
Help Your Mobile Applications with Fog Computing

Mohammed A. Hassan, Mengbai Xiao, Qi Wei and Songqing Chen

mohammeh@netapp.com, NetApp Inc.
{mxiao3,qwei2,sqchen}@gmu.edu, Department of Computer Science, George Mason University

Abstract—

Cloud computing has paved a way for resource-constrained
mobile devices to speed up their computing tasks and to expand
their storage capacity. However, cloud computing is not necessary
a panacea for all mobile applications. The high network latency
to cloud data centers may not be ideal for delay-sensitive
applications while storing everything on public clouds risks users’
security and privacy. In this paper, we discuss two preliminary
ideas, one for mobile application offloading and the other for
mobile storage expansion, by leveraging the edge intelligence
offered by fog computing to help mobile applications. Preliminary
experiments conducted based on implemented prototypes show
that fog computing can provide an effective and sometimes better
alternative to help mobile applications.

I. INTRODUCTION

The increasing popularity of the mobile devices is at-
tracting more and more application developers to develop
computation- and data-intensive applications for mobile de-
vices. But mobile devices are inherently constrained by
the limited on-device resources, including limited computing
power, storage space, and the battery power supply. To address
these limitations, a lot of efforts have been made to improve
mobile devices’ capability with cloud computing via applica-
tion offloading and storage augmentation [18], [19], [29], [27],
[15], [21], [20], [25], [11], [28], [31], [24].

However, cloud computing is not necessary a panacea
for resource-constrained mobile devices. Day to day mobile
applications can be data-intensive and the network latency
between a mobile device and a cloud data center can signif-
icantly affect the performance of offloaded computation from
a mobile device, leading to un-desired results. Some prior
studies [30], [22], [24] show that due to the high network
latency and the slow network bandwidth, it may not always
be suitable to offload computation to the cloud. But this
decision is not straightforward. Consider the varying nature
of the environment (e.g., network dynamics), the decision has
to be made dynamically and adaptively about which part(s)
of the application should be offloaded (even whether to be
offloaded at all). With the availability of nearby resources via
fog computing, there are more choices and thus the decision
process is more complex. Some prior frameworks [29], [15],
[27], [19] mainly focused on how the computation can be
offloaded while treating the decision process (whether and
where to offload) lightly.

On the other hand, currently cloud computing plays an im-
portant role in expanding storage capacity for mobile devices
as today mobile devices often have very limited storage. For
example, a typical iPhone or Samsung Galaxy S5 may have

16 to 32 GB of storage. To increase the storage, there are a
lot of third party cloud storage services available for mobile
devices, such as Dropbox [4], Google Docs [7], Amazon
s3 [2], Windows SkyDrive [10] and SME Storage [11].
Although such cloud storage services always aim to provide
7/24 access to users, there are several limitations. First, their
storage servers are behind public network where the perfor-
mance could be an issue [22], [24]. Moreover, these third party
cloud service providers are still prune to the single point of
failure [8], [5], [1]. Most importantly, storing all user data on
public cloud storage risks users’ security and privacy, which is
an increasing concern of mobile users as today mobile devices
tend to contain more and more sensitive user information.

In this paper, we set to explore the edge intelligence
of fog computing to deal with these limitations. For this
purpose, we present some of our ideas in utilizing nearby
resources to help mobile applications. To efficiently speed up
mobile computation, we propose to take into account all the
available resources, particularly their runtime configurations
(e.g., the network latency and the bandwidth between the
mobile device and the server, the size of the overhead data,
etc.) and dynamically choose partition(s) of the application for
offloading. To expand the mobile device storage, we propose
to leverage the users personal devices for nearby-accesses and
better security and privacy.

To demonstrate the effectiveness of our proposed ap-
proaches, we have built prototypes of our proposed ideas and
conducted some preliminary experiments accordingly. Exper-
imental results show that better results could be achieved via
our proposed approaches.

