without parallel processing. In this experiment, the amount of data transferred

is 2.6 MB when both computation and data are transferred, otherwise it is 1 KB if

only the computing program is needed to be offloaded. In offloading the data file, it

is divided into 512 KB chunks. So in the cases with node failure (CD+F and C+F), only

one chunk is lost, which minimize the re-execution overhead.

26

In Figure 3.7, the left-y axis represents the response time while the right-y axis repre-

sents the corresponding energy consumption. Figure 3.7(a) clearly shows that offload-

ing to EC2 results in the worst performance in terms of both the response time to the

user and the amount of energy consumed, even worse than the on-device execution.

Compared to the case when it is executed locally on the mobile device, offloading

to the nearby residential computers results in 69% and 59% less response time and

energy consumption, respectively, although offloading to nearby residential computers

demand some bandwidth for file transferring. In the node failure cases where residen-

tial computers may not be reliable or the home user can depart a residential computer

from FaST at any time, Figure 3.7(a) shows that the performance of offloading still

outperforms the on-device computing in terms of both the response time and the to-

tal energy consumed on the mobile device, although there is a 47% and 61% increase

compared to if there is no node failure.

When the computation is parallelized among multiple machines, Figure 3.7(b) shows

the result. Again, the left-y axis represents the response time while the right one

represents the energy consumption. The residential computers are identical with a

2 GHz CPU and 2 GB RAM. The rented EC2 instances have 5 GHz CPU and 1.7

GB RAM each. Without parallel processing, the response time may be well over the

average connection time of a mobile user with a roadside WiFi ranges between 6-12

seconds [67]. This makes it impossible for a mobile user to get the result in time in

the same communication session although EC2 has a faster CPU speed. This would

be a critical problem for delay sensitive mobile applications when a user waits to

get the result back. As shown in the figure, parallelization can clearly improve the

performance when the number of computers is increased from 1 to 2 and 3. However,

Figure 3.7(b) also shows that the response time and energy consumption first decrease

with the increase of parallelization level, then it increases when the parallelization

level increases (from 3 to 4 nodes). So here it is also important to calculate the the

appropriate degree of parallelism to optimize the performance.

27

Again, in Figure 3.7(b), we also observe that the residential computers perform sig-

nificantly better than EC2 when both the data and computation (CD) are offloaded.

But when only the computation (C) is offloaded, they have similar performance.

• Face Detection

OD CD CD+F C C+F EC2
0

20

40

60

80

100

120

Ti
m

e
(S

)

Time
Energy

0

20

40

60

80

100

120

En
er

gy
 (J

)
(a) Response Time and Energy Consumption

1(CD) 2(CD) 3(CD)
0

5

10

15

20

25

30

35

T
im

e
(S

)
/ E

ne
rg

y
(J

)

Nearby Computer (Time)
Farther Computer (Time)
Nearby Computer (Energy)
Farther Computer (Energy)

(b) Response Time and Energy Consumption for
Parallel Processing

Figure 3.8: Face Detection

Figure 3.8 shows the performance results when the face detection program is executed

in different environments. In particular, figure 3.8(a) shows that executing on the An-

droid takes the longest time of about 94.5 seconds. Not surprisingly, the corresponding

energy consumption is the largest for the on-device execution.

Figure 3.8(a) also shows that both the response time and the energy consumption are

reduced when the computation is offloaded. When the program is offloaded to the

nearby residential computers, the performance improvement is more pronounced than

when the program is offloaded to EC2: on the residential computer, the response time

is about 10.25 seconds and 11.90 seconds without or with the data transferred. Cor-

respondingly, when the computation is offloaded to the nearby residential computer,

the energy consumed is only about 23% and 36%, respectively, of the total energy

consumption when we have on device execution without or with data transfer.

With the help of parallelization, the performance is better. Figure 3.8(b) shows the

28

effect of parallelism on the response time and the energy consumption. However,

as shown in the figure, although using 2 nodes to parallelize the computation does

improve the user response time and the total energy consumption on the mobile de-

vice, the response time and energy consumption of the computation actually increase

when the parallelization is further increased (from 2 nodes to 3 nodes). When the

computing nodes have the data in prior, the performance is better than when the

data need to be actually transferred before the computation. This indicates offload-

ing computation to the nodes where data resides may be more beneficial than to the

nodes with higher computation power without any data in prior. But again, an ap-

propriate parallelization level is always desired as more resources may not improve

the performance.

• Image Sub Pattern Search

OD CD CD+F C C+F EC2
0

50

100

150

200

Ti
m

e
(S

)

Time
Energy

0

50

100

150

200

E
ne

rg
y

(J
)

(a) Response Time and Energy Consumption

1(CD) 2(CD) 3(CD)
0

10

20

30

40

50

60

Tim
e (

S)
 / E

ne
rgy

 (J
)

Nearby Computer (Time)
Farther Computer (Time)
Nearby Computer (Energy)
Farther Computer (Energy)

(b) Response Time and Energy Consumption for
Parallel Processing

Figure 3.9: Image Sub Pattern Search

For Image Sub Pattern Search, Figure 3.9(a) shows that executing on the Android

takes the longest time of about 163.9 seconds. In all the offloading scenarios, the

response time is significantly reduced. Correspondingly, the energy consumption is

the largest for the on-device execution. The reduction when the program is offloaded

to the nearby residential computers is more pronounced than when the program is

offloaded to EC2: on the residential computer, the response time is about 13.37

29

seconds and 14.52 seconds without or with the data transferred. Correspondingly,

the energy consumed is only about 10% and 11% of the On-device (OD) computation,

respectively, when the computation is offloaded to nearby residential computers. The

node failure only causes 54% and 51% increase of the response time and the energy

consumption compared to their counterpart without any node failure. These results

are still much better than those when offloading to EC2.

Figure 3.9(b) shows the response time and the energy consumption when the compu-

tation is parallelized. When two and three nodes are used for computing, both the

response time and the energy consumption on the mobile device decrease. However,

when more nodes are used in the computing, performance degrades due to paralleliza-

tion overhead. On the other hand without parallelization, the response time is more

than 10 seconds, but with parallelization, the user gets the result back in 5 seconds,

which is more feasible.

3.6 Summary

The pervasive mobile devices are driving the fast development of mobile applications. For

resource-intensive mobile applications, there is an increasing demand to offload to more

powerful counterpart, such as clouds and servers. Existing offloading mechanisms often

require changes to the application binary or source code or recompilation. To address this

problem, we have designed and implemented FaST, a framework for smart and transpar-

ent mobile application offloading. In FaST, we have implemented a transparent offloading

mechanism at the method level. Compared to existing schemes, FaST does not require

any modifications to the source code or binary, or special compilation. Thus, the large

number of existing applications can be directly offloaded without further efforts. Extensive

experiments have been conducted to evaluate FaST. The results show that FaST can work

seamlessly with existing mobile applications.

30

3.7 Discussion

Our experimental results in section 3.4 shows that FaST can not improve the offloaded

methods performance in every case. Sometimes the performance of the offloaded method is

even deteriorated. The offloaded method’s performance depends on many factors including

application type, network condition, server’s availability, etc. Having built a transparent

offloading mechanism, in the next Chapter, we design and implement a profiler to estimate

methods’ OnDevice and OnServer execution time for proper offloading decision.

31

Chapter 4: Lamp: Learning Model for Application Profiling

4.1 Introduction

In the previous Chapter, we discussed the transparent offloading mechanism for mobile

applications. Regardless which approach is taken, a mobile user often desires the fastest

response time and the minimum battery consumption. While prior studies show that better

response time and less energy consumption can be achieved with computation offloading,

offloading is appropriate only when the offloading overhead and the remote execution cost

is less than the local execution cost. Thus, always executing applications on the server side,

which greatly simplifies the system design and implementation, may sacrifice a user’s best

interests in terms of the response time and the energy consumption.

At a high level, making the appropriate decision for a method offloading depends on the

performance difference between the local on-device and remote on-server executions as well

as offloading overhead. In practice, many factors can impact the above aspects [11,12,68],

and such impact may be dynamic. In making the offloading decision, MAUI [12] adopted a

linear model to make the offloading decision, while Odessa [13] leveraged previous execution

statistics and used the index of the ratio-of-benefit to make the offloading decision. Ionan

et al. [26] proposed history based profiling of the applications running on the server and

the smartphone, and leveraged the ratio of them to make the offloading decision. Comet

[42] also proposes a threshold based policy for offloading computation: when the thread

execution time exceeds twice of the RTT to the server, then it migrates the thread.

Some prior studies (e.g., [14]) suggested a threshold based policy for offloading decision-

making. A method is offloaded only when its parameter data size is greater than a pre-

defined threshold value. Apparently, it is difficult to set a generic threshold as it is often

application-dependent. More importantly, this might work in a static environment where the

32

16.621 33.242 49.863

OnDevice

OnServer

OnDevice

OnServer

Datasize (KB)

1000 Kbps
3000 Kbps

(a) Data size (KB)

500 1000 1500

OnDevice

OnServer

OnDevice

OnServer

Bandwidth (Kbps)

39 KB
19 KB

(b) Bandwidth (Kbps)

Figure 4.1: A Threshold Policy Fails

resource information is stable, such as stable bandwidth between the sever and the mobile

device. For a mobile connection where conditions change continuously and dynamically,

it is hard to make the offloading decision solely based on a static threshold. Moreover,

many resource-intensive applications, such as Mezzofanti [45] and ZXing [44], always have

relatively stable input sizes. For these applications, a threshold based policy always makes

the same offloading decision without considering network bandwidth or latency, let alone

other factors such as memory or CPU availability.

To demonstrate the limitation of a threshold based policy, we evaluate an Android face

recognition application Picaso [62]. We use an Android Google Nexus one (with 1 GHz

CPU and 512 M memory)and a virtual machine (with 2 GHz CPU and 2 GB memory) on

the server to offload computation. Figure 4.1 shows the results. We conduct experiments

for 30 runs. In Figure 4.1, the y-axis represents the optimal decision (whether offloading or

local execution is the better). In Figure 4.1(a), the x-axis represents the data size in KB,

while in Figure 4.1(b), it represents the bandwidth in Kbps. As shown in Figure 4.1(a),

when the bandwidth is 3000 Kbps, it is optimal to offload the computation for every data

size (so the threshold value should be zero KB here). But when the bandwidth drops to

1000 Kbps, it is better to offload only when data size is greater than 39 KB. Thus the

threshold value should be changed to 39 KB in this case.

Figure 4.1(b) shows the optimal decision for the data size of 19.51 KB and 39.03 KB

33

on average, where 19.51 KB is the average size of one picture and 39.03 KB is the average

size of total two pictures. When the data size is 39.03 KB, it is optimal to offload the

computation if the bandwidth is greater than 500 Kbps. On the other hand, if the data

size is 19.51 KB, then the threshold value changes to 1000 Kbps. These experiments only

consider the interplay of the data size to transfer and the network bandwidth. Apparently,

a threshold based policy could not handle such complexity.

0 2000 4000 6000 8000
0

2000

4000

6000

8000

Original Value

P
re

d
ic

te
d

 V
a

lu
e

(a) Linear Regression

0 2000 4000 6000 8000
0

2000

4000

6000

8000

Original Value

P
re

d
ic

te
d

 V
a

lu
e

(b) Support Vector Machine

Figure 4.2: Linear Regression has Low Accuracy

MAUI [12] suggests linear regression for predicting the on-device and on-server execution

time with the given system features and makes the offloading decision accordingly. A linear

regression model works well when only a limited number of features are changing, such as

the bandwidth or latency as considered in MAUI [12]. But the complexities among the

interplay of more features cannot be captured by a linear regression model. Furthermore,

these key features do not necessarily have linear relationships. To verify our intuition, we

conduct the translation of random-sized paragraphs using DroidSlator [57]. Figure 4.2(a)

details the result of linear regression and Figure 4.2(b) illustrates the result of SVM. In

these two figures, the x-axis represents the real response time and the y-axis represents the

predicted response time in ms with a same setup as in the evaluation (subsection 4.5.2).

Ideally the points here should follow a straight line with a slope of 45o. From these two

figures, we can see that SVM is comparatively closer to the desired straight line while the

34

linear regression model produces many more erroneous predictions: linear regression has a

root relative absolute error rate of 58.01%, while it is 17.66% for SVM.

In practice, a number of factors other than the data size (to transfer) and the network

bandwidth could change dynamically, and their values and interplay could lead to different

on-device and on-server execution times. We thus aim to identify such key features and

look for the most appropriate classification model for such purpose. Ideally, we expect a

model that is i) lightweight to run on mobile devices, ii) of higher dimensional, iii) able to

capture the interplay between key features, iv) tolerant of noise, v) highly variant with low

bias, and most importantly vi) highly accurate and vii) self-learning gradually over time.

While details are presented in the subsequent sections, our contributions in this Chapter

include:

• Lamp adopts a dynamic learning based approach that can adaptively and intelligently

estimate the on-device and on-server execution time for making more accurate of-

floading decision in real-time with high accuracy, while consuming acceptable energy

overhead when running on mobile devices.

• We have implemented Lamp in the Android Dalvik virtual machine and evaluated it

with a few popular mobile application from Google Play to demonstrate its effective-

ness.

The rest of this Chapter is organized as follows. Section 4.2 presents the classifier

comparison, while section 4.3 details the significance of different features on the offloaded

method’s performance. We present design and implementation in section 4.4 and evaluate in

section 4.5. We then make concluding remark in section 4.6. We also discuss the limitations

of Lamp in section 4.7 which is addressed in Chapter 5.

