
Elicit: Efficiently Identify Computation-intensive
Tasks in Mobile Applications for Offloading

Mohammed A. Hassan, Qi Wei and Songqing Chen

mohammeh@netapp.com, NetApp Inc.

{qwei2,sqchen}@gmu.edu, Department of Computer Science, George Mason University

Abstract—As mobile devices are battery powered and have
less computing resources, plenty of research has been conducted
on how to efficiently offload computing-intensive tasks in a
mobile application to more powerful counterpart. However, prior
research either implicitly assumes that the computing-intensive
tasks are known in advance or the application developers will
make special notations about them.

In this paper, we design a framework Elicit to efficiently
identify the computation-intensive tasks in mobile applications
for offloading. Furthermore, we also consider the response time
savings dynamically when deciding whether to offload a task
based on the runtime system resources. A prototype of Elicit is
built based on the Dalvik VM. Our evaluation with some popular
Android applications from Google Play shows that Elicit can
efficiently find an application’s computing-intensive task and save
response time and energy consumption when these tasks are
offloaded.

I. INTRODUCTION

The increasing popularity of the mobile devices is at-
tracting more and more developers to develop resource inten-
sive applications for mobile devices. But mobile devices are
constrained by limited computing power and battery supply.
Thus, a lot of efforts have been made to augment mobile
devices’ capability with servers or clouds. For example, prior
research [12], [22], [13], [21], [18] has proposed to partition
the application and offload computation-intensive portions to
more powerful counterparts such as servers [13], [18], while
application-specific offloading is considered in [21]. In prac-
tice, the Amazon SILK browser [1] splits the browsing tasks
between the server and the user hand-held devices.

However, to implement the offloading, these models either
require the application developers to provide special notation
on the resource intensive methods for offloading, or implic-
itly assume that the resource intensive methods are already
known [13], [18]. Clone-based approaches [12] can offload
applications without modifications to applications, but they
require a full mobile image running on the cloud, which brings
high synchronization overhead [14], [22]. Such requirements
prevent these models from being deployed in practice.

In addition, Young et al. [18] suggested to offload the
computation-intensive methods to enhance the performance of
mobile applications when the size of the method parameters is
greater than 6MB. In practice, computation-intensive methods
do not necessarily have direct relationship with the size of in-
put data. Moreover, offloading the resource-intensive methods
may not save energy and response time in every circumstance.
MAUI [13] adopts 0-1 integer linear programming (ILP) to

solve the problem of offloading to maximize performance gain
in terms of energy or response time. However, in practice not
every method can be offloaded. Some methods may access
to camera or other sensors of the mobile device, which can
not be offloaded and have to be executed on the mobile
device. While choosing the methods to offload, one has to
consider these constraints which are not considered in previous
research. Previous research [13], [22], [10] mainly relies on the
developers for ensuring that these methods are not constrained,
which is not practical either.

To address this problem, in this paper, we propose to
build a framework, called Elicit, to EfficientLy Identify
Computation-Intensive Tasks in mobile applications for of-
floading. Considering the fact that even a very simple mobile
application can consist of hundreds of different method calls,
Elicit works by first profiling mobile applications to find
the methods’ resource consumption, their dependency on each-
other, and constraints which may hinder them from being
offloaded. Moreover, if the server is on the cloud, the resources
are abundant, but the network delay could be large and more
dynamic. If the server is nearby (such as Fog computing [11]),
the resources may be less powerful, but the network latency
is also smaller. Then, considering the environmental setup at
runtime (e.g., network latency and bandwidth between the
mobile device and the server, size of the overhead data, etc.),
Elicit dynamically chooses an optimal partition of the
application for offloading based on the projected gains.

An Elicit prototype is implemented on Android Dalvik
virtual machine. We evaluate it with a few popular Android
applications. The results show that Elicit can find the
most resource consuming methods of the applications for
offloading, which are consistent with previous studies [18],
[15]. Our experimental results also confirm that Elicit can
dynamically choose the optimal partition of applications for
offloading the method to improve the response time.

While details are provided in the later context, the main
contributions of this paper include:

• Elicit can efficiently find the candidate methods that
are not constrained and appropriate for offloading.

• Elicit dynamically chooses the optimal partition
of mobile applications to offload computation-intensive
methods to improve the response time.

• A prototype of Elicit is implemented in the Android
Dalvik virtual machine and evaluated with a few popular
mobile applications from Google Play to demonstrate its
effectiveness.

Fig. 1: Call-flow of DroidSlator Application

II. MOTIVATIONS

For any existing mobile application, one has to identify
the most appropriate resource-consuming task before any of
the existing offloading mechanisms can be used to offload
that. In addition, these tasks should be unconstrained so that
they can be executed on the server. Existing research on
mobile application offloading however commonly ignores this
problem.

Previous studies either manually identify the methods for
offloading [15], [13], [18] or use more fine grained offloading
mechanism to offload threads [14]. It is possible to find
the resource intensive method of an application manually to
achieve the optimal performance gain. But the main drawbacks
are (1) it requires the programmer’s knowledge to find the
appropriate method to offload; (2) the cost is prohibitively high
to offload an existing application in this way, given that there
are hundreds of methods in an even very simple application.