II. ADAPTIVE COMPUTATION OFFLOADING

Today, mobile devices are pervasive and common users
rely more and more on their mobile devices than the desktop
counterpart. Corresponding to this trend, mobile applications
are fast growing, ranging from simple applications to more and
more complicated computation- and data-intensive applica-
tions. Yet the gap of the on-device resources of a mobile device
and those on a traditional desktop or laptop computer is still
big. In addition, mobile devices are fundamentally constrained
by limited battery power supply. To deal with these constraints,
plenty of research [30], [15], [27], [21], [18], [19], [29], [32]
has been conducted to offload the computation to the power
computing resources, e.g., the cloud today. However, cloud
computing is not necessary a panacea to augment computation
for resource constrained mobile devices [22]. For example, a
simple face recognition application like Picaso [9] may take
up to six seconds to find a match when it is offloaded to a
cloud, which is even slower than executing the computation978-1-4673-7392-0/15/$31.00 c© 2015 IEEE

on device locally. Such overhead mainly comes from the
network conditions (e.g., the network bandwidth and latency).
Naturally, nearby resources through fog computing [17] may
provide better performance by bringing the computation at
arm’s reach.

Today nearby computing resources are pervasive, such as
small wifi and routers deployed at home, offices, and public
places. To facilitate the utilization of such edge resources, it
is ideal to join them together collaboratively, e.g., via fog
networking. Users can collaborate with each-other [22] to offer
computation offloading functions. In this section, we do not
focus on the formation of such network. Instead, we focus
on how to make proper offloading (e.g., where and what to
offload) once such resources are available so that one can
explore the potentials of such offloading.

Consider that sometimes the network bandwidth and the
latency can deteriorate the performance of the offloaded tasks,
a careful decision needs to be made upon whether and where
to offload the computation-intensive task, if necessary. In the
cloud computing scenario, some prior research [27], [19],
[32], [18] has adopted threshold or linear regression models,
which often results in static decisions. Without thorough
consideration of the dynamics of the available resources, such
simpler models may fail to make correct decisions as shown
in POMAC [25]. With the availability of nearby resources, the
options are much richer and such a decision process becomes
more dynamic. Some intelligence is necessary to help mobile
devices to make right decisions. We propose the following
framework for this purpose.

A. Problem Formulation

To make a proper offloading decision, we need to actively
monitor the system resources. Based on the resource availabil-
ity and dynamics, we may predict the performance of different
tasks of the application on different computing facilities. Once
we can figure out which tasks can benefit from offloading most,
we can offload these tasks.

TABLE I: Experimental Environment Setup

Simulated
Network

Network
Bandwidth
(Kbps)

CPU
(GHz)

Memory
(MB)

Network
Latency
(ms)

Fog 1 100000 1 1024 20
Fog 2 30000 1 2048 20
Fog 3 25000 2 2048 50
Cloud 1 5000 2 2048 75
Cloud 2 500 2 2048 200

The same task of an application may have different perfor-
mance result on different computing facilities. To empirically
study this, we conduct experiments with the face recognition
method of Picaso [9] under different environments. We set up
a total of five different environments, three of them emulate
fog and two of them emulate cloud. The clouds have relatively
worse bandwidth and latency configuration but better CPU and
memory configurations compared to those of the fog, as cloud
is usually accessed through 4G or 3G, while fog devices are
usually reachable through wifi or WLAN. Table I summarizes
the different parameters for different environments.

Fig. 1: The Response Time of Picaso is better in nearby
resources

Figure 1 shows the response time of 10 experiments
of Picaso in different environments. The figure shows that
when the computation is offloaded to the cloud, the response
time increases drastically even though the cloud has better
computing power and/or memory in some cases. Sometimes
it may be worthwhile even not to offload computation to the
cloud as it takes more time than that of on-device execution.

Such results hint us two things. First, we need to find out
carefully which parameters impact the offloading performance
(including bandwidth, latency, server-side CPU and memory,
etc.). Second, we need to accurately predict the offloadable
task’s performance based on these factors.

To measure the bandwidth and latency between the mobile
device and the potential offloading target, we may periodically
ping the fog/cloud server and measure them using a number
of existing methods. We can also find the available CPU and
memory information from the fog and cloud server. Our study
shows that we can predict these values with better accuracy
using moving average [23].