4.2 Classifier Comparison

We have empirically shown that the threshold and linear regression models are oversimplified

and cannot capture the relationship between the features in section 4.1 and we also found

35

0

5

10

15

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Th
re
sh

ol
d

Li
ne

ar
 R

eg
SV

M

N
ai
ve

Ba
ye

s

D
ec

is
io
n
Tr
ee

M
LP

(a) Classification Time

0

5

10

15

Th
re

sh
old

Lin
ea

r R
eg

SVM

Naiv
eB

ay
es

Dec
isi

on
 T

re
e

M
LP

Time (S)
Energy (J)

(b) Time and Energy Consump-
tion

0

25

50

75

100

A
c
c
u
ra

c
y
 (

%
)

Th
re
sh

ol
d

Li
ne

ar
 R

eg
SV

M

N
ai
ve

Ba
ye

s

D
ec

is
io
n
Tr
ee

M
LP

(c) Accuracy

Figure 4.3: Comparison between Different Classifiers

SVM performing better. Such results hint us to look for a better classifier to capture the

relationship between various features impacting the offloading decision. For this purpose,

we have considered several commonly used classifiers.

Figure 4.3 shows the result of different classifiers we have examined with our data set

of Picaso [62] collected from three different users. We implement the classifiers using open

source library Weka [69] on the Android phone Google Nexus one with 512 MB memory

and 1 GHz CPU. We have trained the classifiers with 50% of the data (for Picaso) because

more training could help some classifiers. Figure 4.3(a) shows that the time to classify one

instance remains almost the same for all the classifiers, but multi-layer perceptron (MLP)

takes more time and energy for training (Figure 4.3(b)). Obviously higher dimensional

classifiers like MLP, SVM, and Decision Tree (DT) achieve better accuracy (around 80%)

than the other lower dimensional classifiers (Figure 4.3(c)).

Among these models, probabilistic classifiers such as Naive Bayes is lightweight and

easy to train. But such classifiers are biased towards previous observations. Moreover, Naive

Bayes assumes the features to be independent of each other which is not true in practice.

We have also considered other probabilistic classifier like Expectation Maximization and

Markov Chain. Expectation Maximization is not suitable as it does not support on-line

training and assumes the feature values to follow a particular distribution, while Markov

Chain has too many states to handle.

36

Statistical classifiers such as Decision Tree are also lightweight with moderate ac-

curacy. But it cannot extrapolate its decision, suffers from over-fitting, and lacks on-line

learning property. MLP and SVM perform well in terms of accuracy and classification time.

In fact, MLP takes more time for training. SVM has several advantages over MLP such as

SVM is easy to train and free from over-fitting. Both of them have expressive power and

can capture the relationship between multiple features. But the drawback of SVM is that

it does not support on-line learning. All the instances have to be trained at once to draw

the boundaries between the higher dimension features. On the other hand, though MLP

takes a little bit more time for training, it supports on-line learning and works well in noisy

environments. It also supports higher dimension space and can capture the relationship

between them. The classification and training time for one instance is really low. We argue

that the first time training is one-time cost for each device so the amortized cost will be

reduced over time. Thus we decide to use MLP for Lamp as the learner for our prediction

model.

4.3 Input Features and Impact

The input features are critical for classifier training and prediction. To figure out key fea-

tures, we have collected three users’ trace of different Android applications for one month.

During the data collection, we have changed the memory and CPU availability on the server

randomly and used different network configurations. In this section, we present our em-

pirical study to show the impact of different features using the face detection application

Picaso [62] as an illustrative example. We have used an Android Google nexus one smart-

phone with 1 GHz CPU and 512 MB RAM, while on the server side, we have an Android

ASUS R2 running on the virtual machine in the Virtual Box [60] with varying CPU and

memory availability.

• Network Bandwidth

To observe the impact of network bandwidth between the device and the server on the

37

response time, we plot the response time of Picaso by offloading the face recognition

task to the server side from the smartphone. We take the average response time of

10 experiments (a different image for each experiment) by only changing the network

bandwidth while keeping all other parameters unchanged. We used tc [70] to shape

the network bandwidth and latency. In our setup, the latency between the mobile

device and the server is set to 20 ms. We keep the CPU availability in server to be

74% (representing 2 GHz of a 2.7 GHz CPU). The memory in the server is set to 2

GB.

Figure 4.4(a) presents the average of 10 experiments with 95% confidence interval for

bandwidth of 300 Kbps, 500 Kbps, and 1000 Kbps. We can observe similar impact

of network bandwidth as in [12]. Figure 4.4(a) shows that the response time changes

(getting better) with the increase of network bandwidth, especially when the network

bandwidth is changed from 3G (500 Kbps) to 4G (around 1 Mbps), indicating the

non-linear relationship between the network bandwidth increase and the response

time.

• Network Latency

Previous studies [12, 13] have presented empirical data to show that higher network

latency worsens the response time of the offloaded computation. To verify this finding

empirically, we plot the average response time for Picaso for 10 offloaded experiments

(a different image for each experiment) by only changing the network latency while

keeping the other features constant. In this setup, the bandwidth is set to 1000 Kbps,

with 37% CPU availability (represents 1 GHz of a 2.7 GHz CPU). The memory of

the server is set to 2 GB. The network latency is changed between 20 ms to 75 ms.

Figure 4.4(b) shows the average response time with 95% confidence interval when the

network latency changes. The result does show that a low latency can improve the

response time. It also shows the latency reduction is not proportional to the reduction

of the response time.

38

300 500 1000
0

500

1000

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Available Bandwidth (Kbps)

(a) Impact of Band-

width (Kbps)

20 50 75
0

500

1000

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Network Latency (ms)

(b) Impact of Latency

(ms)

Figure 4.4: Bandwidth and Latency

19.52 39.03 58.55
0

500

1000

1500

R
es

po
ns

e
T

im
e

(m
s)

Data Size (KB)

(a) Impact of Data Size (KB)

29% 74% 100%
0

500

1000

R
es

po
ns

e
T

im
e

(m
s)

Available CPU (%)

(b) Impact of CPU availability

(%)

512 1024 2048
0

500

1000

R
es

po
ns

e
T

im
e

(m
s)

Available Memory (MB)

(c) Impact of Memory Size (MB)

Figure 4.5: DataSize, CPU, and Memory

• Data Size

The offloaded computation often requires some data as the input parameter. The

transfer time of such data is thus proportional to the size of the data if the network

is stable. The bigger the data size, the longer the transfer and the response time.

Figure 4.5(a) presents the response time of the offloaded method for Picaso with

different data sizes. In the figure, the average response time is shown for 10 runs

of data size of 19.51 KB, 39.03 KB, and 58.54 KB (which is the total. size of 1, 2,

and 3 images) with 95% confidence interval. The other features are kept constant,

the bandwidth is set to 1000 Kbps with 50 ms latency. The server has 74% CPU

availability (representing 2 GHz of a 2.7 GHz CPU) with 2 GB memory. Again,

the results indicate that the increase in the response time is not proportional to the

39

increase of the data size.

• CPU Availability

For computing-intensive applications, the available CPU cycles play an important role

in the response time. If the server-side VM has limited CPU cycles, then it might be

worth executing the application locally.

To observe the impact of CPU availability, we plot the average response time of 30

Picaso experiments while offloading. Each group consisting of 10 experiments (same

image for each experiment) have the same available CPU cycles in the server while

the other features remain constant for all 30 runs. In our setup, the bandwidth is set

to 1000 Kbps with a latency of 20 ms. The server has 1 GB memory size.

Figure 4.5(b) shows that the average response time with 95% confidence interval. In

this figure, the response time gets halved when the CPU availability is increased from

19% to 74% (representing 512 MHz to 2 GHz of a 2.7 GHz CPU). More available

CPU cycles (from 74% to 100%, representing 2.0 GHz to 2.7 GHZ) further improve

the response time, but the improvement is not as significant.

• Memory Size

Similar to computing-intensive applications, data-intensive applications highly depend

on the available memory on the device. In our experiment with 1000 Kbps bandwidth,

20 ms latency, and 37% CPU availability (representing 1 GHz of a 2.7 GHz CPU) in

the server-side VM, we test with 30 runs (same image for each group of 10 experiments)

of Picaso for the memory size of 512, 1024, and 2048 MB in the server-side VM.

Figure 4.5(c) shows that the average response time with 95% confidence interval.

Clearly the response time gets better with more memory, which re-confirms that

the available memory is an important factor to consider when making the offloading

decision. However, we also observe that the memory increase does not proportionally

reduce the response time.

40

So, we consider bandwidth, latency, data size, server’s available CPU and memory as the

multilayer perceptron model’s input while predicting the OnDevice and OnServer execution

time.

4.4 Design and Implementation

So far, we have discussed which parameters impact the execution time and their significance.

Now we discuss how we measure the features that are demanded by the Lamp.

• Network bandwidth and latency:

Due to the portable nature of mobile devices, the network bandwidth and latency

between a mobile device and a remote server change dynamically. Thus, we need to

frequently measure the network bandwidth and latency.

Network performance plays a vital role only when the amount of data to be transferred

is relatively large. Therefore, in our current implementation we take a trade-off. When

the amount of data to be transferred is higher than a threshold (500 KB), we measure

the network bandwidth and latency on the fly. Otherwise, we first examine how the

network interface is connected, whether it is wifi, 3G, or 4G by ConnectivityManager

interface in Android. Then we take the previous weighted bandwidth and latency for

that configuration as the current network bandwidth and latency. Other location

based bandwidth estimator like [71] can improve accuracy based on user behavior and

location, but we have not implemented it in our current prototype.

For measuring network bandwidth and latency on the fly, Lamp pings the server with

two small sized packets P1 and P2 and waits for the response. Then it calculates the

bandwidthBW and latency L. These values are weighted with the previously observed

values to estimate the current value. Lamp keeps track of previous observations for

different network configurations (currently we are bookkeeping for wifi (home/office),

wifi (public), 3G, and 4G). For each network configuration, Lamp maintains a window

Wbw for bandwidth tracking. Each window has n number of bins in the histograms.

41

Each bin i spans within the interval Ri−1 to Ri. We set R0 as the lowest available

bandwidth (0 Kbps) and Rn−1 as the typical highest speed for WLAN (30 Mbps) in

the bandwidth window. The end interval is infinite for the window.

We estimate the current value with the following equation:

V =

n∑

j=1

Cj

W
×Rj−1,

where Cj is the counter of the jth bin in the histogram and V is the estimated value.

Whenever it measures a real value on the fly, it also updates the counters in the

bins of the histograms. The new value replaces the oldest one in the window. To

estimate latency, a similar window Wlat is used with 20 as the lowest latency (for

WLAN) and 200 ms as the highest value (for 3G). Based on experimental results,

we use a window size of 100 for both bandwidth and latency measurement, while the

interval for bandwidth and latency is 1 Kbps and 10 ms, respectively, because our

experimental results (omitted due to page limit) show the least error in prediction

under these settings.

• Data Size

We get the information about the input parameters’ data size from the mInterceptor.

When a method is intercepted, mInterceptor inspects its parameters’ content from

the method’s frame page. If a parameter is of primitive data type, its size can be

deduced directly. Similarly, for string and array object, the size can be obtained from

their length and data type. For complex objects, we calculate the size by summing

up the size for each of its member fields. If a member of an object is another object

or has any super class, we calculate its size recursively.

• CPU and Memory Availability

In our implementation, to measure the available CPU cycles, we read the idle cycles

42

that are left for the system to utilize. The underlying operating system provides us

with the CPU statistics in /proc/stat file for Linux along with Android.

This statistics provides the total and idle CPU cycles. We use a similar technique

as in [72] to predict the CPU availability just before making the offloading decision.

We initially consider a moving average strategy for CPU estimation. But most of the

Unix kernels have an OnDemand strategy as CPU governor, which changes the CPU

frequency (and thus its availability) frequently. Because we obtained a high error

rate with moving average, we predict the CPU availability right before making the

offloading decision on the fly.

The available memory can change over time due to contemporary processes running

in the system which can be found in /proc/meminfo file in Android. We maintain

another window Wmem to estimate the available memory with a window size of 500

and 1 MB interval based on our experimental results.

Note that in our implementation, to reduce the overhead, the CPU and memory

availability information of the server is piggybacked when the server replies the ping

requests or returns the results of the offloaded method.

Figure 4.6 shows the various components of our computation offloading model Lamp. In

high level whenever an application starts to execute, we monitor the system environment

to estimate the performance of the methods to be offloaded. If our learner model decides

to offload the method, we make the offloading decision. By offloading these methods, we

achieve optimum gain in response time savings. As we have discussed, it is desirable that

computation intensive methods of any existing application can be offloaded transparently.

For this purpose, we offload these methods to the server side and returns the result back to

the applications running in the mobile device transparently by adopting FaST (Chapter 3).

In case of not offloading, we execute the method locally. We monitor the offloaded (or the

locally executed) methods response time for gradual learning of MLP.

There are four major components for the learning model in Lamp:

43

Figure 4.6: Components of Computation Learning and Offloading Model: Lamp

• sMonitor:

The sMonitor is responsible for dynamically collecting the system environment and

resource information, such as network bandwidth, latency, and CPU availability at

real-time following a specified pattern. Such information is the input to the learner

for making the offloading decision dynamically. In addition, sMonitor also keeps

track of the execution time of the methods in the applications. This is to assist the

identification of the resource-intensive methods as potential candidates for offloading.

• Learner

As we discussed, Lamp uses MLP to characterize the relationships among different

factors impacting the offloading performance. Whenever a potential candidate method

is intercepted, the learner takes the method parameters, calculates the size of the

arguments, and considers the feature values collected by sMonitor. Based on collected

44

information, it predicts the on-device and on-server execution time of the methods

and make the offloading decision accordingly. The learner has a feedback channel

as well so that it can learn by itself through the entire decision process. We have

implemented the learner’s MLP in Weka [69].

• mInterceptor and sInterface

We implement mInterceptor and sInterface according to Lamp as mentioned in

section 3.3. We have also implemented the server-side accordingly.

4.5 Evaluation

In this section, we study the performance of Lamp in a dynamically changing environment

where the network (bandwidth and latency) and server capacity (available CPU and mem-

ory) changes.