On the other hand, fine grain offloading can provide seam-
less thread migration without any modification of the source
code and it also does not require any special user notation for
offloading. But the thread migration has two major limitations.
The first is that when migrating a thread, it requires a clone of
the mobile OS image to be saved on the server side for exe-
cuting the offloaded thread there. While offloading the thread,
these two images must be synchronized continuously, which
brings a lot of network overhead. For example, the overhead
to offload a single method in Cloudlet [22] is around 100MB.
The second is that while VM based cloning is flexible for the
application to be offloaded at any point during the execution,
it does not find the appropriate resource intensive computation
to offload. For example, COMET [14] migrates a thread only
when its on-device execution time exceeds twice of the round
trip time from the mobile device to the server (and later this
threshold is changed to the average synchronization overhead).
In this way, the offloading performance gain is not guaranteed:
it is possible that the thread migration overhead may be greater
than the performance gain obtained by offloading the rest of
the execution of the thread.

Zhang et al. [24] showed that the performance gain can
be achieved by distributing an application execution between
the mobile device and the server by adopting a shortest path
algorithm to find an optimal cut to minimize the offloading
overhead. Although this solution provides a generic approach
for application partitioning, it does not consider many prac-
tical constraints for partitioning real-world applications. For
example, it is possible to find a partition that gives the best
performance gain, but at the same time the methods (in the
optimal partition) can not be offloaded due to some practical

constraints, such as the candidate methods may need to access
the mobile device’s camera or other I/O devices. In addition,
this work does not provide any guideline on how to profile the
applications to find the bottleneck to offload.

Figure 1 shows an example of how the most time-
consuming methods of the DroidSlator application [3] (An-
droid dictionary app) are invoked. Here the onTouch()

method consumes most of the execution time of the ap-
plication. It calls the translatrIt() method. Thus, the
onTouch() method’s execution time includes the exe-
cution time of translateIt() as well. In this way,
translateIt() also includes the execution time of
translate() and subsequently that of the search()

method.

This example also shows that it is not possible to offload all
the methods. For example, the onTouch() method interacts
with the View Display, so it is not feasible to offload it.
The translateIt() method interacts with the user input
so it is not possible to offload it either. Two other remaining
candidate methods are translate() and search() and,
we want to offload the one with less overhead compared to
the offloading gain.

Once the list of candidate methods for offloading is iden-
tified, the next challenge is to choose the most appropriate
methods to offload, at runtime. Our prior research [15] has
shown that such a decision should be dynamic, depending
on the execution environment (fog or cloud) and sometimes
it may be worth executing the method on the device rather
than to offload (to the cloud). Moreover, if we have multiple
candidate methods to offload, we should offload the method(s)
which provide(s) the best performance gain considering the
execution environment (fog or cloud).

III. DESIGN OF ELICIT

To improve the response time, we need to partition the
mobile application to offload the most resource consuming
methods. These methods should be eligible for offloading, i.e.
the method should not access any other methods or variables
that are related to the sensors, i.e., camera, user I/O etc. of the
mobile device. Whenever a method is offloaded to the server,
the methods upon which it is dependent are offloaded as well.
Moreover, while offloading, we also need to send all the global
or class variables that are accessed by the offloaded methods
or its descendants. Otherwise the methods have to contact the
mobile device again to access these variables, which we want
to minimize.

With these constraints and objectives, we first formulate

the problem as a constrained graph partition problem, then we
aim to find the optimal solution for Elicit.

A. Objective and Constraints

We can formulate the candidate methods finding as a
constrained graph partitioning problem. Here we have a list
of methods M , and each method m ∈ M has the following
members: i) execution cost on the mobile device, denoted
as mm, ii) offloading (the parameters) and execution cost
on server, denoted as ms, iii) class of this method: MC
(Method Class), iv) list of global or class variables accessed
by the method, denoted as V , v) list of the classes of V
of this method, denoted as V C (Variable Class), vi) list of
all the variables reachable from this method, denoted as RV
(Reachable Variables), vii) list of all the methods reachable
from this method, denoted as RM (Reachable Methods),
viii) list of the classes of the methods in RM , denoted as
MCC (Method Closure Class), and ix) list of the classes of
all the variables of the methods in RM , denoted as V CC
(Variable Closure Class).

Let us also denote the list of classes that can not be
offloaded as CC (Constrained Class), and the method call
graph as MCG. Each node of MCG represents a method and
an edge exy represents whether a method x is invoking another
method y. Assume that the execution cost of a method m in the
mobile device is mm and on the server (without considering
the parameters sending cost) mswp. In addition, the cost of
invoking a method m from method x is denoted as exm, and
the cost for accessing a variable (global or class) v is emv .

So the cost of executing a method on the server (including
the overhead) is:

ms = mswp +
∑

∀x∈{M−m}

exm +
∑

∀x∈RV

emx. (1)

And the cost saved by offloading a method is

bm = mm −ms. (2)

Thus, our goal is to partition the application’s MCG into
two partitions S and T and offload all the methods m ∈ S to
the server side such that:

Execution T ime =
∑

∀m∈T

mm +
∑

∀m∈S

ms (3)

is minimized, subject to the following constraints:

∀m ∈ S ∀c ∈ m ·MCC → c /∈ CC (4)

∀m ∈ S ∀c ∈ m · V CC → c /∈ CC (5)

These constraints ensure that no method or variable ac-
cessed by the offloaded method(s) belongs to the constrained
class set. Note that here the cost of executing a method
on the server may change based on the environment, i.e.
the communication cost may be low but the execution cost
might be high (in fog) or vice-versa (in cloud). Such costs
dynamically impact the offloading decision.