To predict the performance of the offloaded methods, some
prior research [27], [21] claims that a threshold based offload-
ing policy may help. Some other schemes [19], [18] use history
based information or linear regression based policies, which
are oversimplified, failing to capture the complex relationship
between different parameters, as shown in POMAC [25]. As a
result, we suggest high dimensional models, such as Multilayer
Perceptron (MLP), to predict the performance of different
tasks in different environments and thus make the proper
offloading decision. Extending from the same basic idea, with
the availability of different nearby resources as well, we can
monitor the different environmental parameters and response
time and train the Multilayer Perceptron model. At runtime,
we monitor the system environment continuously and predict
the performance of different computation-intensive parts of the
application in different environment (the fog, or the cloud, or
even the mobile device itself). Based on these predicted values,
we partition the application and make the best offloading
decision, which we explain below.

To decide which task(s) of an application is appropriate for
offloading, we formulate the problem as a constrained graph
partitioning problem to maximize the benefit by offloading.
In this work, we consider the candidate tasks at the method
level. That is, we have a list of methods M which we want

to offload, and each method m ∈ M has the following
members: i) the execution cost on the mobile device, denoted
as mm, ii) the offloading (the parameters) and execution cost
on server (fog or cloud), denoted as ms, iii) the list of all
the variables reachable from this method, denoted as RV
(Reachable Variables), iv) the list of all the methods reachable
from this method, denoted as RM (Reachable Methods),

Denote the method call graph as MCG. Each node of
MCG represents a method and an edge exy represents whether
a method x is invoking another method y. Assume that the
execution cost of a method m in the mobile device is mm and
on the server (fog or cloud, without considering the parameters
sending cost) mswp. In addition, the cost of invoking a method
m from method x is denoted as exm, and the cost for accessing
a variable (global or class) v is emv . So the cost of executing
a method on the server (including the overhead) is:

ms = mswp +
∑

∀x∈{M−m}

exm +
∑
∀x∈RV

emx. (1)

And the cost saved by offloading a method is

bm = mm −ms. (2)

Thus, our goal is to partition the application’s MCG into
two partitions S and T and offload all the methods m ∈ S to
the server side such that:

Execution T ime =
∑
∀m∈T

mm +
∑
∀m∈S

ms (3)

is minimized. Note that we predict mm and ms for different
setups (fog or cloud) mentioned in equation 1 by Multilayer
Perceptrion. After calculating the minimized time for mobile
device, cloud, and fog, we may choose the optimal method(s)
for offloading.

B. Preliminary Evaluation

We implemented a prototype in Android OS with the above
discussed decision making process and candidate method se-
lection process. We trap method calls in application VM of a
modified Android VM. We trap the frame page and the stack
pointer when one method invokes the offloadable method, and
instead of executing the method locally, we offload them to the
cloud or the fog server. Such a modified Android VM allows
the methods to be trapped and offloaded in the application VM
level, so there is no need to modify the code. Thus, we can
offload the third party applications in a transparent manner.

We present our preliminary evaluation of two different
application Picaso [9] (Android Face Recognition app) and
DroidSlator [3] (Android Dictionary app) in different environ-
mental setup as shown in Table I. Both of these applications
are data- and computation-intensive and they are popular types
of application.

We have conducted ten experiments in each of the environ-
mental setup. Figure 2 and 3 show the average response time
and the energy consumption of the applications in different en-
vironments. In these experiments we predict the applications’
performance in different environments using MLP and then
partition the applications. In these figures, OnDevice means

Fig. 2: Response time of the applications in different
environment

Fig. 3: Energy consumption of the applications in different
environments

running on the mobile device, a Google nexus one with 1
GHz CPU and 512 MB of RAM. Note that the training
and classification overhead of the MLP has been accounted
for. As shown in the figures, offloading to the nearby fog
computing servers outperforms offloading to the cloud and
execution on the local device, in terms of both the response
time and the corresponding energy consumption. For example,
fog computing sometimes can save upto 5.5 time response time
and energy consumption, while for cloud computing we can
save upto 1.3 times.