4.5.1 Adaptability Evaluation

In order to study the adaptability of Lamp, we first run experiments when the network

bandwidth, latency, and input data size change. On the server side, we run Android ASUS

R2 virtual machine in Virtual Box [60]. We change the server’s CPU availability and

memory by utilizing CPU and memory cap of the Virtual Box. The virtual machine runs

on a 2.7 GHz CPU on the server and the CPU availability is changed among 19%, 37%, 74%

to 100% (e.g., 512 MHz, 1 GHz, 2 GHz to 2.7 GHz). The available memory is also changed

from 512 MB to 2048 MB. The network bandwidth varies widely from 100 Kbps to 5 Mbps,

while the network latency is changed from 20 ms to 75 ms by tc [70]. For experiments,

we collected one-month traces of three users from these applications using a Google Nexus

One phone with 1 GHz CPU and 512 MB RAM.

Among all applications, we use Picaso as a case study for adaptability evaluation. Other

applications show similar results. We have 150 different Picaso images from the user trace

for face recognition. That is, each experiment runs with a different image. We randomly

45

0 10 20 30

OnDevice

OnServer

OnDevice

OnServer

Optimal
Lamp

(a) CPU Availability (%)
0 10 20 30

OnDevice

OnServer

OnDevice

OnServer

Optimal
Lamp

(b) Memory Size (MB)
0 10 20 30

OnDevice

OnServer

OnDevice

OnServer

Optimal
Lamp

(c) Available Bandwidth (Kbps)

0 10 20 30

OnDevice

OnServer

OnDevice

OnServer

Optimal
Lamp

(d) Network Latency (ms)
0 10 20 30

OnDevice

OnServer

OnDevice

OnServer

Optimal
Lamp

(e) Data Size (KB)

0%

10%

20%

30%

Al
l

C
PU

M
em

or
y

Ba
nd

w
id
th

La
te
nc

y

D
at
aS

iz
e

E
rr

o
r

R
a
te

(f) Feature Impact

Figure 4.7: Lamp Adaptability Evaluation

select 20% from the 150 optimal classifier output data set to train the MLP.

Figure 4.7(a) depicts the results when the CPU availability is changed in 30 experiments.

In this set of experiments, the network bandwidth and latency are fixed at 1000 Kbps and 20

ms, respectively. The memory size of the server remains 1 GB. The CPU availability of the

server is increased from 19% to 74%, and then to 100% (representing 512 MHz, 2 GHz, 2.7

GHz of a 2.7 GHz CPU). The first 10 experiments are run when the CPU availability is 19%

(e.g., 512 MHz) while the method is executed on the device. For the second 10 experiments,

the CPU availability is 74% and the CPU availability is 100% for the last 10 experiments.

In these two sets of experiments, the computation is offloaded to the server according to

the Optimal policy (i.e., the minimum of the on-device and on-server execution). As shown

in the figure, Lamp makes about 12% wrong decisions at the beginning of the experiments.

Figure 4.7(b) depicts the details of experiments from 31 to 60 when only the available

memory changes. In this group of experiments, the CPU availability maintains at 37%

(i.e., 1 GHz) while the network bandwidth and latency are set to 1000 Kbps and 20 ms,

respectively. In this set of experiments, the available memory changes from 512 MB (the first

46

10 experiments) to 1 GB (the second 10 experiments), to 2 GB (the last 10 experiments).

For the first 20 experiments, the optimal decision is to execute the method locally on the

device. In the last 10 instances when the memory is increased to 2 GB, the computation

is offloaded to the server. Figure 4.7(b) shows great improvement on the decision-making

with more training instances.

Figure 4.7(c) details the results when the network bandwidth changes while the network

latency is set to 20 ms. In this figure, the server CPU availability is set at 74%, (i.e. 2 GHz)

and the memory size is 2 GB. In this set of experiments, the network bandwidth changes

from 300 Kbps (for the first 10 experiments), to 500 Kbps (for the next 10 experiments), to

1000 Kbps (for the last 10 experiments). For the first 20 experiments, when the bandwidth

is less than or equal to 500 Kbps, the method is executed locally on the device. In the last

10 experiments, the Optimal policy offloads computation to the server where the bandwidth

is increased to 1000 Kbps. Figure 4.7(c) shows a higher error rate of Lamp compared to

Figure 4.7(b). This is likely due to the heavier impact of network bandwidth, which we will

evaluate later.

We further provide detailed results for the experiments from 91 to 120 in Figure 4.7(d),

when only the network latency changes. In this group of experiments, we keep the network

bandwidth fixed to 1000 Kbps while the available CPU and memory are 37% (representing

1 GHz of a 2.7 GHz) and 2 GB. Here the computation is offloaded to the server when the

latency is 20 ms for the first 10 experiments. In the second 10 experiments, the latency is

increased to 50 ms and the Optimal policy executes the computation on the device. The

optimal decision remains unchanged when the latency is further increased to 75 ms for the

last 10 experiments.

In the previous 120 experiments, we set the data size to 19.5 KB (1 image) on average.

To evaluate Lamp with respect to data size, we provide more details for the experiments

from 121 to 150 in Figure 4.7(e). We keep the network bandwidth to 1000 Kbps and the

latency to 50 ms while the available CPU and memory are 74% (representing 2 GHz of a

2.7 GHz) and 2 GB. In these experiments, the data size is 19.5 KB (1 image) on average

47

for the first 10 experiments, which is later increased to 39.03 KB (2 images) for the next

10 experiments, and to 58.5 KB (3 images) for the last 10 experiments. The Optimal

policy executes the first 10 experiments on the device, while for the last 20 experiments,

the computation is offloaded to the server according to the Optimal policy. Compared to

the previous experimental results, Figure 4.7(e) indicates less error decisions of Lamp with

respect to the data size, potentially due to its relative weight in all features as we confirm

in Figure 4.7(f).

Overall, the above experimental results under various conditions show that Lamp has an

error decision rate around 14.66% when compared to the Optimal policy. The error rates for

always-OnDevice and always-OnServer executions are 48.67% and 52.33%, respectively. As

we can see, most error predictions come from the dynamics of CPU availability and network

conditions, both of which could change quickly. To study the relative importance of different

features, Figure 4.7(f) shows that after removing the CPU availability or memory feature,

the error rate increases to 22% and 21.9%, respectively, while the removal of bandwidth

and latency leads to a 27% and 28% error rate, respectively. The removal of the data size

feature leads to an error rate of 22%. Note that Figure 4.7(f) reflects the overall results

based on 150 instances while previous results are based on 30 instances. Figure 4.7(f) shows

that our identified features are all important, albeit that network conditions play a slightly

more important role.

4.5.2 Performance Results

Having studied the adaptability of Lamp Learning Model , we now run experiments with

more real-world applications to examine its performance under various environments. Ta-

ble 4.1 summarizes the applications, the name of the method we are offloading, and their

functionality. We have five different configurations in the experiments. In each configu-

ration, the CPU, memory, data size along with the network parameters are dynamically

changing as mentioned in Table 3.2.

48

Table 4.1: Description of Evaluated Applications in Lamp

Application Offloading Candidate Description

DroidSlator [57] translate(String inWord, String
toLang) method of ThaiDict class

Android translation applica-
tion

Zebra Xing(ZXing) [44] decodeWithState (BinaryBitmap)
method of MultiFormatReader class

Android product bar code
reader

Mezzofanti [45] ImgOCRAndFilter(int[] bw img,
int width, int height, boolean
bHorizontalDisp, boolean
bLineMode) method of OCR class

Android optical character
recognition application

MatCal [61] times(Matrix B) method of Matrix class Android application for ma-
trix operation

Picaso [62] project and compare(Bitmap bm)
method of ReadMatlabData class

Android face recognition ap-
plication

MathDroid [63] computeAnswer(String query) method
of MathDroid class

Android Calculator applica-
tion

Figure 4.8 shows the average response time and energy consumption of the the appli-

cations when different decision-making approaches are adapted for 50 experiments of each

application. 10 experiments are conducted in each setting. We use PowerTutor [64] to

measure the power consumption of the applications.

Figure 4.8 shows that compared to always-offloading (OnServer), with Lamp, the user’s

response time is reduced to 59.39%, 1.00%, 11.99%, 78.98%, 72.28%, and 21.44% of the

response time if DroidSlator, ZXing, Mezzofanti, MatCal, Picaso, and MathDroid applica-

tions are always offloaded to the server. Correspondingly, with Lamp, the energy consumed

on the smartphone is only 57.21%, 9.49%, 25.80%, 77.03%, 90.01%, and 77.97% of the

energy consumed when these applications are offloaded.

On the other hand, compared to always local executions (OnDevice), Lamp also provides

the user faster response time for DroidSlator, MatCal, and Picaso (35.40%, 60.23%, and

71.25% of local execution time, respectively). The corresponding energy consumption is

about 48.61%, 90.14%, and 97.48% respectively, of the energy consumption when they are

executed locally. For Mezzofanti, Lamp’s performance is similar to those of local execution.

Compared to the Optimal policy, Lamp is expected to perform worse because of training

and classification overhead along with some misclassification. However, for most of the time,

49

DroidSlator ZXing Mezzofanti MatCal Picaso MathDroid
10

0

10
2

10
4

10
6

R
e

sp
o

n
se

 T
im

e
 (

m
s)

OnDevice
OnServer
Optimal
Lamp

(a) Response Time

DroidSlator ZXing Mezzofanti MatCal Picaso MathDroid
10

0

10
2

10
4

10
6

E
n

e
rg

y
(m

J)

OnDevice
OnServer
Optimal
Lamp

(b) Energy Consumption

Figure 4.8: Comparison of Response time and Energy Consumption

Lamp achieves the closest results to these of the Optimal policy. As shown in the figure,

Lamp takes 1.46%, 29.54%, 4.82%, 48.29%, 23.47%, and 69.56% more time than the Optimal

policy for DroidSlator, ZXing, Mezzofanti, MatCal, Picaso, MathDroid; and it consumes

6.03%, 45.12%, 5.23%, 19.30%, 1.02%, and 9.67% more energy of that consumed by the

Optimal policy.

Among the evaluated applications, Lamp does not perform well for ZXing and Math-

Droid. This is because ZXing is purely data intensive and always has the best performance

while executing on device [14]. MathDroid is neither data- nor computation-intensive.

Looking into the applications, we find execution time on the device is very small. Thus

training and classification time in Lamp becomes significant overhead compared to its actual

execution time (in terms of percentage). If we look at the absolute values, they are very

small (e.g., 119mJ for ZXing under Lamp).

50

Figure 4.8 also re-confirms that a static policy of always offloading or the default on-

device executions may work for some applications, but not for other applications. In con-

trast, the offline Optimal policy can always lead to the best performance, while Lamp offers

near-optimal performance.

Table 4.2: Accuracy (%) of Different Classifiers

DroidSlator ZXing Mezzofanti MatCal Picaso MathDroid

Threshold 74 0 0 38 60 40

Linear 82 10 10 72 40 100

SVM 80 92 100 62 40 80

Naive 74 92 88 44 80 20

Decision Tree 94 94 98 68 40 100

MLP 94 100 100 64 100 80

Table 4.3: Average Response Time (ms) and Energy Consumption (mJ) by Different Clas-
sifiers

DroidSlator ZXing Mezzofanti MatCal Picaso MathDroid

Time Energy Time Energy Time Energy Time Energy Time Energy Time Energy

Threshold 270.28 430 4511.3 2254 34200.4 20124 2857.02 6836 661.68 9120 64.8 1220.92

Linear 276.86 451.28 4459.14 2036.8 31858.6 18605 3462.02 5492 757.5 9209 24.3 988.38

SVM 241.98 455.84 118.12 255.76 3922.48 4934 3746.16 5842 762.5 9214 37.18 1053.08

Naive 279.82 437 230.62 256.95 7402.28 6756.8 3225.08 6856 521.46 9246 94.10 1287.42

Decision
Tree

166.28 451.28 256.96 234.32 4618.24 5237.8 3142.76 5354 765.5 9247 29.3 993.38

MLP 154.42 246 45.16 119 4100.88 5192 2256.56 5266 473.44 8887 36.18 1080.65

4.5.3 Comparing to Other Offloading Approaches and Classifiers

Several classifiers have been used in previous studies, such as Threshold [14] and Linear-

Regression [12]. In the evaluation, we also compare MLP’s performance against those,

including Threshold, Linear Classifier, Support Vector Machine (SVM), Naive Bayes, De-

cision Tree. Similar to MLP, we train each of the classifiers with 20% of all the instances

51

of these applications (Picaso, DroidSlator, ZXing, Mezzofanti, and MatCal) and test with

the rest of the dataset and take the decision accordingly in the mobile device.

Table 4.2 shows the accuracy of different classifiers for these applications. According to

the classifier’s output (decision), we either offload or locally execute the methods for different

applications and measure the response time and energy consumption. Table 4.3 shows the

average response time and the average energy consumption for the test set (which is the

rest of the dataset excluding the training set). Further, we have designed and implemented

a learning based decision maker for offloading decision. Compared to the most existing

decision-makers utilizing a static policy, we have shown that a static policy may worsen

the applications performance. We have also designed and implemented a profiler of mobile

applications to efficiently partition the applications in an optimal way to find the appropriate

methods for offloading.

Table 4.2 shows that most of the time MLP has better accuracy than the other classifiers.

SVM and Decision Tree also have better accuracy, response time and energy consumption.

But as mentioned in section 4.2, these two classifiers do not support training on stream

data.

Moreover, in Table 4.2, we can see that for MatCal, Linear has a better accuracy rate

than MLP but MLP has faster response time and lower energy consumption (Table 4.3)

than Linear. This is because different instances have different response time and energy

consumption for OnDevice and OnServer executions for MatCal. For a particular set of

instances, it is possible that Linear may have a better accuracy rate than MLP, but at the

same time Linear may mis-classify some instances with high penalty (which may be correctly

classified by MLP), resulting worse performance although its accuracy rate is better. In fact,

we find that there are some instances with small matrix sizes that have better OnDevice

performance. These instances are correctly classified by Linear, but Linear fails to correctly

classify some matrices with high dimensions and makes the decision of local execution. On

the other hand, MLP can capture the wide range of various feature values and perform

more consistently.