Algorithm 1 Find Reachable Methods()

1: for ∀m ∈M do
2: m ·RM ← DFS(m)
3: end for
4: Begin Function{DFS}{m}: list
5: list · add← m ·MC
6: if m is visited then
7: do nothing
8: else
9: for ∀x ∈ neighbours of m do

10: list · add← DFS(x)
11: end for
12: end if
13: m is visited
14: return list
15: End Function

Algorithm 2 Find Reachable Variables(m)

1: list · add← empty
2: for ∀x ∈ m ·RM do
3: if list doesn’t contain x · V then
4: list · add← x · V
5: end if
6: end for
7: m ·RV ← list

B. Proposed Solution

With the problem formulated and metrics defined, we map
our problem of dynamic application partitioning (based on
environments and constraints) to the Project Selection

Problem [16]. Kleinberg et al. [16] proposed this Project
Selection Algorithm for profit maximization. Suppose
there is a set of projects which provide profit, and a set of
equipments which require some cost to purchase. Each project
is dependent on one or more of the equipments. Kleinberg
et al. [16] have shown that the max flow min-cut theorem
can give an optimal partition to find the list of projects and
equipments to be chosen to maximize the profit. Kleinberg
et al. proposed their method for a dependency graph as well,

Algorithm 3 Find Method Closure Class(m)

1: list · add← empty
2: for ∀x ∈ m ·RM do
3: if list doesn’t contain x · V C then
4: list · add← x · V C
5: end if
6: end for
7: m ·MCC ← list

Algorithm 4 Find Variable Closure Class(m)

1: list · add← empty
2: for ∀x ∈ m ·RM do
3: if list doesn’t contain x ·MC then
4: list · add← x ·MC
5: end if
6: end for
7: m · V CC ← list

Algorithm 5 Candidate Method Selection Algorithm()

1: for ∀m ∈M do
2: find the members of m from Algorithm 1, 2, 3, and 4
3: end for
4: for ∀m ∈ M do
5: if m ·MC ∈ CC then
6: discard m
7: else if ∃x ∈ m ·MCC and x ∈ CC then
8: discard m
9: else if ∃x ∈ m · V CC and x ∈ CC then

10: discard m
11: else
12: CAN · add m
13: end if
14: end for
15: return CAN

Algorithm 6 Offloading Algorithm()

1: Train the two MLP learners with labeled data
2: CAN ← List of methods can be offloaded obtained from

Algorithm 5
3: for each m ∈ CAN do
4: mm ← Predicted OnDevice Execution T ime
5: ms ← Predicted OnServer Execution T ime
6: end for
7: O ← list of methods to be offloaded according to Project

Selection Algorithm [16]
8: if O is empty then
9: execute the app locally

10: monitor the OnDevice Execution Time and
11: train the OnDevice Execution Time learner with the new

data
12: else
13: offload the methods m ∈ O
14: monitor the OnServer Execution Time and
15: train the OnServer Execution Time learner with the new

data
16: end if

where some project execution depends on some of the other
projects. Our goal is to find a similar set of methods for
offloading to minimize the cost by optimal partitioning. But
in our set of methods, we may have many methods that can
not be offloaded due to the previously mentioned constraints.
So, we have to filter out the constrained methods first, only
after that we may map the problem to Kleinberg’s method.

To filter out the constrained methods, at first we find
the methods’ parameters mentioned in the previous subsec-
tion III-A. Given the execution time mm and ms, class MC,
the list of global or class variables V of the method (and their
class V C), and the list of caller callee methods (details of how
these information can be found is stated in implementation
section IV), we build up the method call graph MCG from
the list of the caller and callee methods. To find the list of
the reachable methods RM , we propose Algorithm 1 which
is a variation of Depth First Search Algorithm [23]. Once
we find RM from Algorithm 1, we find the RV , MCC,
and V CC according to Algorithm 2, 3, and 4, respectively.
From these parameters, we discard the methods that violate

the constraints 4 and 5. Thus, Algorithm 5 finds CAN the list
of methods eligible for offloading.

Once we get the list of the unconstrained methods CAN
and their Method Call Graph MCG, we map our problem
as follows. We convert this unconstrained MCG to Method

Selection Graph. We introduce two nodes m and m′ for
each method m ∈ CAN to the new graph. We also introduce
two dummy nodes λ (source) and µ (sink). Each node m has
an edge from λ and the edge has capacity mm of that method,
which represents the on-device execution time of the method.
Each node m′ (corresponding to the additional node introduced
for each method) has an edge from itself to µ with capacity ms,
the method’s execution time on the server side. Then we set the
edges between m and m′ with capacity C =

∑
m∈M (mm +

ms). We also set the internal edge’s capacity to be C as well.
In this way, we map our problem to Project Selection

Problem.

Let there are P projects and Q equipments. Each project
pi ∈ P results in some profit pri, and each equipment qi ∈ Q
has some associated cost cti. Each project depends on one
or more equipments. Here our goal is to select such projects
so that the overall profit is maximized. At first, we build
the Project selection graph where in addition to the
projects and equipments, we introduce two additional nodes:
the source and the sink. The capacity of the edges between the
source and the projects are pri, while the capacity between the
equipments and sink is cti. Thus we find the max-flow min-cut
solution for this Project Selection Graph and select
the project (to execute) and the associated equipments (to
purchase) belongs to min-cut partition to maximize the profit.