C. Challenges

Although fog computing can offer better help to mobile
applications, there are some challenges to overcome before we
can implement this in practice. For example, cloud resources
are almost available 7/24. To provide comparable services,
fog computing needs to provide similar resource availability.
Although wifis/routers may be leveraged, the reliability needs
to be improved. In addition, leveraging the private wifi/router
resources also needs to deal with the associated security and
privacy concerns, of both the owners and the users. Private
networks, such as the one built for vUPS [24], may offer
computation at home or office to the users in a private and
secure manner to avoid this issue.

III. MOBILE STORAGE EXPANSION

Despite the reducing price of storage, today mobile devices
often still have very limited storage (a typical iPhone or
Samsung Galaxy typically have 16 to 32 GB of storage) even
when compared with a low-end desktop computer. As a result,
cloud based storage services, such as Dropbox [4], Google
Docs [7], Amazon s3 [2], Windows SkyDrive [10] and
SME Storage [11] are very popular.

These cloud services are often accessible via public net-
works and they are not at arm’s reach for mobile users. The
network latency can play an important role when accessing
the data stored there [24]. Moreover, these solutions are
inherently prune to the single point of failure. Furthermore,
in the past years, we have seen security breaches, such as
Mark Zuckerberg’s pictures leak incident in Facebook [8],
DropBox account breach with wrong passwords [5], Amazon’s
data center failure in 2011 [1], etc. As a result, some prior
research [11], [28], [31], [24] has been conducted to investigate
how to include the user’s personal storage to expand storage
capacity for mobile devices. In this section, we discuss our
effort along this direction by utilizing the personal storage via
fog computing to augment storage capacity for mobile devices
in a safe and efficient manner.

A. Design and Implementation

Compared to the massive amount of data that demand cloud
storage, a typical mobile user’s data is often not comparable in
the amount and often can be stored in all the personal storage
combined together [16]. Motivated by this observation, we
propose to integrate all the personal storage space of a user (her
laptops, home and office computers, etc.) together to build-up
a distributed storage service, backed up via fog networking.
That is, an average user today often owns or controls multiple
computing devices. While a mobile device often has limited
storage space, a desktop computer at work or at home often
has rich storage space. If these personal storage space can be
seamlessly integrated together, the total space is often more
than the demand of a user [16]. To utilize such a service, a
user can register any of her devices, e.g., via some lookup
directory, which can be hosted in a cloud such as Amazon
EC2. Note that from the bootstrapping perspective, there are
lots of other alternatives.

One main challenge of such a storage system is its acces-
sibility from anywhere. An intuitive solution is to replicate
every piece of data based on the number of participating
devices so that there is a copy of the same data on any device.
This certainly does not work as mobile devices have storage
constraints. Therefore, we propose to distribute the data among
her different storage space with backup provision. For better
availability, we keep the metafile in a public cloud server so
that they can always be accessed, while the actual data is stored
only in one’s personal devices. In this way, a user can first
contact the cloud server, find the device where the desired
data is stored and then can fetch the data accordingly. The
< data, location > mapping can also be kept in the public
cloud for 7/24 accesses. In this approach, the data are stored
on one’s own storage space, and thus coming with less security
and privacy concerns than those with public clouds. Such an
idea has been demonstrated by vUPS [24]. In such a distributed
storage system, if a user always fetches data from her another
remote device, it could be expensive as well. To provide better
services, we can trace the user access pattern and place the data
closer to where it is accessed most frequently.

For this purpose, we further propose a near-optimal data
location policy for this geologically distributed file system. To
build such a policy, we have collected file access frequencies
with respect to each location. For each file, we collect the op-
eration type, time, and location, the amount of data associated

with each operation, the types of operations, etc. We cluster
the files based on their operation location, discover data access
and operation types motifs, and forecast future data accesses.
Accordingly, we can set the data placement policy.

We have utilized linear programming to label the files
against each location. Our goal is to minimize the overall
communication cost (latency) between the locations maintain-
ing the constraint that the accumulative size of the files at a
location can not exceed its physical capacity. After we find
the location for each file, we generate the training data set
by plotting the number of accesses from each location for
each file. To find the location of a new file, we first collect
information for that new file from the so-far access frequencies.
Then we utilize different classifiers to find the best location for
the new files.