52

4.6 Summary

Most of the existing studies have focused on how to make offloading, whether or not an

offloading should be conducted received much less attention. In this Chapter, we have

designed and implemented a learning based model for executing execution time to assist

offloading decision. Compared to the most existing decision-makers utilizing a static policy,

we have shown that a static policy may worsen the applications performance. Thus, in Lamp,

we have designed and implemented a learning model based on MLP that can capture the

dynamic nature of the relevant key factors and their relationship. Our experimental results

show that Lamp can work near-optimally with existing mobile applications while making

offloading decision.

4.7 Discussion

In our experiment, we have hand-picked the methods for offloading. A comprehensive

offloading model should find these candidate methods for offloading automatically. In ad-

dition, not every method of an application can be offloaded. For example, some methods

may access mobile device camera or other sensors. They have to be executed on the mobile

device itself. In the next Chapter, we come up with a framework to find such a list of

candidate methods and make an optimal partition of the applications for offloading.

53

Chapter 5: Elicit: Application Partitioning

5.1 Introduction

Some prior research [10–13,38,42] has investigated how to partition mobile applications and

offload computation-intensive tasks to the more powerful counterparts such as clouds and

servers. These studies either manually identify the methods for offloading [12,14,73] or use

more fine grained offloading mechanism to offload threads [42]. It is possible to find the

resource intensive method of an application manually to achieve the optimal performance

gain. But the main drawbacks are (1) it requires programmer’s knowledge to find the

appropriate method to offload; (2) the cost is prohibitively high to offload an existing

application in this way, given that there are hundreds of methods in an even very simple

mobile application.

On the other hand, fine grain offloading can provide seamless thread migration without

any modification of the source code and it also does not require any special user notation

for offloading. But the thread migration approach has two major limitations:

• When migrating a thread, it requires a clone of the mobile OS image to be saved on

the server side for executing the offloaded thread there. While offloading the thread,

these two images must be synchronized continuously, which brings a lot of network

overhead. For example, the overhead to offload a single method in Cloudlet [11] is

around 100MB.

• VM based cloning is flexible for the application to be offloaded at any point during

the execution, but it does not find the appropriate resource intensive computation to

offload. For example, COMET [42] migrates a thread only when its OnDevice execu-

tion time exceeds twice of the round trip time from the mobile device to the server.

54

In this way, the offloading performance gain is not guaranteed: it is possible that the

thread migration overhead may be greater than the performance gain obtained by

offloading the rest of the execution of the thread.

Zhang et. al. [74] showed that the performance gain can be achieved by distributing

an application execution between the mobile device and the server by adopting a shortest

path algorithm to find an optimal cut to minimize the offloading overhead. Although this

solution provides a generic approach for application partitioning, it does not consider many

practical constraints for partitioning real-world applications. In practice, partitioning an

application has to consider other factors. For example, it is possible to find a partition

that gives the best performance gain, but at the same time the methods (in the optimal

partition) can not be offloaded due to some practical constraints, such as the candidate

methods may need to access mobile device’s camera or other I/O devices. In addition, this

work does not provide any guideline on how to profile the applications to find the bottleneck

to offload.

0 20 40 60 80 100

20%

40%

60%

80%

100%

Methods

%
 o

f
T

o
ta

l
T

im
e

(a) DroidSlator

0 20 40 60

20%

40%

60%

80%

100%

Methods

%
 o

f
T

o
ta

l
T

im
e

(b) LinPack

0 10 20

20%

40%

60%

80%

100%

Methods

%
 o

f
T

o
ta

l
T

im
e

(c) MatCal

0 10 20 30 40 50

20%

40%

60%

80%

100%

Methods

%
 o

f
T

o
ta

l
T

im
e

(d) MathDroid

0 5 10

20%

40%

60%

80%

100%

Methods

%
 o

f
T

o
ta

l
T

im
e

(e) NQueen

Figure 5.1: Methods Consuming the Most of the Execution Time

In practice, mobile applications’ performance bottleneck can usually be narrowed down

to a few methods. For example, Figure 5.1 shows the percentage of time (of the total exe-

cution time) that different methods are consuming in different applications. Here we have

considered four different applications downloaded from Google Play (we are not part of

the development of any of those applications) and one hand-coded application (NQueen).

55

Figure 5.2: Call Flow of DroidSlator Application

While details can be fond in Table 5.1, these applications are: DroidSlator [57], LinPack [43],

MatCal [61], MathDroid [63], and NQueen (hand coded). In the experiments, we have con-

sidered the execution time of the methods that can be offloaded (for example, the display

rendering method for various graphic intensive applications consumes the most of the exe-

cution time of the application, but as those methods can not be offloaded, we have omitted

them here. Section 5.6 describes how we find this set of methods in practice).

Figure 5.1 shows that only a few (five or six out of hundreds of methods in an application)

are responsible for more than 80% of the total execution time. In addition to that, these

resource intensive methods are actually invoked in a chain fashion.

Figure 5.2 shows an example of how the most time-consuming methods of DroidSla-

tor application [57] (Android dictionary app) are invoked. Here the onTouch() method

consumes most of the execution time of the application. It calls the translatrIt()

method. Thus, the onTouch() method’s execution time includes the execution time of

translateIt() as well. In this way, translateIt() also includes the execution time of

translate() and subsequently that of the search() method.

This example also shows that it is not possible to offload all the methods. For example,

the onTouch() method interacts with the View Display, so it is not feasible to offload it.

The translateIt() method interacts with the user input so it is not possible to offload it

either. Two other remaining candidate methods are transpalate() and search() and we

want to offload the one with less overhead compared to the offloading gain.

56

Therefore, in this Chapter, we propose to build Elicit (Efficiently identify computation-

intensive tasks in Mobile Applications for Offloading) to find the appropriate methods in

applications for offloading. Considering the fact that even a very simple mobile application

may consist of hundreds of different method calls, Elicit works by first profiling mobile ap-

plications to find the methods resource consumption, their dependency among each-other,

and constraints which may hinder them from being offloaded. Then, considering the en-

vironmental setup (e.g., network latency and bandwidth between the mobile device and

the server, size of the overhead data, etc.), Elicit dynamically chooses an optimal par-

tition of the application for offloading based on the projected gains in terms of both the

response time and the energy consumption. An Elicit prototype is implemented on An-

droid Dalvik virtual machine. We evaluate it with a few popular Android application. The

results show that Elicit can find the most resource consuming methods of the applications

for offloading, which are consistent with previous studies [14,73]. Our experimental results

also confirm that Elicit can dynamically choose the optimal partition of applications for

offloading the method and can improve the response time.

While details are provided in the later context, the main contributions of this Chapter

include:

• Elicit can efficiently find the candidate methods that are not constrained and ap-

propriate for offloading.

• Elicit dynamically chooses the optimal partition of mobile applications to offload to

achieve the trade-off between the response time and the energy saving gains.

• A prototype of Elicit is implemented in the Android Dalvik virtual machine and

evaluated with a few popular mobile applications from Google Play to demonstrate

its effectiveness.

The rest of this Chapter is organized as follows. Section 5.2 presents our objective and

constraints, and we propose our solution in section 5.3. We give an illustrative example

57

in section 5.4 and propose our optimal partitioning algorithm in section 5.5. We further

present our implementation in section 5.7 and conclude our chapter in section 5.8.

5.2 Objective and Constraints

We can formulate the candidate methods finding as a constrained graph partitioning prob-

lem. Here we have a list of methods M , and each method m ∈ M has the following

members: i) execution cost on the mobile device, denoted as mm, ii) offloading (the param-

eters) and execution cost on server, denoted as ms, iii) class of this method: MC (Method

Class), iv) list of global or class variables accessed by the method, denoted as V , v) list

of the classes of V of this method, denoted as V C (Variable Class), vi) list of all the vari-

ables reachable from this method, denoted as RV (Reachable Variables), vii) list of all the

methods reachable from this method, denoted as RM (Reachable Methods), viii) list of the

classes of the methods in RM , denoted as MCC (Method Closure Class), and ix) list of

the classes of all the variables of the methods in RM , denoted as V CC (Variable Closure

Class).

Let us also denote the list of classes that can not be offloaded as CC (Constrained

Class), and the method call graph as MCG. Each node of MCG represents a method and

an edge exy represents whether a method x is invoking another method y. Assume that

the execution cost of a method m in the mobile device is mm and on the server (without

considering the parameters’ sending cost) is mswp. In addition, the cost of invoking a

method m from method x is denoted as exm, and the cost for accessing a variable (global

or class) v is emv.

So the cost of sending and executing a method (including parameter access overhead)

on the server is:

ms = mswp +
∑

∀x∈{M−m}

exm +
∑

∀x∈RV

emx. (5.1)

58

And the cost saved by offloading a method is

bm = mm −ms. (5.2)

Thus, our goal is to partition the application’s MCG into two partitions S and T and

offload all the methods m ∈ S to the server side such that:

Execution T ime =
∑

∀m∈T

mm +
∑

∀m∈S

ms (5.3)

is minimized, subject to the following constraints:

∀m ∈ S ∀c ∈ m ·MCC → c /∈ CC (5.4)

∀m ∈ S ∀c ∈ m · V CC → c /∈ CC (5.5)

∀m ∈ S ∀y ∈ m · RM and ∀x ∈ (M −m · RM)→ exy /∈MCG (5.6)

Algorithm 1 Find Reachable Methods()

1: for ∀m ∈M do
2: m · RM ← DFS(m)
3: end for
4: Begin Function{DFS}{m}: list
5: list · add← m ·MC
6: if m is visited then
7: do nothing
8: else
9: for ∀x ∈ neighbours of m do

10: list · add← DFS(x)
11: end for
12: end if
13: m is visited
14: return list
15: End Function

59

Algorithm 2 Find Reachable Variables(m)

1: list · add← empty
2: for ∀x ∈ m · RM do
3: if list doesn’t contain x · V then
4: list · add← x · V
5: end if
6: end for
7: m · RV ← list

Algorithm 3 Find Method Closure Class(m)

1: list · add← empty
2: for ∀x ∈ m · RM do
3: if list doesn’t contain x · V C then
4: list · add← x · V C
5: end if
6: end for
7: m ·MCC ← list

Algorithm 4 Find Variable Closure Class(m)

1: list · add← empty
2: for ∀x ∈ m · RM do
3: if list doesn’t contain x ·MC then
4: list · add← x ·MC
5: end if
6: end for
7: m · V CC ← list

5.3 Solution

With the problem formulated and metrics defined, we map our problem to the Project

Selection Problem [46]. Kleinberg et. al. [46] propose this Project Selection Algorithm

for profit maximization. Suppose there is a set of projects which provide profit, and a set of

equipments which require some cost to purchase. Each project is dependent on one or more

of the equipments. Kleinberg et. al. [46] have shown that the max flow min-cut theorem

can give an optimal partition to find the list of projects and equipments to be chosen to

maximize the profit. Kleinberg et. al. proposed their method for a dependency graph as

60

well, where some project execution depends on some of the other projects. Our goal is to

find a similar set of methods for offloading to minimize cost by optimal partitioning. But

in our set of methods, we may have many methods that can not be offloaded due to the

previously mentioned constraints. So, we have to filter out the constrained methods first,

only after that we may map the problem to Kleinberg method.

Algorithm 5 Candidate Method Selection Algorithm()

1: for ∀m ∈M do
2: find the members of m from Algorithm 1, 2, 3, and 4
3: end for
4: for ∀m ∈ M do
5: if m ·MC ∈ CC then
6: discard m
7: else if ∃x ∈ m ·MCC and x ∈ CC then
8: discard m
9: else if ∃x ∈ m · V CC and x ∈ CC then

10: discard m
11: else if MCG has one or more edge from {M −m · RM} to {m · RM} then
12: discard m
13: else
14: CAN · add m
15: end if
16: end for
17: return CAN

Algorithm 6 Partition Algorithm()

1: CAN ← List of methods can be offloaded obtained from Algorithm 5 along with their
estimated OnDevice and OnServer execution time

2: O ← list of methods to be offloaded according to Project Selection Algorithm [46]
3: return O

To filter out the constrained methods, at first we find the methods’ member parameters

mentioned in the previous subsection 5.2. Given the execution time mm and ms, class MC,

the list of global or class variables V of the method (and their class V C), and the list of caller

callee methods (details of how these information can be found is stated in implementation

section 5.6), we build up the method call graph MCG from the list of the caller and callee

61

methods. To find the list of the reachable methods RM , we come up with Algorithm 1 which

is a variation of Depth First Search Algorithm [75]. Once we find RM from Algorithm 1,

we find the RV , MCC, and V CC according to Algorithm 2, 3, and 4, respectively. From

these parameters, we discard the methods that violate the constraints 5.4, 5.5, and 5.6.

Thus, Algorithm 5 finds CAN the list of methods eligible for offloading.

Once we get the list of the unconstrained methods CAN and their Method Call Graph

MCG, we map our as follows. We convert this unconstrained MCG to Method Selection

Graph. We introduce two nodes m and m′ for each method m ∈ CAN to the new graph.

We also introduce two dummy nodes λ and µ. Each node m has an edge from λ and the

edge has capacity rankm of that method, which represents the gain of executing the method

on the server side. Each node m′ (corresponds to the additional node introduced for each

method) has an edge from itself to µ with capacity 1. We choose this edge capacity to be

1 to normalize it with the rank of the methods. Then we set the edges between m and m′

with capacity C =
∑

m∈M rankm. We also set the internal edge’s capacity to be C as well.

Thus our problem is mapped to Project Selection Problem and we can find the optimal

set of methods to be chosen for offloading according to [46] with O(V E2) complexity, where

V and E are the number of vertices and edges of the Method Selection Graph. We omit

the details of the proof or correctness due to space limitation.

After we deduce the set of unconstrained methods from Algorithm 5, we find the optimal

partition of the application for offloading by Algorithm 6. To make an optimal partition,

we have to estimate the OnDevice and OnServer execution time, which we discuss in the

previous Chapter 4.