In our method selection problem, the cost equals to the
offloading overhead of the methods to the server side; while
the profit is the time we save by offloading, which equals to
the on-device execution time. As a result our cost is ms and
profit is mm. After mapping our problem, we find the max-
flow min-cut solution for this Method Selection Graph

and select the methods to maximize the response time savings.
We find the max-flow by iterating over the graph. Each time
we find a path where we may add more content to the edges
from the source to the sink respecting their capacities. Once
the graph gets saturated after we achieved the max-flow, we
find the min-cut by finding the edges whose capacities are not
full. By choosing these nodes, we make sure that the profit
is greater than the cost. When the capacity is not full in the
final result, we know that the cost of executing that method
on the server-side is less than the on-device execution cost
(considering the offloading cost of the dependent methods to
the server as well). In this way, we can optimally partition the
application for offloading provided we can predict mm and
ms accurately by our prediction models described in the next
section III-C. The complexity for this solution is O(V E2),
where V and E are the number of vertices and edges of the
Method Selection Graph.

C. Response Time Prediction

Our model should predict the methods’ execution time both
on the server-side and on the mobile device and partition the
application in an optimal way (based on Project Selection
Problem [16]). A recent study [15] investigated different

TABLE I: Relative Absolute Error (%) of Different Learning
Models

Droid-
Slator

Mat-
Cal

Math-
Droid

N-
Queen

Picaso

LR 187.81 189.89 5.20 78.99 36.56
SVM 136.38 74.27 4.21 17.98 17.60
DT 149.23 132.81 46.56 105.90 75.22
MLP 49.18 60.55 6.06 16.71 17.05

models such as Threshold Based (TB), Naive Bayes (NB),
Linear Regression (LR), Support Vector Machine (SVM),
Decision Tree (DT), and Multilayer Perceptron (MLP) to make
offloading decisions. Among these learning models, MLP,
SVM, and DT are found to perform better than others.

We also consider these models in Elicit, excluding TB
and NB as they cannot predict a specific output variable. To
determine the most appropriate model, we have conducted
some experiments with some mobile applications. Table III
in section V briefly describes these applications as well as
the methods’ name for which we are predicting the on-server
execution time to demonstrate different model’s accuracy (sec-
tion III-B shows how we can find these candidate methods
automatically). We have five different configurations in the
experiments to simulate different environments as mentioned in
section V. In each configuration, the available resources, such
as CPU, memory, data size along with the network parameters
are dynamically changing.

 20% 40% 60% 80%
0

200

400

600

R
el

at
iv

e
ab

so
lu

te
 e

rr
or

 (
%

)

LR
SVM
DT
MLP

Fig. 2: Gradual Learning

We implement these models using open source library
Weka [9] on the Android phone Google Nexus one with 512
MB memory and 1 GHz CPU. We have trained the models
with 50% of the data (for each application) because more
training could help some models. The data are from users’
trace of different Android applications for a duration of one
month collected by us. During the data collection, we have
changed the memory and CPU availability on the server and
used different network configurations. We have conducted
10 experiments for each application in each setting and we
change the computation data size whenever possible for these
applications. Figure 5 in section V shows the data size for all
the 50 experiments in different environments. Table I shows
the average mean error rate of these 50 experiments in total
for each application. The results indicate that MLP, SVM, and
DT have better accuracy (or less error) than LR.

We also evaluate their performance with online learning
over the process. Figure 2 shows the accuracy of different
learning model over the time for 50 experiments of MatCal [4].
The x-axis represents the percentage of the data we are using

for training while the rest of them are test data, while the y-axis
represents the relative absolute error percentage. We observe
similar trends for the other applications, so we omit them for
brevity. Figure 2 shows that LR performs better while being
trained with a small percentage of data, but when the training
set grows greater than 30%, SVM and MLP start to perform
significantly better than LR, reflecting their online learning
capability.

TABLE II: Overhead of Different Classifiers

Classification Training (total 150
instances)

Time
(ms)

Energy
(mJ)

Time
(ms)

Energy
(mJ)

MLP 8.76 8.33 8290 10000

LR 9.56 4.66 604 1100

SVM 6.82 5.00 815 1500

DT 10.26 3.67 454 1100

Table II further shows the classification overhead of a
single experiment and the one time training overhead for
different models. Note that although DT is also lightweight
with moderate accuracy, we exclude it first since it cannot ex-
trapolate its decision and suffers from over-fitting. Both MLP
and SVM perform well in terms of accuracy and prediction
time, can capture the relationship between multiple features,
and support online training [19]. SVM is easy to train and
free from over-fitting. Although MLP takes a bit more time
for training [15], it supports on-line learning and works well in
noisy environments, and the amortized cost for one experiment
is low. Thus Elicit can use either of them, and we will
evaluate the performance of both models later.

We adopt two learning models to predict the response time
for both local on-device and remote on-server executions in a
dynamically changing environment where bandwidth, latency,
data size, server’s available CPU and memory change. Algo-
rithm 6 presents the pseudo code for this dynamic application
partitioning and training.

With Algorithm 6, we execute the application locally if
there is no method to offload. If any method is offloaded, we
monitor the response time while it is being executed on the
server side. These values are used for training the learning
models for the on-server response time. We also update the on-
device learning model in a similar fashion when the methods
(and application) are executed locally.

Fig. 3: Method Call Graph

Fig. 4: Method Selection Graph

D. An Illustrative Example

In this subsection, we illustrate our algorithm with an
example.

Figure 3 shows a method invocation diagram of an applica-
tion. Here each white node represents a method and the solid
arrow represents a method invocation incident from another
method. The dark node represents a variable. The dotted arrow
represents an access to a variable (global or class) modified
by other methods. Each arrow has some associated cost with
it. For example, when method A invokes another method B,
A sends the parameters to that callee method B. When we
offload the callee method, these parameters have to be sent to
the server as well, which demands time to send it over the
networks, which is denoted by eAB . This cost can be found
by monitoring the time when these parameters are sent to the
server side from the mobile device. Similarly, if an offloaded
method I accesses a global or class variable V modified by
other method B, this variable has to be sent over the network
so that the clone method on the server side can access these
variables and execute flawlessly. We denote this cost as eV I .