Table II summarizes the input parameters and the symbols
used.

TABLE II: Parameter List

Parameter meaning
n Number of locations (home, office, school, etc.)
f Number of files
Ci,j Cost of unit data transfer between location i and j
Pi Disk capacity of location i
Si Size of file i
Ri,j Number of access of file i from location j
Xi,j File i is placed in location j

Our objective here is to find the allocation matrix ∀i, j ∈
n Xi,j so that the following equation is minimized:

min
∑
i∈f

∑
j,k∈n

SiCj,kRf,jXi,k (4)

subject to ∑
i∈f

Xi,kSi ≤ Pk (5)

Xi,k ∈ {0, 1} (6)

This problem is NP-Hard [14], so we relax Equation 6 and
map this problem to fractional linear programming. From this
fractional solution, we find the approximation by placing the
file i to the location with highest value Xi,j . We use these
optimal locations for some set of files as the training set, from
which we find the optimal locations of new files via classifiers.

B. Preliminary Evaluation

We have implemented a prototype on Android so that users
and applications can utilize our file system. To provide a
unified view, we connect the user devices with HTML5 and
WebSockets together with Amazon EC2. Whenever a user
device comes up, it joins via the directory service hosted on
EC2. Any new file created or relocated needs to update its
location in the EC2 server using < data, location > pair. We
thus build a layer on top of the local file systems of one’s
participating devices. We store the unified file systems data
in the local storage of the participating devices. From this
< data, location > metadata, we can locate the actual location

of the files. The actual transfer of the file takes places over
the network. The placement of the data is calculated by our
placement algorithm (fractional linear programming) discussed
above for better availability and low latency.

We also implemented our file system mounting in the
Android native function call level. The Android applications
use the Java APIs, which use the Dalvik native calls to make
system call for file operations. We trap the file system I/O and
check whether the associated file is a local file or a remote
file. In case of a local file, we call the standard system calls to
perform the operation. Otherwise, the operation is redirected
to the remote interface. We implemented the standard file
operations, including open, close, read, write, etc.
Upon opening a remote file, our system provides a virtual
file handler to track subsequent operations associated with
this file. Whenever the application performs any operations
on the tracked file, our file system native module redirects the
operations to the the APIs for remote communication. In this
way, the remoteness is transparent to the application, requiring
no modification to its source code.

We have evaluated our implementation with Yahoo Web-
Scope cluster data [13]. This user trace includes different
file access frequencies for different IPs. We have collected
the probability distribution about the size of the files and
their access frequencies. We have generated 1000 files and 10
locations according to the probability distribution. We could
not collect the data about the bandwidth between the clusters
(locations) and the capacity of them, so we followed a uniform
distribution to generate those values.

We have clustered the files to locations by utilizing linear
programming in Matlab and generated the dataset based on
the location, file item, and frequency pattern. From the dataset,
we use 2/3 as the training data and evaluate using the rest.
Table III shows some preliminary results.

TABLE III: Accuracy of different classifiers

Name of the classifier Accuracy
Naive Bayes 90.09%
Linear Regression 90.80%
SVM 91.00%
Decision Tree 93.50%
MLP 94.90%

Table III shows that all classifiers have high accuracy,
which promises better performance. We have classified the
dataset using standard Weka [12] library. Thus finding the
optimal location for the files results in better throughput for
file operations.

TABLE IV: Throughput for Local, Cloud, and Fog storage

Setup Mbps
Local Storage 1.027
DropBox 2.83
Fog Storage 4.73

We use different benchmarks to evaluate our proposed
framework and the file location policy. Due to page limit, here
we mainly present the impact of network speed on file read
operations based on an emulated user trace. In the local setting,

we store all the files in the local sdcard of Android device.
We also store the file in Dropbox for comparisons. In the
distributed storage backed up by fog computing, represented
by Fog Storage in the table, we place the files according to
our location policy based on the user trace. Table IV shows
that the read throughput is the best with the distributed storage
service, denoted as fog storage in the table.