5.4 An Illustrative Example

In this subsection, we illustrate our algorithm with an example. Figure 5.3 shows a method

invocation diagram of an application. Here each white node represents a method and the

solid arrow represents a method invocation incident from another method. The dark node

62

Figure 5.3: Method Call Graph

Figure 5.4: Method Selection Graph

represents a variable. The dotted arrow represents an access to a variable (global or class)

modified by other methods. Each arrow has some associated cost with it. For example,

when method A invokes another method B, A sends the parameters to that callee method

B. When we offload the callee method, these parameters have to be sent to the server as

well, which demands time and energy consumption to send it over the networks, which is

denoted by eAB . This cost can be found by monitoring the time and the energy consumption

when these parameters are sent to the server side from the mobile device. Similarly, if an

offloaded method I accesses a global or class variable V modified by other method B, this

variable has to be sent over the network so that the clone method on the server side can

63

access these variables and execute flawlessly. We denote this cost as eV I .

Suppose in this graph we find that method C and G consume most of the resources. If

we offload C, methods D, E, and F are executing on the server side as well. Method F is

accessing a camera, as a result it is not possible to execute method F on the server side.

If we still decide to offload method C, the execution has to be transferred to the mobile

device again while F is accessing the camera. To limit this back and forth executions, we

should not offload C. To identify such constrained methods, our Algorithm 3 finds the list

of classes, MCC of the reachable methods in RM of method C, which is {D, E, F}. As we

have found that MCC of C includes a class accessing camera (from method F), we should

not offload C.

Similarly, by offloading G, we are also executing H and I on the server side. So when

method I is executed on the server side, it has to access variable V . As a result, while

offloading method G, we have to send variable V to the server, which will cost us eIV . In

order to find such a set of variables, we deduce RV of method G. This set RV of method G

has to be offloaded to the server side in order to offload the method G to the server. Note

that here if G’s V CC (the classes of RV) includes any of the constrained classes C, we do

not offload G as well.

In addition, if we offload a method whose RV or RM is updated in parallel from other

methods executing on the mobile device, we have to communicate again from the mobile

device to the server. To minimize such overhead and inconsistency, we do not allow these

methods to be offloaded. As illustrated in Figure 5.3, if method A,C,D,E, , F or B is

accessing the RM or RV of G, we do not offload G.

Thus, we find the Method Call Graph of B, G, H, and I and convert it to Method

Selection Graph shown in Figure 5.4. In this graph 5.4, we introduce one additional node

m′ for each of the methods m. So for each of B, G, H, and I; we add B′, G′, H ′, and I ′ in

Figure 5.4. We introduce two additional nodes λ and µ. The capacity of the edges between

λ and B, G, H, I is set to their corresponding rank. The capacity of the edges between

B′, G′, H ′, I ′ and µ is set to 1. The capacity C between any other two nodes is set to the

64

summation of the ranks of the methods in this graph (C = rankB+rankG+rankH+rankI).

Figure 5.4 shows the corresponding Method Selection Graph. The dash curve line shows

a min-cut partition where we are offloading the methods G, H, and I.

Algorithm 7 Partitioing Algorithm()

1: Train the MLP learners with labelled data
2: CAN ← List of methods can be offloaded obtained from Algorithm 5
3: for each m ∈ CAN do
4: predict the OnDevice and OnServer execution time by MLP considering the band-

width, latency, data size, server-side CPU and available memory
5: end for
6: O ← list of methods to be offloaded according to Project Selection Algorithm 6
7: if O is empty then
8: execute the app locally
9: monitor the OnDevice execution Time and

10: train the OnDevice Time learner with the new data
11: else
12: offload the methods m ∈ O
13: monitor the OnServer Time and
14: train the OnServer Time learner with the new data
15: end if

5.5 Finding Optimal Partition

To find an optimal partitioning according to Algorithm 6, we adopt MultiLayer Perceptron

model to estimate the response time for both local OnDevice and remote OnServer execu-

tions in a dynamically changing environment where bandwidth, latency, data size, server’s

available CPU and memory change in Chapter 4. Algorithm 7 presents the pseudo code

for this dynamic application partitioning and training. With Algorithm 7, we execute the

application locally if there is no method to offload. If any method is offloaded, we monitor

the response time and the energy consumption while it is executed on the server side. These

values are used for training the learning model for the OnServer response time. We also up-

date the OnDevice learning models in a similar fashion when the methods (and application)

are executed locally.

65

Figure 5.5: Components of Computation Offloading Model

As we have discussed, it is desirable that computation intensive methods of any exist-

ing application can be offloaded transparently. For this purpose, we adopt the offloading

mechanism FaST mentioned in Chapter 3.

Figure 5.5 shows the various components of our computation offloading model Elicit.

In high level we profile the applications off-line to find the set of feasible candidate methods

for offloading. Whenever an application starts to execute, we monitor the system environ-

ment to estimate the performance of the methods if they are offloaded and find a list of

methods for offloading. By offloading these methods, we achieve optimum gain in response

time savings. We offload these methods to the server side and returns the result back to

the applications running in the mobile device transparently by adopting FaST (Chapter 3).

There are six major components for the learning model in Elicit:

• Application Profiler

66

Application Profiler gets the predicted OnDevice and OnServer execution time

from the learner and finds the list of methods to be offloaded according to optimal

partitioning Algorithm 7).

• sMonitor, Learner, mInterceptor, and sInterface

We implement sMonitor and Learner according to Lamp in section 4.4. Similarly,

we implement mInterceptor and sInterfaceaccording to FaST as mentioned in sec-

tion 3.3. We have also implemented the server side accordingly.

• Server-side We design Server-side as mentioned in section 3.3.2.

5.6 Implementation

We implement a prototype of Elicit in Dalvik VM for Android applications. We have

modified the Cyanogemond [58] open source distribution to profile the applications without

modifying the application to find the methods’ members and the method call graph. After

profiling, we partition the application optimally to achieve the highest gain regarding the

system environment.

To profile applications, we have modified the instructions for a method invocation and

method return. In Dalvik, whenever a method is invoked, it is translated to a method

invocation instruction. The caller method’s program counter and frame page are saved and

then the callee method starts its execution. When the callee method finishes its execution,

it returns to the caller method. The return instruction saves the return value to the caller

method’s return address and starts the caller method by retrieving the program counter

and the frame pointer of the caller method. We have modified the method structure of

the Dalvik VM so that it keeps records when a method is invoked and when it returns to

the invoking method. From these two timestamps, we keep track of the execution time of

the methods. We use PowerTutor [64] to measure the methods’ energy consumption. We

also keep track of the parent class of the methods and the caller of each method. Such

information is available from the class information of each method structure.

67

Furthermore, whenever a method accesses a variable, it leverages two separate instruc-

tions (IGET and IPUT namely) to retrieve and save values. We also trap the IGET and

IPUT instructions to keep track of the variables (and their parent classes) that are accessed

by the methods. To offload these methods, we have to send these parameters and variables

(with GET tag) to the server side. Once the method has successfully finished its execu-

tion and returns back to the mobile device, we save the return value and synchronize the

modified variables (the variable having PUT tag). Here if a method is accessing a variable

related to mobile device’s I/O, camera, or similar sensors, we do not offload it. We do this

by examining the variables’ parent class which is fetched from the variable’s class structure

in Dalvik VM.

In this way, we obtain the parameters for Algorithm 5. These parameters include list of

variables (and their classes) accessed by methods, method call graph, methods’ execution

time, methods’ parent classes, etc.

Then we conduct analysis to find the optimal partition of an application according to

Algorithm 6. As discussed in section 5.2, we have to discard the methods that access mobile

device equipments (not exclusively, camera, sensor, view, etc.). To find this list, we populate

a list from Android Java definitions. Based on the list of methods, their parent class, and

the global and class variables (and parent class of these variables) we discard these methods

(and their parents) to be considered list for offloading.

We find the list of methods to offload along with the variables’ states that must be

synchronized before and after offloading. We intercept those methods’ invocations and

offload them according to FaST (Chapter 3).

5.7 Evaluation

We evaluate our Elicit prototype with five different Android applications. Table 5.1

describes the applications and their functionality. We choose these applications considering

68

their different characteristics: DroidSLator and MatCal are both computation- and data-

intensive. LinPack and NQueen are purely computation-intensive while MathDroid is data-

intensive. Moreover, most of them are the applications being evaluated in the previous

studies, where the offloaded methods were hand-picked. By evaluating them in Elicit, we

are able to tell whether Elicit can efficiently identify the same method for offloading.

Table 5.1: Description of Evaluated Applications in Elicit
Application Offloading candidate Total

num-
ber of
methods

Description

DroidSlator [57] → translate(String inWord, String toLang)
method of ThaiDict class : no global variable

100 Android translation ap-
plication

LipnPack [43] → linpack() method of LinpackJavaActivity class
: x0 (PUT) of LinpackJavaActivity class

66 Android CPU and
Memory Benchmark

MatCal [61] → times(Matrix B) method of Matrix class : m
(GET), n (GET), and A (GET) of Matrix class

24 Android application for
matrix operation

MathDroid [63] → computeAnswer(String query) method of
Mathdroid class : calculator (GET) of Mathdroid

class

51 Android Calculator ap-
plication

NQueen → findSolution(int board[],int n, int pos)
method of NQueen class : no global variable

10 Android application for
NQueen problem

For each of these applications, we first find the optimal partition of the applications

and find the method to be offloaded. Table 5.1 shows the method which is found to be

optimal to be offloaded based on Algorithm 7. In the table, each partition method shows

the method name, parameter list, and global variables that are accessed by this method

(and its subsequent methods). Each global variable has a tag GET or PUT, which indicates

whether a variable is accessed by the method (GET) or modified by the method (PUT).

In our experiments, Elicit indeed finds similar methods as the candidate to be offloaded

as in previous studies. For example, in Young et. al. [14], DrdoidSlator application [57]

is evaluated. Our candidate is the translate method, which was found manually to be

the most resource intensive method in [14]. Similarly, for MatCal [61] and MathDroid [63],

we find that the applications are partitioned in the times and computeAnswer methods

which were also found to be the most resource intensive methods in POMAC [73]. Here we

69

have added two new applications, LinPack and NQueen, for which we have found linpack

and findSolution methods to be offloaded according to the optimal cut. Note that here

each application has many methods (even a hundred excluding the basic Java methods like

String Compare or println as shown in Table 5.1), and we are offloading the most resource

consuming method(s) of the application for optimal performance.

Table 5.2: Gain Ratios of the Applications in Different Environments

DroidSlator LinPack MatCal MathDroid NQueen

Time Energy Time Energy Time Energy Time Energy Time Energy

LAN 5.30 4.3 1.01 2.56 4.05 1.06 1.05 0.97 19.62 11.10

WLAN 3.95 2.8 0.98 2.75 3.73 1.68 0.99 0.96 19.61 11.01

802.11 1.21 1.1 0.97 2.60 4.34 1.15 1.09 1.07 19.44 10.99

4G 3.72 2.7 0.98 2.62 1.31 1.01 0.99 0.97 19.26 10.89

3G 1.01 1.2 0.97 2.56 1.90 1.37 1.05 1.03 18.93 10.71

Average 3.03 2.3 0.98 2.62 3.07 1.25 1.02 1.01 19.37 10.94

Next, we experiment Elicit in different environments. We want to (1) empirically

evaluate the offloading performance and (2) evaluate that the methods suggested by Elicit

for offloading can achieve the trade-off between the energy consumption and the response

time savings. We evaluate our prototype in a Google Nexus one with 1 GHz CPU and 512

MB of memory. We have five different configurations in the experiments as mentioned in

Table 3.2.

Table 5.2 shows the gain ratios of the applications in different environments. Note that

the training and classification overhead of the MLP has been accounted. The final average of

the gain ratios are shown in the last row. We find that for DroidSlator, MatCal, MathDroid,

and NQueen; the gain ratios are greater than 1. MathDroid has both ratios very close to

one. For MathDroid, it does not save that much time and energy by offloading. For all

applications, mostly the gain ratios are higher in LAN and WLAN settings compared to the

3G or 4G, which is expected, as the bandwidth gets higher and the latency gets lower, our

70

Algorithm 7 can find a better partition to save energy and response time and offload them

accordingly. The better network condition also enhances the performance of the offloaded

methods. Here we have found that network condition plays a very important role on the

offloaded methods’ performance, which is consistent with previous studies [12] and [73].

DroidSlator LinPack MatCal MathDroid NQueen
10

0

10
2

10
4

10
6

T
im

e
 (

m
s)

 /
 E

n
e
rg

y
(m

J)

 OnDevice Time
OnDevice Energy
Elicit Time
Elicit Energy

Figure 5.6: Response Time and Energy Consumption of Different Applications

Figure 5.6 shows the average response time and energy consumption of the 50 experi-

ments in the 5 different environments. In this figure, the y-axis shows the response time in

millisecond and energy consumption in millijoule. Note that y-axis is in log scale. Figure 5.6

shows that by offloading: DroidSlator, LinPack, MatCal, and NQueen can save significant

time and energy. Elicit reduces 3.03x, 3.07x, and 19.37x response time of DroidSlator,

MatCal, and NQueen compared to the on-device execution. Elicit can also save 2.3x,

1.25x, and 10.94x energy consumption for these applications, respectively. We also found

that Elicit can not save significant time or energy for the MathDroid application. In fact

we have found that most of the time it is optimal to execute MathDroid on the device

itself. For Linpack, Elicit saves a lot of energy (2.62x) but slightly increases the response

time (0.98x). In separate experiments, we have found that executing LinPack on the de-

vice does not deteriorate the response time but consumes a lot of energy (2.62 times more

71

than offloading). By offloading, although the response time increases a little bit (2.04%),

eventually we may save a lot of energy (262.37%).

5.8 Summary

The increasing popularity of smartphones drives the fast development of mobile applica-

tions. For resource-intensive mobile applications, there is an increasing demand to offload

to more powerful counterpart, such as clouds and servers. While most of the existing studies

have focused on how to offload, little research has been conducted on how to automatically

find the most appropriate methods to offload. In this study, we have designed and im-

plemented Elicit, a profiler of mobile applications to efficiently partition the applications

in an optimal way to find the appropriate methods for offloading. Extensive experiments

have been conducted to evaluate Elicit and the results show that Elicit can work with

existing real-world mobile applications and efficiently find the best offloading methods to

reduce the response time.