Suppose in this graph we find that method C and G
consume most of the resources. If we offload C, methods D,
E, and F are executing on the server side as well. Method
F is accessing a camera, as a result it is not possible to
execute method F to the server side. If we still decide to
offload method C, the execution has to be transferred to the
mobile device again while F is accessing the camera. To limit
this back and forth executions, we should not offload C. To
identify such constrained methods, our Algorithm 3 finds the
list of classes, MCC of the reachable methods in RM of
method C, which is {D, E, F}. As we have found that MCC
of C includes a class accessing camera (from method F), we
should not offload C.

Similarly, by offloading G, we are also executing H and I
on the server side. So when method I is executed on the server
side, it has to access variable V . As a result, while offloading
method G, we have to send variable V to the server, which
will cost us eIV . In order to find such a set of variables, we
deduce RV of method G. This set RV of method G has to be
offloaded to the server side in order to offload the method G
to the server. Note that here if G’s V CC (the classes of RV)
includes any of the constrained classes C, we do not offload

G as well.

In addition, if we offload a method whose RV or RM is
updated in parallel from other methods executing on the mobile
device, we have to communicate again from the mobile device
to the server. To minimize such overhead and inconsistency,
we do not allow these methods to be offloaded. As illustrated
in Figure 3, if any of method A,C,D,E, F or B is accessing
the RM or RV of G, we do not offload G.

Thus, we find the Method Call Graph of B, G, H ,
and I and convert it to Method Selection Graph shown
in Figure 4. In this graph, we introduce one additional node m′

for each of the methods m. So for each of B, G, H , and I; we
add B′, G′, H ′, and I ′ in Figure 4. We introduce two additional
nodes λ and µ. The capacity of the edges between λ and B,
G, H , I is set to their corresponding on-device execution time.
The capacity of the edges between B′, G′, H ′, I ′ and µ is set
to the corresponding on-server execution time. The capacity C
between any other two nodes is set to the summation of the
ranks of the methods in this graph (C = (Bm +Gm +Hm +
Im + Dm) + (Bs + Gs + Hs + Is + Ds)). Figure 4 shows
the corresponding Method Selection Graph. The dash
curve line shows a min-cut partition where we are offloading
the methods G, H , and I .

So far we have discussed our solution for optimizing the
response time. The same approach can be utilized to optimize
the energy consumption.

IV. IMPLEMENTATION

We implement a prototype of Elicit in Dalvik VM for
Android applications. We have modified the Cyanogenmod
[2] open source distribution to profile the applications without
modifying the application to find the methods’ members and
the method call graph. After profiling, we partition the applica-
tion optimally to achieve the highest gain regarding the system
environment. Finally, we offload the method transparently to
the server without modifying any source code or binary of the
application.

A. Application Profiling

To profile applications, we have modified the instructions
for a method invocation and method return. In Dalvik, when-
ever a method is invoked, it is translated to a method invocation
instruction. The caller method’s program counter and frame
page are saved and then the callee method starts its execution.
When the callee method finishes its execution, it returns to the
caller method. The return instruction saves the return value to
the caller method’s return address and starts the caller method
by retrieving the program counter and the frame pointer of
the caller method. We have modified the method structure of
the Dalvik VM so that it keeps records when a method is
invoked and when it returns to the invoking method. From
these two timestamps, we keep track of the execution time of
the methods. We use PowerTutor [7] to measure the methods’
energy consumption.

We build a tool based on JAVA to analyze the bytecode of
the applications to construct the method call graph and thus
find the list of variables and other methods accessed by the
methods of an application. This one time analysis takes around

TABLE III: Description of Evaluated Applications

Application Offloading candidate(s) Total
Number
of
methods

Description

DroidSlator [3] → translate(String inWord, String toLang) method of ThaiDict class : no global variable

→ searchTELex(String word) method of DBAdapter class : no global variable

→ searchTE(final String word, String tableName) method of DBAdapter class :
db (GET) of DBAdapter class

100 Android translation
application

MathDroid [5] → computeAnswer(String query) method of Mathdroid class : calculator (GET) of Mathdroid
class

→ evaluate(String stringExpression) method of Calculator class : no global variable

→ parse(String stringExpression) method of Calculator class : no global variable

→ simplify(Node expression) method of Calculator class : no global variable

→ evaluate(Calculator environment) method of Node: no global variable

51 Android Calculator
application

MatCal [4] → times(Matrix B) method of Matrix class : m (GET), n (GET), and A (GET) of Matrix class 24 Android application
for matrix operation

NQueen → findSolution(int board[],int n, int pos) method of NQueen class : no global variable

→ combination(int board[],int n, int pos) method of NQueen class : no global variable

→ check(int []board, int pos) method of NQueen class : no global variable

10 Android application
for NQueen prob-
lem

Picaso [6] → project_and_compare(Bitmap bm) method of ReadMatlabData class: no global variable

→ project_and_compare(MMatrix testImage) method of ReadMatlabData class: no
global variable

22 Android face recog-
nition application

30-40 seconds on an average for each of the applications.
We deduce the byte code from the source code by javap

command to disassemble the class files. Note we can also get
the byte code from the applications [20] whenever the source
code is not available.