Fig. 4: The bandwidth has dominating affect on the file
system’s performance

Previously we have noted that the network is a dominating
factor for such a file system. To empirically investigate its
impact, we evaluate the response time for 5 trials with different
network speed for file read or create operations. The results are
presented in Figure 4. The results show that the network speed
indeed has significant impact on the file operations, particularly
for file read operations. In such cases, a nearby file server
such as the one offered via fog networking can provide better
performance.

C. Challenges

Similar to the fog computing resources for mobile ap-
plication offloading, to practically employ such a distributed
storage service, there are several challenges to overcome. For
example, the service availability is still a challenge as a public
cloud storage service often is available 7/24 while a user
may power on and off her devices at different times. With
a typical disk failure rate (4% [6]), keeping a proper number
of replicates can alleviate this problem. For example, making
one copy (of each data file) can lead to 99% availability in
such a service [24]. This availability is comparable to Amazon
services (with a failing rate 0.1-0.5% [6]). Security is another
challenge as such a storage service requires remote access to
different devices. Ad-hoc solutions could help with these issues
while an open and comprehensive network protocol suite (e.g.,
via fog networking) could be more desirable.

IV. RELATED WORK

Previous research [18], [30], [19], [29], [15], [21] has
investigated how to partition mobile applications and offload
computing-intensive tasks to the more powerful counterparts
such as clouds. Balan et al. [15] focused on how easily appli-
cations can be modified for offloading. Odessa [29] showed
that offloading can improve the response time for stream-
ing and pipelined applications by three times. Thinkair [26]
provides API for computation offloading which requires spe-
cial compilation. Some other research [19], [27] focused on

application level partitioning. While making the offloading
decision, MAUI [19] adopted a linear model to make the
offloading decision, while Odessa [29] leveraged previous
execution statistics and used the index of the ratio-of-benefit
to make the offloading decision. Young et al. [27] proposed
a static threshold to make offloading decisions. These works
mainly focused on how efficiently applications can be of-
floaded. However, these works mainly tried to prove that cloud
computing can improve the performance, which is hard for real
world applications [21], [25] considering the overhead over
the network. However, in our preliminary evaluation, we have
shown that cloud computing is not a conclusive solution for
mobile computation offloading. We also propose a framework
to offload computation to either fog or cloud based on the
available resources and dynamic conditions. Some preliminary
results shows that most of the time, fog computing is better
than cloud computing.

On the other hand, the previous work [11], [28], [31]
related to the hybrid cloud storage for mobile devices was
mainly motivated by data privacy issue. We are along the
same direction to expand storage capacity of mobile devices
via personal storage owned by the same user.

V. CONCLUSION AND FUTURE WORK

Mobile devices are constrained by limited computing
power and storage space. To address these limits, cloud com-
puting and storage has been playing a critical role. However,
cloud is not necessary the best solution all the time for all
the mobile applications and data. In this paper, we explore the
potentials of fog computing for mobile application offloading
and storage expansion. For both of these applications, our
experimental results show that indeed nearby resources may
offer better performance.

To facilitate the utilization of nearby resources, for both
computation offloading and data storage, there are a lot of chal-
lenges to be overcome. Not exclusively, the service availability,
the security and privacy, the resource discovery, the service
model, etc. are the remaining challenges to be overcome. Fog
networking could shed some light on these issues.

VI. ACKNOWLEDGEMENT

This work was mainly done when the first author was with
George Mason University. This work is partially supported
by National Science Foundation (NSF) under grant CNS-
1117300.

REFERENCES

[1] Amazon EC2 outage. http://www.informationweek.com/news/cloud-
computing/infrastructure/229402054.

[2] Amazon S3. http://aws.amazon.com/s3/.
[3] Droidslator. http://code.google.com/p/droidslator/.
[4] Drop Box. http://www.dropbox.com/.
[5] DropBox security breach. http://www.newsy.com/videos/dropbox-

security-glitch-leaves-users-accounts-unprotected/.
[6] EC2 Failure Rate. http://aws.amazon.com/ebs/.
[7] Google Docs. www.docs.google.com.
[8] Mark Zuckerbergs pictures leaked.

http://www.nydailynews.com/news/national/oops-mark-
zuckerberg-pictures-leaked-facebook-security-flaw-article-
1.988026?localLinksEnabled=false.