72

Chapter 6: Storage Augmentation

6.1 Introduction

The increasing popularity of mobile devices has also caused the demand surge of pervasive

data accesses, such as for photos, across a user’s different storage space, such as her iPhone

and desktop computer. To respond to such a fastly increasing demand, the current research

and practice have provided many solutions, such as Dropbox [16], Google Docs [18], Amazon

s3 [27], Windows SkyDrive [17] and SME Storage [31]. They mainly rely on cloud-based

services or a server-based approach.

These centralized cloud or server-based approaches [27] [16] [17] typically require a

user to store all files on the storage owned by the service providers, which risks data se-

curity, privacy, and availability. For example, it has been reported on the news about

Mark Zuckerberg’s pictures leak incident in Facebook [28], DropBox account breach with

wrong passwords [29], Amazon’s data center failure in 2011 [30], etc. Some modern file

systems [31] [19] [32] have taken into account user’s storage to avoid third party storage

compromise. But they maintain a strong consistency model for different types of files, re-

sulting in unnecessary and heavy performance overhead. For example, smartphones are

often associated with consuming and producing data which are mostly non-editable (photo,

music, and video) and more than 27% pictures are taken by smartphones [33]. For these

files, a strong consistency model is an overkill.

On the other hand, today an average user typically possesses multiple computers, such

as personal home computers, office computers, and mobile devices. While the storage of

one device at a time may not be sufficient for storing all data files of the user, the total

storage space is often large enough to store all files owned by the user. Even when the total

73

storage space of a user is not large enough, it is relatively cheap to buy additional storage

nowadays as one-time cost.

Therefore, in this Chapter, we aim to design and implement a system to virtually Unify

Personal Storage (vUPS) for fast and pervasive file accesses. With vUPS, all participating

devices of the user are transparently and seamlessly unified. A file can be accessed through

a web browser, considering that today the web browser is the vehicle for end-user’s accesses.

In vUPS, there is no central node that maintains the file system states. Instead, any device

can serve as the server when it is been actively used. To minimize data transferring, only

meta-data is pro-actively accessed while data files are accessed in an on-demand fashion.

In vUPS, different types of files are treated with different consistency policies in order to

balance the consistency and the maintenance overhead.

To evaluate vUPS, we have implemented a prototype based on HTML5 and Javascript.

The prototype provides a standard API for other web and desktop applications to access

and manipulate vUPS data. We have conducted experiments with micro-benchmarks and

also compared to DropBox. The results show that vUPS can offer a similar user experience

to DropBox. Our contributions in this Chapter include:

• vUPS provides an alternative solution to existing cloud-based or other centralized

approaches for responding to the demand surge of quick and pervasive file accesses

across multiple devices owned by a user.

• By differentiating and treating different types of files, vUPS strives to achieve a balance

between the file consistency and the maintenance overhead.

• With a web browser interface and a standard file access interface, vUPS can be adopted

by other applications to transparently and seamlessly access personal files.

The rest of this Chapter is organized as follows. Section 6.2 provides the design of

vUPS. We present the trade-off between consistency and availability in section 6.3. Our

implementation and evaluation details can be found in section 6.4 and 6.5. We further

summarize our work in section 6.6.

74

6.2 vUPS Design

Instead of a centralized architecture, vUPS adapts a flexible P2P architecture. Figure 6.1

illustrates the architecture of vUPS that runs across multiple devices, such as a user’s home

computer, an office computer, a laptop, and a smartphone.

Figure 6.1: The Architecture of vUPS

In vUPS, the participating devices peer with each other to virtually form a single and

global storage space. Communications (e.g., to fetch data or to execute a user’s commands)

between devices are based on RESTful web services [76]. With such a P2P architecture, the

device that the user is actively using as the main device (i.e., on which the user initializes

her request) is responsible for supporting the main functions of vUPS. For this reason,

we refer to this device as the main terminal of vUPS. Currently, at each time, there is

only one main terminal. As the principal component of the vUPS, the main terminal is

responsible for maintaining the vUPS namespace. In our design, the vUPS namespace is

stored in a logically separate site. Once the main terminal is activated upon user accesses,

the namespace will be loaded. In practice, this namespace can always be stored on the user’s

75

home desktop computer. All other participating devices are referred to as passive terminals,

as they are mainly responsible for responding to the requests from the main terminal. In

addition, users and other applications can interact with vUPS via vUPS APIs. Currently,

we have designed a web-based user interface based on vUPS APIs.

Note that when a user actively uses her mobile device as the main terminal, it can

deplete the limited battery power soon, because we expect that the main terminal could

be relatively stable and stay on-line for a long time. Thus, in vUPS, the main terminal

functions can be delegated by the mobile device to a more powerful computer, such as the

home desktop (as shown in Figure 6.1) or the office computer.

When an application or a user needs to access a file, vUPS first finds the real de-

vice hosting the file based on the proper mapping in the vUPS namespace. vUPS re-

solves this mapping via the user name, device ID, resource path and operation type as:

http://<usr>.vUPS.com/DeviceID/Path&Operation. Note that in the case of a delegated

main terminal, the actual file transferring happens directly between the two involved devices

without involving the main terminal.

To support the desired functionalities, we design vUPS with the vUPS API, the vUPS

Controller, the vUPS Synchronizer, the vUPS Data Manager. Figure 6.2 depicts the design

with these major components. Next we discuss each of these components.

• vUPS API:

To provide an interface of vUPS for users and applications, we develop vUPS API.

These vUPS APIs support typical file operations, such as create, delete, read, write,

as well as typical directory operations. To provide an easy access to users, we further

develop a Web browser based user interface based on vUPS APIs. It uses HTML5 and

Javascript to make it accessible from heterogeneous platforms such as smartphones,

desktop and office computers that may run different operating systems.

• vUPS Controller:

The vUPS controller consists of two modules. The first one is the bootstrapping

module or bootstrapper. Basically, when the main terminal is accessed by the user,

76

Figure 6.2: vUPS Components

it first needs to load the vUPS namespace, which contains the metadata and the

directory hierarchy of the vUPS file system. When a new device wishes to join the

system, it also provides the bootstrapping information so that any device can be added

or removed from the system.

The second module is the metadata manager and mapper (MMM). Metadata is crucial

to vUPS and strong consistency is maintained for metadata. MMM also maps files in

the vUPS system to their physical locations in different devices. When a file is created

by the user, a new entry is created to the appropriated location in the namespace.

Accordingly, a file deletion removes the entry from the namespace.

• vUPS Synchronizer:

Maintaining consistency is essential to any distributed file system. vUPS Synchronizer

is responsible for consistency maintenance among multiple copies of a file on different

devices. As we shall discuss later, vUPS uses a non-traditional consistency model

based on the file types in order to balance the overhead and the performance. Note

that because the namespace is loaded on each participating device, the vUPS is also

77

responsible for maintaining the consistency of namespace.

• vUPS Data Manager:

The data manager deals with the physical storage of the data in the local disk via

traditional filesystem APIs. A particular notable function of the vUPS Data Manager

is to manage cache for better user response time. As the core of the cache management,

a LRU (Least Recently Used) replacement policy is used for cache management.

With these components, they work together in a collaborative manner. Basically, the

namespace of the vUPS is often stored in a reliable device or a web site if a bootstrapping

site is used. A participating device needs to contact this bootstrapping storage to load the

initial namespace as well as the main terminal address.

When a file operation takes place (either by the user or by some application) through

vUPS API, vUPS API passes the request to the vUPS Controller, which finds the appro-

priate file through the MMM.

The MMM then checks with the Synchronizer for cache validation. For read operation,

the Synchronizer checks the cache and validates the cache if it is found in the cache. If it

is not valid, then the Synchronizer finds the physical location of the data from the MMM.

Then the Synchronizer either contacts the local or remote Data Manager to fetch the data.

A remote Data Manager is invoked via the web interface. Whenever a request is received

from the web interface, the Synchronizer enforces the operation via the local Data Manager.

If the operation is write, then the Synchronizer finds the devices that contain the replicas

and/or the cached copy of the data. Then the Synchronizer updates its local cache and

data (if any) through the Data Manager. It also propagates the update to all the relevant

devices via appropriate web service interfaces.

Note that vUPS relies on a storage place to store the initial namespace. This single

point of failure can be eliminated by replicating the namespace among all the devices. This

may however increase the maintenance overhead.

78

6.3 Consistency and Availability

Achieving availability and strong consistency at the same time is a major challenge in a

distributed file system [77]. Traditional file systems replicate the data across multiple de-

vices to increase availability, which also increases the overhead for consistency. Popular file

systems have different policies to make the data consistent among replicas. For example,

Coda [78], Ficus [79], and Ivy [80] apply optimistic concurrency control between the repli-

cas. Coda resolves consistency conflict using version controlling. Bayou [81] provides high

availability with a weak consistency model. Bayou was mainly designed for intermittently

connected devices, which is also suitable for mobile devices. With pervasive network con-

nections today, it is ideal to use continuous synchronization and have quick consistency. For

example, cloud storage like Google Drive [56] uses strong consistency, while DropBox [16]

applies continuous consistency between the replicas.

Both the optimistic and the continuous consistency models suffer from the scalability

issue. In addition, continuous consistency also suffers from the overhead for continuous

updates. That is, even a byte change in the data may result in a lot of network traffic

(several thousand more than the update itself). Such network overhead is amplified by the

number of devices in the system.

Observing the fact that strong consistency is not required for every type of files, vUPS

has different replication and consistency policies for different types of files. Today a user

often owns much more media data (e.g., audio, video, and image) files than before. For

example, it has been shown that a typical Windows user has 11.6% image files of the

total storage [82]. This number is increasing due to the vast use of smartphones and

tablets, because they are generally used to take pictures or videos. On the other hand,

the documents and other files only consist of a small portion of the storage (i.e. 2.5% of

the total file system [82]). Note that media files are not frequently changed. Only the

corresponding metadata (favorite, ratings, etc.) may be modified. Therefore, we may relax

the consistency model for media files as they are often non-editable, while the replicas of

79

other documents have to be consistent as they are frequently edited. In addition to that,

fetching the document files on demand is not expensive compared to that for media files as

the media files size [83] is often bigger than that of documents files [82] on average.

Thus, in vUPS, files are divided into two categories: editable and non-editable. The

audio, video, image, and program files are considered as non-editable. On the other hand,

all other files, including doc, xml, and text files, etc., are categorized as editable files. Note

that these non-editable files can also be updated very occasionally, but vUPS only maintains

weak consistency among their replicas. In the current implementation, vUPS differentiates

different types of files based on their filename extensions.

With two categories of files, vUPS has the following two different policies for different

types of files: (1) limited availability with strong consistency; (2) high availability with

weak consistency.

6.3.1 High Availability with Weak Consistency

Considering the different types of popular files [84], we categorize the popular video, audio,

and image files as non-editable files. Although in our current design these files are recognized

solely based on file extensions, any self-learning clustering algorithm can classify the files

over time based on the modification history. These non-editable files are seldom modified.

Thus, the access to update rate is often high for these files. Moreover, the size of these

media files is often larger than the editable files such as doc or xml [83] [82]. Caching and

replicating these files on every possible device improves the access time to those files and

results in less network traffic, but it also increases the overhead of maintaining consistency

between copies.

As these files are seldom modified, vUPS follows a weak consistency model between

the copies. A user can request the file from any device. The device may contain the data

locally or fetch it from other devices (through the main terminal) and cache it. Whenever a

modification takes place in a device, the change is reflected on the local/cached copy. The

user does not need to wait for the update being propagated to other devices. Similar to

80

Bayou, vUPS propagates updates during pairwise contact. This epidemic approach ensures

that as long as the participating devices are not permanently disconnected, the writes will

eventually reach every copy [85].

For non-editable files, vUPS follows an invalidation protocol to notify the changes to

other copies. As an invalidation protocol only notifies the changes, it saves network traffic

and latency as the real update is not sent. The application in the devices may or may not

pull the update for that file, depending on the policy of that application. vUPS aims to

support application-specific conflict resolution, and each application may provide specific

dependency check for updates. If the dependency check is valid, then the update takes

place. Otherwise, conflict arises and the updates are either merged or marked invalid.

Unlike scheduling or database transactions, media files may not have conflicting updates.

Thus the merging procedure for media files ensures the latest update to a particular file

is applied when any conflict arises. To detect the latest update, vUPS has vClock (vUPS

vector logical clock) for each file and each folder. Each file has a vector of the Lamport

logical clock [86], where each entry in the vector represents the timestamp for each device

associated with that file. Whenever a file is created, a vector timestamp is created with

entries for each device where the file is replicated. In addition to that, whenever that file is

cached, an additional timestamp entry is added to that vector. If a cached copy is deleted or

a replica is removed, the corresponding entry is removed from the vector. For every update

from any device, the logical clock for that device in the vector is incremented. Whenever

a device joins vUPS, all the data are updated to the latest vector. Thus, the copies are

always up-to-date and synchronized if at least one copy of the data is always online. If only

one copy of a file is kept connected to the vUPS and all the other copies are offline (that is,

only one copy is mutual-exclusively online), then the file is updated if the timestamps of all

the vectors are greater than the previous values. If all the entries in the vector are smaller

than the new values, then it is not updated. Otherwise, the file is marked as conflicted

and both copies are kept for the user to resolve manually. Thus, vUPS ensures the total

ordering for the updates between the devices provided at least one copy is always online.

81

Note that, for non-editable files, the metadata may be changed frequently (a user may

change the rating of movies, tag of pictures, etc.), but vUPS considers metadata as editable

data, for which strong consistency is maintained among replicas.

Whenever a non-editable file is invoked by a device, the file is cached on the device

and in the main terminal according to the caching policy. As the access-to-update ratio is

higher, leaving a copy behind will improve the access performance [87]. So, when that file

is closed, it is synchronized (if necessary), and a copy is left in the cache. The namespace

contains a callback reference to that address for providing response from that copy to other

devices.