To construct the method call graph, we analyze the
byte code of each method and look for invoke or
invokevirtual instructions to find the list of callee meth-
ods from a given caller method. In this way, we find the list of
directly invoked methods and thus the list of reachable methods
RM from Algorithm 1. From bytecode analysis, we also find
the parent class of each method, and thus find MCC (Method
Closure Class) from Algorithm 3.

Furthermore, whenever a method accesses a variable, it
leverages two separate instructions (IGET and IPUT namely)
to retrieve and save values. We also analyze the IGET and
IPUT instructions to keep track of the variables (and their
parent classes) that are accessed by the methods. To offload
these methods, we have to send these parameters and variables
(with IGET tag) to the server side. Once the method has
successfully finished its execution and returns back to the
mobile device, we save the return value and synchronize the
modified variables (the variable having IPUT tag). Here if a
method is accessing a variable related to mobile device’s I/O,
camera, or similar sensors, we do not offload it. We do this
by examining the variables’ parent class which is fetched from
the byte code text.

In this way, we obtain the parameters for Algorithm 5.
These parameters include the list of variables (and their
classes) accessed by methods, the method call graph, methods’
execution time, methods’ parent classes, etc. To predict the on-
device and on-server execution time by our learning model, we
run the applications in the mobile device and offload them

in different environments to the server for initial profiling.
Then we conduct analysis to find the optimal partition of
an application according to Algorithm 6. As discussed in
section III-A, we have to discard the methods that access
mobile device equipments (not exclusively, camera, sensor,
view, etc.). To find this list, we populate a list from Android
Java definitions. Based on the list of methods, their parent
class, and the global and class variables (and parent class of
these variables), we discard these methods (and their callers)
from offloading.

We thus find the list of methods to offload along with
the variables’ states that must be synchronized before and
after offloading. We intercept those methods’ invocations and
offload them accordingly as described in the next subsection.

B. Offloading Mechanism and Decision Maker

We keep the offloading mechanism transparent to the ap-
plications by adopting the transparent mechanism as proposed
in POMAC [15]. Following the same principles, we trap the
method invocation instruction and gets the parameters and
variables required by the method to execute on the server
side. POMAC [15] can offload the methods which do not
access any class or global variable. POMAC only retrieves
the methods’ input parameters and sends them to the server for
remote ecxecution. Moreover, POMAC requires the methods to
be identified beforehand for offloading. In our work, Elicit
finds the resource-intensive method automatically and makes
sure that these methods are un-constrained by byte code
analysis. In addition to that, Elicit can offload methods
which access the class or global variables in addition to the
method input parameters.

We pack these parameters and ship them to the server
side for execution. On the server side, we deploy Android

ASUS R2 virtual machine in VirtualBox [8]. This server-
side android VM has all the applications’ apk files which
are uploaded in prior. We use Java reflection to dynamically
load the appropriate applications and its classes to execute
the offloaded methods on the server side virtual machine
when needed. Once the server completes the execution, we
return the result (and the states and variables that must be
synchronized with the mobile client) to the mobile device.
Once the mobile device gets the results back from the server,
it synchronizes itself and the offloaded method returns to the
caller method and the application follows its original flow of
execution. For the decision maker, POMAC [15] suggested that
Multilayer Perceptron has better performance, so we have also
implemented the Multilayer Perceptron in our prototype. In
addition to that, we compare MLP with other classifiers in the
evaluation. We have implemented the learners in Weka [9].

V. PERFORMANCE EVALUATION

We evaluate our Elicit prototype with five different
Android applications. Table III describes the applications and
their functionality. We choose these applications consider-
ing their different characteristics: DroidSLator, MatCal, and
Picaso are both computation- and data-intensive. NQueen
are purely computation-intensive while MathDroid is data-
intensive. Moreover, most of them are the applications being
evaluated in the previous studies, where the offloaded methods
were hand-picked. By evaluating them in Elicit, we are
able to tell whether Elicit can efficiently identify the same
method for offloading.

DroidSlator MathDroid MatCal NQueen Picaso
10

0

10
2

10
4

10
6

T
im

e
 (

m
s
)

 OnDevice Time

OnDevice Energy

Elicit Time

Elicit Energy

Fig. 6: Response Time And Energy Consumption of
Different Applications

For each of these applications, we first find the optimal par-
tition of the applications and find the method to be offloaded.
Table III shows the methods which are found to be optimal to
be offloaded based on Algorithm 6. In the table, each partition
method shows the method name, parameter list, and global
variables that are accessed by this method (and its subsequent
methods). Each global variable has a tag IGET or IPUT, which
indicates whether a variable is accessed by the method (IGET)
or modified by the method (IPUT).

In our experiments, Elicit indeed finds similar methods
as the candidate to be offloaded as in previous studies. For
example, in Young et al. [18], the DrdoidSlator application [3]
was evaluated. Our candidate is the translate (and its sub-
sequent methods: searchTELex and searchTE) method,
which was found manually to be the most resource intensive
method in [18]. Similarly, for MatCal [4] and MathDroid [5],
we find that the applications are partitioned in the times

and computeAnswer (and its subsequent) methods which
were also found to be the most resource intensive methods in
POMAC [15]. For Picaso, we found similar candidate methods
as mentioned in [15]. Here we have added one new application,
NQueen, for which we have found findSolution (and its
subsequent) methods to be offloaded according to the optimal
cut. Note that here each application has many methods (even
a hundred excluding the basic Java methods like String

Compare or println as shown in Table III), and we are
offloading the most resource consuming method(s) of the
application for optimal performance.