[9] Picaso. http://code.google.com/p/picaso-eigenfaces/.
[10] Sky Drive. http://explore.live.com/skydrive.
[11] SME Storage. http://smestorage.com/.
[12] Weka. http://www.cs.waikato.ac.nz/ml/weka/.
[13] Yahoo Webscope. http://webscope.sandbox.yahoo.com/.
[14] David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee,

and KK Ramakrishnan. Optimal content placement for a large-scale vod
system. In Proceedings of the 6th International COnference, page 4.
ACM, 2010.

[15] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb. Simplify-
ing cyber foraging for mobile devices. In Proc. of Mobisys, San Juan,
Puerto Rico, June 2007.

[16] William J. Bolosky, John R. Douceur, David Ely, , and Marvin Theimer.
Feasibility of a serverless distributed file system deployed on an existing
set of desktop pcs. In Sigmetrics, 2000.

[17] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages
13–16. ACM, 2012.

[18] B.G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proc. of EuroSys,
pages 301–314, 2011.

[19] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: Making smartphones last longer with
code offload. In Proc. of MobiSys, San Francisco, CA, USA, June 2010.

[20] Ioana Giurgiu, Oriana Riva, and Gustavo Alonso. Dynamic software
deployment from clouds to mobile devices. In Middleware 2012, pages
394–414. Springer, 2012.

[21] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao,
and Xu Chen. Comet: code offload by migrating execution transparently.
In OSDI, 2012.

[22] M. A. Hassan and S. Chen. An investigation of different computing
sources for mobile application outsourcing on the road. In Proc. of
Mobilware, June 2011.

[23] Mohammed Hassan, Qi Wei, and Songqing Chen. Studying thresh-
old based policy for computation offloading. In Technical Report,
Dept. of Computer Science, George Mason University, January 2015.
http://www.cs.gmu.edu/∼sqchen/open-access/fast-tr.pdf.

[24] Mohammed A Hassan, Kshitiz Bhattarai, and Songqing Chen. vups:
Virtually unifying personal storage for fast and pervasive data accesses.
In Mobile Computing, Applications, and Services, pages 186–204.
Springer, 2013.

[25] Mohammed A. Hassan, Kshitiz Bhattarai, Qi Wei, and Songqing Chen.
Pomac: Properly offloading mobile applications to clouds. In 6th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14),
Philadelphia, PA, June 2014. USENIX Association.

[26] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen
Zhang. Thinkair: Dynamic resource allocation and parallel execution in
the cloud for mobile code offloading. In INFOCOM, 2012 Proceedings
IEEE, pages 945–953. IEEE, 2012.

[27] Y. W. Kwon and E. Tilevich. Power-efficient and fault-tolerant dis-
tributed mobile execution. In Proc. of ICDCS, 2012.

[28] Michelle L. Mazurek, Eno Thereska, Dinan Gunawardena, Richard
Harper, , and James Scott. Zzfs: A hybrid device and cloud file system
for spontaneous users. In FAST, 2012.

[29] M.R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan. Odessa: enabling interactive perception applications on mobile
devices. In Proc. of Mobisys, pages 43–56. ACM, 2011.

[30] M. Satyanarayanan, P. Bahl, R. Caceres, and N.l Davies. The case
for VM-based cloudlets in mobile computing. In IEEE Pervasive
Computing, volume 8(4), October 2009.

[31] Jacob Strauss, Justin Mazzola Paluska, Bryan Ford, Chris Lesniewski-
Laas, Robert Morris, and Frans Kaashoek. Eyo: Device-transparent
personal storage. In USENIX Technical Conference, 2011.

[32] Ying Zhang, Gang Huang, Xuanzhe Liu, Wei Zhang, Hong Mei,
and Shunxiang Yang. Refactoring android java code for on-demand
computation offloading. In ACM SIGPLAN Notices, volume 47, pages
233–248. ACM, 2012.