6.3.2 Limited Availability with Strong Consistency

For copies of the editable files, vUPS maintains strong consistency. As strong consistency is

not scalable, vUPS maintains a minimal number of copies to maintain the availability and

consistency to get the best of both worlds.

Similar to non-editable files, whenever an editable files is accessed by a device, the file

is cached on the device and in the main terminal according to the caching policy. All the

modifications take place on the cached copy and are propagated to remote copies (local

read/remote write). When that file is closed, it is synchronized (if necessary), and the local

cached copy is deleted. The callback reference is also deleted from the namespace once the

file is closed. That is, vUPS enforces a strong consistency policy between the copies. It

sends the update operation where data should change (active replication).

As the access-to-update ratio is lower, keeping a local copy close to the device may

not be better [87] as it may send frequent updates to all the replicas while these updates

may not be accessed by the user. In this case, keeping sending these updates can waste

bandwidth and may not be scalable. So it deletes all the cached copies once the read/write

operation in the cached copy is completed. This approach makes vUPS more scalable. As

the average size of editable files is smaller than that of non-editable files, bringing these files

to the cache when needed does not affect the performance too much. In addition, for these

82

types of files, a typical replication policy results in less network traffic.

Assume the failure probability of one machine is p and the number of replication is r.

Then, the failure probability of all replicas is:

M(n, p, r) = (pr ×

n−r∑

i=0

pi × (1− p)(n−r)−i) (6.1)

Let the unavilability probability of one machine due to network is q and the number of

replication is r. Then, the unavailability probability of all replicas due to network failure

is:

N(n, q, r) = (qr ×
n−r∑

i=0

qi × (1− q)(n−r)−i) (6.2)

M(n, p, r) and N(n, q, r) are independent from each other. So, the availability of the

over all system is:

A(n, p, q, r) = 1− (M(n, p, r) +N(n, q, r)−M(n, p, r)×N(n, q, r)) (6.3)

The typical disk failure rate is 4% [88]. If we take this into account, the availability of

vUPS can be deduced to be more than 96% for a typical system with four machines with

no replication. We can get more than 99% availability by keeping a backup (a replica) of

each file, which is comparable to amazon services (with a failing rate 0.1-0.5% [88]).

In case of a terminal failure, the active requests for that terminal is re-directed to other

terminals with replicated copies. When the device joins vUPS again, the replica in that

device is checked again (with SHA-1) with other replicas and synchronized if necessary.

vUPS is also highly robust in the sense that any terminal can be initiated, allocated,

deleted or backed up without interrupting the system. vUPS also allows adding or deleting

a disk, allocating storage, moving data, or interrupting system availability. This design

allows all data to be remained online and available to clients and other terminals.

83

6.4 Implementation

We have implemented a prototype of vUPS with Java and HTML. The user may add

devices with any operating system and can browse, access, and store data in the vUPS

storage consisting of those devices. In addition to the user interface, we have implemented

the vUPS APIs in Java for applications. Figure 6.3 shows a screen-shot of vUPS user

interface.

Figure 6.3: vUPS User Interface

The vUPS API s are built with Javascript and HTML5. A local web server is used for

bootstrapper right now where a user registers her devices. After login, the user is provided

with the main HTML page where they may select any devices, access data, copy between

devices, etc. These operations are implemented by Javascript to call the web services in the

devices. The Metadata Manager and Mapper (MMM) manages the mapping between the

vUPS files to their physical locations that are saved in a SQLite database.

The vUPS Synchronizer communicates with the devices through the RESTful architec-

ture as mentioned earlier. The Data Manager gives an abstraction over the local file system

84

with the underlying physical storage in the local disk via Java filesystem APIs.

For mobile devices, we also build a vUPS app to access the data. There is also vUPS

API for Android to access vUPS from other apps. The current prototype maintains minimal

security over the RESTful architecture in HTTP. We use the IP address of the device as

the device ID in the current prototype implementation.

In the current implementations, files are simply differentiated based on their name ex-

tensions. Extensions like .mpeg, .wmv, .dat, .mov are considered as the popular movie

filename extensions. vUPS includes the .mp3 and .mid as the popular audio files, where the

.jpeg, .jpg, .gif, .bmp, and .png are considered as filename extensions of image files. Files

with these name extensions are all considered as non-editable files. By default, all other

files are considered to go under frequent modifications, and vUPS have different polices for

them.

6.5 Evaluation

In this section, we evaluate the performance of vUPS based on the prototype we have

implemented. In the experiments, we first use the micro-benchmarks to evaluate vUPS.

Then we compare the performance of vUPS with the popular application Dropbox. In

these experiments, we configure vUPS with three commodity desktops, one laptop, and one

smartphone. To compare with the service provided by DropBox, we have also set up a

DropBox account. All the desktop machines have 8 GB memory and 2.7 GHz CPU. The

laptop has 4 GB memory and 2.7 GHz CPU. The desktop machines run Windows 7, Ubuntu

11 and Mac operating systems, respectively. We use a Google Nexus One phone with 512

MB memory and 1 GHz CPU running Android 2.3 operating system. The DropBox account

has 2 GB of storage.

6.5.1 File I/O Performance

First, we study the performance of file reading. In vUPS, a desktop is designated as the

main terminal. Files of 1 KB, 10 KB, 50 KB, 100 KB, 200 KB, 500 KB, 1 MB, and 3

85

MB are read by the smartphone via the main terminal. To emulate the realistic scenario,

files are randomly distributed on these devices. When a read request for a file is sent from

the smartphone to the vUPS, the main terminal receives the request from the smartphone.

The main terminal searches the namespace for the ID of the device that stores the file,

and forwards the web address of the resource to the smartphone. The smartphone then

completes the read operation by bypassing the main termial. The results are compared

against when a direct/local read from the sdcard of the smartphone and when the file of

the same size is located on DropBox. We take the average of 100 runs for each file size and

the results are shown in Figure 6.4. The x-axis represents the file size. The y-axis shows

the response time. We set the network speed as 500 Kbps for local accesses. The maximum

and the minimum response time are within 2% of the average with 95% confidence level.

As expected, the read time increases with the increase of the file size and neither vUPS

nor DropBox is comparable to the local read performance. However, vUPS constantly

outperforms DropBox, for which the network speed is unconstrained with an average of 3

Mbps, although the advantages tend to diminish along the increase of the file size.

0

5

10

15

20

25

1
KB

10
 K

B

50
 K

B

10
0

KB

20
0

KB

50
0

KB
1

M
B

3
M

B

T
im

e
(S

ec
)

Local Read
vUPS Read
DropBox

Figure 6.4: File Size vs. Response Time

 1 File 2 Files 3 Files 4 Files
0

1

2

3

4

5

T
hr

ou
gh

 P
ut

 (
m

bp
s)

1 mbps
750 kbps
500 kbps
Local

Figure 6.5: Parallel Threads for File Read

86

To bridge the performance gap for the sequential read in vUPS read, in the next experi-

ment we use parallel threads for multiple file fetching. Figure 6.5 shows the result when the

number of parallel file fetching grows from one to four. The x-axis represents the number

of files fetched in parallel and the y-axis represents the throughput of the system. For the

counterpart of the local read, four files are read by four parallel threads from the sdcard of

the smartphone.

To read files in parallel from vUPS, the smartphone contacts the main terminal and

requests the files. Each file is stored on a random machine selected arbitrarily. The main

terminal returns to the smartphone with the web address of the file resources and the

smartphone then fetches those files in parallel. Figure 6.5 shows that the throughput

increases with the degree of parallelism. The throughput also increases with the network

bandwidth for vUPS when the network bandwidth increases from 500 Kbps to 1 Mbps.

When the available network bandwidth is sufficiently large, the gap between the local read

and the vUPS read can be significantly reduced.

We have mentioned before that the file operations are handled directly between the

requesting machine and the target machine without involving the main terminal in order

to relieve the communication bottleneck. To study the performance gain, we compare it

to the case when the main terminal fetches the file and then serves it to the smartphone.

Figure 6.6 shows the results averaged over 100 tests. The results confirm that it is beneficial

for the user and the system to bypass the main terminal whenever necessary.

6.5.2 Performance of Metadata Accesses

Metadata is crucial to vUPS to function properly. To measure metadata access performance,

we conduct experiments with the mdtest benchmark on vUPS. mdtest is developed for large

scale file systems with script and C, which is not suitable for our RESTful applications.

To fit our system, we modify the mdtest and implement the simplified version in Java

with threading. We replace the file reading/write/edit with Java system calls. In the

experiments, we measure the throughput (the number of operations executed per second)

87

0

20

40

60

80

100

120

140

1
KB

10
 K

B

50
 K

B

10
0

KB

20
0

KB

50
0

KB
1

M
B

3
M

B

T
im

e
(S

ec
)

Read Through Main Terminal
Read Bypassing Main Terminal

Figure 6.6: Performance Gain by Bypassing the Main Terminal

for creating 1000 files per terminal from the smartphone.

Figure 6.9 shows the throughput for file creation. In the experiments, we compare the

time for creating files in our smartphone locally and in vUPS. For local file creation in

the smartphone, we create 1000, 2000, 3000, and 4000 files using 1, 2, 3, and 4 threads (a

thousand files per thread) in the sdcard of the smartphone. To measure the time of file

creation in vUPS, we again create 1000, 2000, 3000, and 4000 files using 1, 2, 3, and 4

threads (a thousand files per thread). Each thread selects one of the devices in the vUPS

system. Each thread first contacts the main terminal and requests to create 1000 files in

the device.

The result shows that with an increasing number of local file creation requests, the

throughput decreases. This is expected because the smartphone thread overhead and the

limited file I/O slow down the local file operation, and thus reduce the throughput. On the

other hand, for remote devices the performance improves, which is due to the parallel file

creation feature in vUPS.

88

 1 2 3 4
30

40

50

60

70

80

90

File Creation Operation (Thousand)

T
hr

ou
gh

 P
ut

 O
pe

ra
tio

ns
/S

ec

1 mbps
500 kbps
Local

Figure 6.7: Throughput of File Creation Figure 6.8: Network Bandwidth vs File Creation

6.5.3 Network Impact

To study the impact of network bandwidth, we have also run the mdtest file creation of 1000

files with varying network speed. Figure 6.8 shows the response time for 1000 file creation

via the smartphone using one thread. The x-axis represents the network speed, while the y-

axis represents the system throughput. The figure shows that the network bandwidth does

impact the file creation throughput, but the improvement diminishes when the network

speed is fast enough. For example, when the network bandwidth is doubled from 5 Mbps

to 10 Mbps, the throughput for file creation operation only increases slightly.

To study the impact of network speed on file read operations, we vary the network

speed and observe the response time to read a 3 MB file in the smartphone fetched from

the main terminal. As expected, Figure 6.9 shows that the read throughput increases with

the increase of bandwidth for vUPS while it remains stable for local read and DropBox.

Note that because Dropbox is accessed through the public network, we did not constrain

the bandwidth of the connection between the smartphone and the Dropbox.

Table 6.1 shows the response time for 5 trials with different network speed and file read

or creation operations. From ANOVA [89] tests, we may conclude to reject the hypothesis

that the operation type and network speed have no significance on the model. We can also

89

 500 KB 1 MB 3 MB 5 MB
0

1

2

3

4

5

T
hr

ou
gh

 P
ut

 (
m

bp
s)

vUPS Read
Local Read
DropBox

Figure 6.9: Network Bandwidth vs File Read

 1 5 10 20 30 50 100 200 500 1000
0

20

40

60

80

100

120

140

T
im

e
(S

ec
)

DropBox
vUPS

Figure 6.10: DropBox vs vUPS

conclude that the interaction between the network speed and the file operation type does

exist.

6.5.4 Comparison to Dropbox

To compare with the DropBox in a more realistic scenario, we have generated 50 files with

lambda distribution [90] as discussed in [91] with the size ranging from 1 KB to 512 MB

according to that distribution. For DropBox, we synchronize all the files first, then access

locally. In vUPS, in case of a cache miss, it downloads the file, otherwise checks the cache

and retrieves it unless it is stale. We access these files in random order for 10 to 1000 times.

Figure 6.10 shows the result. The x-axis represents the number of files fetched randomly

from these 50 files. The y-axis represents the response time. In the experiment, the DropBox

first downloads all the files, and then accesses them randomly. On the other hand, vUPS

does not download all the files at first. It downloads the files when being accessed and

then caches them for future references. In this way, when the number of accessed file is

small, the access time for DropBox is much longer than vUPS as the DropBox first needs

to synchronize and download all the files. But when the number of accessed files is larger,

the performance of both vUPS and DropBox is similar to each other.

90

Table 6.1: ANOVA Test for Network and Type of Operation

Operation 500 Kbps 1 Mbps

Read 186 120

Read 204 92

Read 222 164

Read 221 101

Read 228 180

Create 55 58

Create 17 40

Create 37 27

Create 43 32

Create 26 29

In addition to that, the strong consistency between the replicas introduces synchro-

nization overhead. For example, even a single byte update in dropbox generates 37 KB

of network traffic measured by wireshark, where vUPS generates only 1KB of data for the

same synchronization.

6.6 Summary

The pervasive adoption of mobile devices calls for an effective approach to access users

personal data across different devices from anywhere and anytime. While commercial prod-

ucts have offered compelling solutions, users are risking their data security and privacy.

In addition, potentially, lots of unnecessary traffic has been wasted during continuous file

synchronization. In this work, we have designed and implemented vUPS, a system to

transparently and seamlessly integrate a users personal storage space. A web interface is

provided to the user with a global view of the files without involving any third party. Ex-

periments based on the implemented prototype system show that vUPS can achieve similar

user performance when compared to commodity commercial solutions such as DropBox.

91

Chapter 7: Conclusion

The technology advancements have made mobile devices being adopted pervasively. To some

extent, mobile devices are replacing their original counterparts in our daily life. Such an

emerging trend has also led to fast development of various mobile applications. For resource-

intensive mobile applications, there is an increasing demand to augment both computation

and storage to more powerful counterpart, such as clouds and servers. In this dissertation,

we have designed and implemented schemes for both computation offloading and storage

augmentation.