Next, we experiment Elicit in different environments.
We want to (1) empirically evaluate the offloading performance
and (2) evaluate that the methods suggested by Elicit for
offloading can improve the response time. We evaluate our
prototype in a Google Nexus one with 1 GHz CPU and
512 MB memory. We have five different configurations in
the experiments. In each configuration, the CPU, memory,
data size along with the network parameters are dynamically
changing. To simulate the Fog computing, we have LAN,
WLAN, and 802.11 settings which represents Fog settings,
while the others (4G and 3G) simulate the cloud setting. In
the LAN setting, we keep the CPU availability at 2 GHz and
memory at 1 GB in the server. We have also set the bandwidth
and the latency between the smartphone and the server to
100 Mpbs and 20 ms, respectively. In the WLAN setting, the
CPU availability and memory in the server are set at 1 GHz
and 2 GB, respectively, where the bandwidth between the
smartphone and the server is 30 Mbps and the latency is 20
ms. In the 802.11g setting, the bandwidth is kept at 25 Mbps
while the latency is 50 ms. The CPU availability is 2 GHz and
the memory is 2 GB in the server. In the 4G environment, the
bandwidth and latency is set to 5 Mbps and 75 ms where for 3G
these values are 500 Kbps and 200 ms. The CPU availability
is set at 2 GHz and the memory is set at 2 GB in the server for
both 3G and 4G. Our goal here is to check how our algorithm
works in dynamically changing environments, so we change
the server side CPU and memory as well. We emulate different
network configurations by changing the network bandwidth
and latency with traffic control utility while using the
wifi of the Google Nexus One. In this way, we emulate 4G
and 3G in the Google Nexus One.

We have conducted ten experiments in each of the en-
vironmental setup. Table IV shows the gain ratios of the
applications in different environments and Figure 5 shows the
different data size for different applications. 10 experiments
are conducted in each of the five configurations as mentioned
before. So our experiments are conducted when the data
size, network bandwidth and latency, and server-side CPU
and memory availability change for each of the instances
(whenever possible) for each application. Note that the training
and classification overhead of the MLP has been accounted.
The final average of the gain ratios is shown in the last
row. We find that for DroidSlator, Picaso, MatCal, MathDroid,
and NQueen; the gain ratios are greater than 1. MathDroid
has both ratios very close to one. For MathDroid, it does
not save that much time and energy by offloading. For all
applications, mostly the gain ratios are higher in Fog settings
(LAN and WLAN) compared to the cloud (3G or 4G), which
is expected, as the bandwidth gets higher and the latency
gets lower, our Algorithm 6 can find a better partition to

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Instances

Da
ta

 S
ize

NQueen (× 100 B)

MatCal (× 2 MB)

Mathdroid (× 1 KB)

DroidSlator (× 500 B)

Picaso (× 100 KB)

Fig. 5: DataSize for all the 50 experiments for different applications

TABLE IV: Gain Ratios of the Applications in Different Environments

DroidSlator MathDroid MatCal NQueen Picaso

Time Energy Time Energy Time Energy Time Energy Time Energy

LAN 5.30 4.3 1.05 0.97 1.45 1.50 19.62 11.10 4.14 1.06

WLAN 3.59 2.8 0.99 0.96 1.37 1.40 19.61 11.01 3.45 1.07

802.11 0.98 1.1 1.09 1.07 1.23 1.18 19.44 10.99 3.32 1.07

4G 3.72 2.7 0.99 0.97 1.13 1.01 19.26 10.89 1.01 0.98

3G 0.97 0.98 1.05 1.03 0.98 0.97 18.93 10.71 1.02 0.97

Average 2.91 2.38 1.02 1.01 1.23 1.21 19.37 10.94 2.58 1.03

save energy and response time and offload them accordingly.
The better network condition also enhances the performance
of the offloaded methods. Here we have found that network
condition plays a very important role on the offloaded methods’
performance, which is consistent with previous studies [13]
and [15].

Figure 6 shows the average response time and energy con-
sumption of the 50 experiments in the 5 different environments.
In this figure, the y-axis shows the response time in millisecond
and energy consumption in millijoule. Note that y-axis is
in log scale. Figure 6 shows that by offloading: DroidSlator
and NQueen can save significant time and energy. Elicit
reduces 2.91x and 19.37x response time of DroidSlator and
NQueen compared to the on-device execution. Elicit can
also save 2.38x and 10.94x energy consumption for these
applications, respectively. We also found that Elicit can not
save significant time or energy for the MathDroid application.
In fact we have found that most of the time it is optimal to
execute MathDroid on the device itself. For Picaso, Elicit
saves a lot of time (2.58x) but slightly increases the energy
savings (1.03x). For MatCal, Elicit can save a moderate
amount of time and energy, the gain ratio is 1.23x for time
and 1.21x for energy, respectively.

So far, the results are based on MLP. The SVM-based
evaluation shows similar results. We omit for brevity.

A. Comparing with Other Learning Models

Several classifiers have been used in previous studies,
such as Threshold [18] and Linear-Regression [13]. In the
evaluation, we also compare MLP’s performance against those,
including Linear Regression, Support Vector Machine (SVM),
and Decision Tree. We could not compare with Threshold

Based policy because it does not support value prediction.
Similar to MLP, we train each of the learners with 50% of all
the instances of these applications (DroidSlator, MathDroid,
MatCal, NQueen, and Picaso) and test with the rest of the
dataset and make the decision accordingly in the mobile
device. Table V shows the average response time and energy
consumption of different models for these applications for 50
instances of each application. Table V shows that most of
the time MLP has better performance than the other learners.
Again SVM achieves similar results.