For transparent computation offloading, we have addressed the problems of how to

offload and what to offload. To tackle the first problem, we have designed and implemented

a framework for smart and transparent mobile application offloading. We have implemented

a transparent offloading mechanism at the method level. Compared to existing schemes,

our solution does not require any modification to the source code or binary, or special

compilation, so number of existing applications can be directly offloaded without further

efforts.

To deal with the second problem of what to offload, we have designed and implemented

a profiler of mobile applications to efficiently partition the applications in an optimal way

to find the appropriate methods for offloading. We have designed and implemented a learn-

ing based model for estimating the on-device and on-server execution time of applications

and make offloading decision accordingly. Compared to the most existing decision-makers

utilizing a static policy, our decision maker based on MLP can capture the dynamic nature

of the relevant key factors affecting the offloading decision and their relationship.

To augment the storage of mobile devices and enable pervasive access, we have designed

and implemented a system to transparently and seamlessly integrate a users personal storage

space with cloud with better availability and consistency.

92

Extensive experiments have been conducted to evaluate the computation offloading and

storage augmentation schemes. The experimental results show that our proposed solu-

tions can work seamlessly with existing mobile applications and enhance their performance

significantly in terms of response time and energy savings.

93

Bibliography

94

Bibliography

[1] “International Data Corporation : Press Release 27 January, 2014,”
http://www.idc.com/getdoc.jsp?containerId=prUS24645514.

[2] “International Data Corporation : Press Release 30 April, 2014,”
http://www.idc.com/getdoc.jsp?containerId=prUS24823414.

[3] “Mint,” http://www.mint.com/.

[4] “AWS SDK for Android,” http://aws.amazon.com/sdkforandroid/.

[5] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, “The
pothole patrol: Using a mobile sensor network for road surface monitoring,” in Pro-
ceedings of The 6th International Conference on Mobile Systems, Applications, and
Services (MobiSys), Breckenridge, Colorado, June 2008.

[6] “Diamedic. Diabetes Glucose Monitoring Logbook,”
http://ziyang.eecs.umich.edu/projects/powertutor/index.html.

[7] “iPhone Heart Monitor Tracks Your Heartbeat Unless You Are Dead,” giz-
modo.com/5056167/.

[8] B. Liu, P. Terlecky, A. Bar-Noy, R. Govindan, and M. J. Neely, “Optimizing infor-
mation credibility in social swarming applications,” in Proceedings of IEEE InfoCom,
2011 mini-conference, Shanghai, China, April 2011.

[9] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song, “Seemon:
Scalable and energy-efficient context monitoring framework for sensor-rich mobile en-
vironments,” in Proceedings of The 6th International Conference on Mobile Systems,
Applications, and Services (MobiSys), Breckenridge, Colorado, June 2008.

[10] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution
between mobile device and cloud,” in Proc. of EuroSys, 2011, pp. 301–314.

[11] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-based
cloudlets in mobile computing,” in IEEE Pervasive Computing, vol. 8(4), October
2009.

[12] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “MAUI: Making smartphones last longer with code offload,” in Proc. of Mo-
biSys, San Francisco, CA, USA, June 2010.

95

[13] M. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan, “Odessa:
enabling interactive perception applications on mobile devices,” in Proc. of Mobisys.
ACM, 2011, pp. 43–56.

[14] Y. W. Kwon and E. Tilevich, “Power-efficient and fault-tolerant distributed mobile
execution,” in Proc. of ICDCS, 2012.

[15] “Amazon Silk,” http://amazonsilk.wordpress.com/.

[16] “Drop Box,” http://www.dropbox.com/.

[17] “Sky Drive,” http://explore.live.com/skydrive.

[18] “Google Docs,” www.docs.google.com.

[19] M. L. Mazurek, E. Thereska, D. Gunawardena, R. Harper, , and J. Scott, “Zzfs: A
hybrid device and cloud file system for spontaneous users,” in FAST, 2012.

[20] J. Strauss, J. M. Paluska, C. Lesniewski-Laas, B. Ford, R. Morris, and F. Kaashoek,
“Eyo: Device-transparent personal storage,” in Usenix Annual Technical Comference,
2011.

[21] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan, “Volley:
Automated data placement for geo-distributed cloud services.” in NSDI, 2010, pp.
17–32.

[22] “DropBox Security Breach,” http://www.zdnet.com/dropbox-gets-hacked-again-
7000001928/.

[23] “Facebook Security Breach,” http://www.telegraph.co.uk/technology/picture-
galleries/8939746/Private-photographs-of-Facebook-founder-Mark-Zuckerberg-leaked-
after-glitch.html .

[24] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic re-
source allocation and parallel execution in the cloud for mobile code offloading,” in
INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 945–953.

[25] “Aliyun,” http://os.aliyun.com/.

[26] I. Giurgiu, O. Riva, and G. Alonso, “Dynamic software deployment from clouds to
mobile devices,” in Middleware 2012. Springer, 2012, pp. 394–414.

[27] “Amazon S3,” http://aws.amazon.com/s3/.

[28] “Mark Zuckerbergs pictures leaked,” http://www.nydailynews.com/news/national/oops-
mark-zuckerberg-pictures-leaked-facebook-security-flaw-article-
1.988026?localLinksEnabled=false.

[29] “DropBox security breach,” http://www.newsy.com/videos/dropbox-security-glitch-
leaves-users-accounts-unprotected/.

[30] “Amazon EC2 outage,” http://www.informationweek.com/news/cloud-
computing/infrastructure/229402054.

96

[31] “SME Storage,” ehttp://smestorage.com/.

[32] J. Strauss, J. M. Paluska, B. Ford, C. Lesniewski-Laas, R. Morris, and F. Kaashoek,
“Eyo: Device-transparent personal storage,” in USENIX Technical Conference, 2011.

[33] “Daily Main, April 1, 2012,” http://www.dailymail.co.uk/sciencetech/article-
2078020/Death-point-shoot-Smartphone-cameras-27-cent-photos.html.

[34] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
in Proceedings of the 6th Symposium on Operating System Design and Implementation
(OSDI), San Francisco, CA, Dec 2004.

[35] S. Ghemawat, H. Gobioff, , and S.-T. Leung, “The google file system,” in Proceedings
of the 19th Symposium on Operating Systems Principles (SOSP), NY, USA, 2003.

[36] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design and im-
plementation of the sun network filesystem,” in Proceedings of the Summer USENIX
conference, 1985, pp. 119–130.

[37] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser, “Managing update conflicts in bayou, a weakly connected replicated storage
system,” in ACM SIGOPS Operating Systems Review, vol. 29, no. 5. ACM, 1995, pp.
172–182.

[38] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb, “Simplifying cyber for-
aging for mobile devices,” in Proc. of Mobisys, San Juan, Puerto Rico, June 2007.

[39] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang, “The case
of cyber foraging,” in Proceedings of the 10th ACM SIGOPS European Workshop,
Saint-Emilion, France, July 2002.

[40] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, and V. H. Tuulos, “Misco:
a mapreduce framework for mobile systems,” in Proceedings of the 3rd International
Conference on PErvasive Technologies Related to Assistive Environments. ACM, 2010,
p. 32.

[41] M. A. Hassan and S. Chen, “Mobile mapreduce: Minimizing response time of comput-
ing intensive mobile applications,” in Mobile Computing, Applications, and Services.
Springer, 2012, pp. 41–59.

[42] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen, “Comet: code
offload by migrating execution transparently,” in OSDI, 2012.

[43] “Linpack,” https://play.google.com/store/apps/details?id=com.greenecomputing.linpack&hl=en.

[44] “ZXing,” http://code.google.com/p/zxing/.

[45] “Mezzofanti,” http://code.google.com/p/mezzofanti/.

[46] J. Kleinberg and É. Tardos, Algorithm design. Pearson Education India, 2006.

97

[47] J. H. HOWARD, M. L. KAZAR, S. G. MENEES, D. A. NICHOLS, M. SATYA-
NARAYANAN, R. N. SIDEBOTHAM, and M. J. WEST, “Scale and performance
in a distributed file system,” in ACM Transactions on Computer Systems, 1988.

[48] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda file system,”
ACM Transactions on Computer Systems (TOCS), vol. 10, no. 1, pp. 3–25, 1992.

[49] D. Borthakur, “Hdfs architecture : Technical report,” in Apache Software Foundation,
2008.

[50] T. White, “Hadoop: The definitive guide (second edition).”

[51] M. Eshel, R. Haskin, D. H. Manoj, N. Frank, Schmuck, and R. Tewari, “Panache: A
parallel file system cache for global file access,” in 8th USENIX Conference on File and
Storage Technologies, 2010.

[52] E. B. Nightingale and J. Flinn, “Energy-efficiency and storage flexibility in the blue
file system,” in 6th conference on Symposium on Opearting Systems Design and Im-
plementation, 2004.

[53] D. Peek and J. Flinn, “Ensemblue integrating distributed storage and consumer elec-
tronics,” in 7th conference on Symposium on Opearting Systems Design and Implemen-
tation, 2006.

[54] S. Sobti, N. Garg, C. Zhangv, X. Yu, A. Krishnamurthy, and R. Y. Wang, “Personal-
raid: Mobile storage for distributed and disconnected computers,” in FAST, 2012.

[55] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-Sullivan, T. Wobber,
C. C. Marshall1, and A. Vahdat, “Cimbiosys: A platform for content-based partial
replication,” in Network Systems Design and Implementation, 2009.

[56] “Google Drive,” https://drive.google.com/.

[57] “Droidslator,” http://code.google.com/p/droidslator/.

[58] “CyanogenMod,” http://wiki.cyanogenmod.org/w/Build for passion.

[59] “Dalvik VM,” http://source.android.com/devices/tech/dalvik/.

[60] “Virtual Box,” https://www.virtualbox.org/.

[61] “MatCal,” https://github.com/kc1212/matcalc.

[62] “Picaso,” http://code.google.com/p/picaso-eigenfaces/.

[63] “MathDroid,” https://play.google.com/store/apps/details?id=org.jessies.mathdroid&hl=en.

[64] “Power Tutor,” www.powertutor.org/.

[65] J. Dean and S. Ghemaawat, “Mapreduce a flexible data processing tool,” in Commu-
nication of the ACM, Jan 2010.

98

[66] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel computing.
Benjamin/Cummings Redwood City, 1994, vol. 110.

[67] J. org Ott and D. Kutscher, “Drive-thru internet: IEEE 802.11b for Automobile Users,”
in Proceedings of IEEE InfoCom, Hong Kong, March 2004.

[68] M. A. Hassan and S. Chen, “An investigation of different computing sources for mobile
application outsourcing on the road,” in Proc. of Mobilware, June 2011.

[69] “Weka,” http://www.cs.waikato.ac.nz/ml/weka/.

[70] “tc,” http://unixhelp.ed.ac.uk/CGI/man-cgi?tc+8.

[71] A. J. Nicholson and B. D. Noble, “Breadcrumbs: Forecasting mobile connectivity,” in
Proc. of Mobicom, 2008.

[72] “CPUUsage,” http://stackoverflow.com/questions/3118234/how-to-get-memory-
usage-and-cpu-usage-in-android.

[73] M. A. Hassan, K. Bhattarai, Q. Wei, and S. Chen, “Pomac: Properly offloading mobile
applications to clouds,” June 2014.

[74] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy for collaborative
execution in mobile cloud computing,” in INFOCOM, 2013 Proceedings IEEE. IEEE,
2013, pp. 190–194.

[75] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on com-
puting, vol. 1, no. 2, pp. 146–160, 1972.

[76] R. T. Fielding, “Architectural styles and the design of network-based software archi-
tectures,” in PhD Thesis, University of California, Irvine., 2000.

[77] H. Kung and J. T. Robinson, “On optimistic methods for concurrency control,” in
ACM Transaction on Database Systems, March 1981.

[78] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C.
Steere, “Coda: A highly available file system for a distributed workstation environ-
ment,” in IEEE TRANSACTIONS ON COMPUTERS, April 1990.

[79] R. G. Guy, J. S. Heidemann, W. Mak, J. Thomas W. Page, G. J. Popek, and D. Roth-
meier, “Implementation of the ficus replicated file system,” in USENIX, March 1990.

[80] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A read/write peer-to-peer
file system,” in OSDI, 2002.

[81] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demer, M. J. Spreitzer, and C. H.
Hauser, “Managing update conflicts in bayou, a weakly connected replicated storage
system,” in fifteenth ACM symposium on Operating systems principles, March 1981.

[82] J. R. Douceur and W. J. Bolosky, “A large-scale study of file-system contents,” in
Sigmetrics, May 1999.

99

[83] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A five-year study of
file-system metadata,” in FAST, 2007.

[84] J. R. Douceur and W. J. Bolosky, “A large-scale study of file-system contents,” in
SIGMETRICS, 2002.

[85] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-
hart, and D. Terry, “Epidemic algorithms for replicated database maintenance,” in
PODC, 1987.

[86] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” in
Communicatio of ACM, 1978.

[87] A. S. Tanenbaum, “Distributed systems : Principles and paradigms,” vol. Second
Edition.

[88] “EC2 Failure Rate,” http://aws.amazon.com/ebs/.

[89] R. Jain, “The art of computer systems performance analysis,” 1991.

[90] J. S. Ramberg and B. W. Schmeiser, “An approximate method for generating symmet-
ric random variables,” in Communications of ACM, 1974.

[91] K. M. Evans and G. H. Kuenning, “A study of irregularities in file-size distributions,”
in International Symposium on Performance Evaluation of Computer and Telecommu-
nication Systems, San Diego, CA, 2002.

100

Curriculum Vitae

Mohammed A Hassan received his Bachelor of Science from Bangladesh University of En-
gineering and Technology in 2006. He was employed as a lecturer in United International
University, Dhaka, Bangladesh for two years. His research interests include networking,
operating system, and mobile-cloud computing.

101