Although for some scenarios LR is performing better than
MLP or SVM, overall MLP and SVM have better performance
than LR. Moreover, in Table V, we can see that for MathDroid,
all of the models are performing almost the same. This is
because the optimal performance is achieved when MathDroid
is executing on the device locally, which all the models
predict to do. The difference mainly comes from different
classification and training overhead of different classifiers.

VI. RELATED WORK

Previous research [12], [22], [13], [21], [10], [14] has
investigated how to partition mobile applications and of-
fload computing-intensive tasks to the more powerful coun-
terparts such as clouds and servers. Balan et al. [10] fo-
cused on how easily applications can be modified for of-
floading. Odessa [21] showed that offloading can improve
the response time for streaming and pipelined applications
by three times. Thinkair [17] provides API for computation
offloading which requires special compilation. In addition to
that, the computation-intensive methods are pre-indicated and
the developer has to make sure that they are appropriate for
offloading beforehand. Some other research [13], [18] focused

TABLE V: Average Response Time (ms) and Energy consumption (mJ)

DroidSlator MathDroid MatCal NQueen Picaso

Time Energy Time Energy Time Energy Time Energy Time Energy

MLP 176.58 230.73 32.93 5850.33 458.16 2262.96 409.35 2033 388.08 8793.33

Linear 190.72 263.40 33.32 5846.67 519.72 2262.67 420.90 1963 435.47 9152.67

SVM 189.42 263.75 31.02 5847.00 463.40 2225.00 449.7 1883 433.18 9153.00

DT 190.03 262.40 32.63 5845.67 465.13 2265.67 451.9 1886 387.77 8793.67

on application level partitioning. While making the offloading
decision, MAUI [13] adopted a linear model to make the
offloading decision, while Odessa [21] leveraged previous
execution statistics and used the index of the ratio-of-benefit
to make the offloading decision. Young et al. [18] proposed
a static threshold to make offloading decisions. When the
amount of data to be transferred is greater than a certain value,
the execution is offloaded to the more powerful counterpart.
Comet [14] also proposed a threshold based policy for offload-
ing computation: when the thread execution time exceeds twice
of the RTT to the server, then it migrates the thread. Zhang et
al. [24] formulated the problem of partitioning application as
the shortest path problem, which does not consider constraints
of real-world applications. Zhang et. al. [25] considers the
problem in the class level and make the offloading decision
based on LOC.

Our work differs from existing ones in that first we consider
the problem that was not well studied before, i.e., how to find
the appropriate methods of a mobile application to offload. For
each application, potentially there are hundreds of methods that
can be offloaded. In addition to that, some resource constrained
methods can not be offloaded as they may access the camera
or sensors of the mobile devices. Furthermore, our proposed
work can dynamically select the most appropriate methods for
offloading based on available resources at runtime.

VII. CONCLUSION

The increasing popularity of smartphones are driving the
fast development of mobile applications. For resource-intensive
mobile applications, there is an increasing demand to offload
to more powerful counterpart, such as clouds and nearby
servers via fog computing. While most of the existing studies
have focused on how to offload, little research has been
conducted on how to automatically find the most appropriate
methods to offload. In this study, we have designed and
implemented Elicit, a framework to efficiently partition
the applications in an optimal way to find the appropriate
methods for offloading dynamically based on runtime resource
availability. Extensive experiments have been conducted to
evaluate Elicit and the results show that Elicit can work
with existing real-world mobile applications and efficiently
find the best offloading methods to reduce the response time
and energy consumption.

REFERENCES

[1] Amazon Silk. http://amazonsilk.wordpress.com/.

[2] CyanogenMod. http://wiki.cyanogenmod.org/w/Build for passion.

[3] Droidslator. http://code.google.com/p/droidslator/.

[4] MatCal. https://github.com/kc1212/matcalc.

[5] MathDroid. https://play.google.com/store/apps/details?id=org.jessies.
mathdroid&hl=en.

[6] Picaso. http://code.google.com/p/picaso-eigenfaces/.

[7] Power Tutor. www.powertutor.org/.

[8] Virtual Box. https://www.virtualbox.org/.

[9] Weka. http://www.cs.waikato.ac.nz/ml/weka/.

[10] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb. Simplify-
ing cyber foraging for mobile devices. In Proc. of Mobisys, San Juan,
Puerto Rico, June 2007.

[11] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the

first edition of the MCC workshop on Mobile cloud computing, pages
13–16. ACM, 2012.

[12] B.G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proc. of EuroSys,
pages 301–314, 2011.

[13] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: Making smartphones last longer with
code offload. In Proc. of MobiSys, San Francisco, CA, USA, June 2010.

[14] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao,
and Xu Chen. Comet: code offload by migrating execution transparently.
In OSDI, 2012.

[15] Mohammed Anowarul Hassan, Kshitiz Bhattarai, Qi Wei, and Songqing
Chen. Pomac: Properly offloading mobile applications to clouds. In
Workshop on Hot Topics in Cloud Computing (HotCloud), Philadelphia,
PA, June 2014.

[16] Jon Kleinberg and Éva Tardos. Algorithm design. Pearson Education
India, 2006.

[17] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen
Zhang. Thinkair: Dynamic resource allocation and parallel execution in
the cloud for mobile code offloading. In INFOCOM, 2012 Proceedings

IEEE, pages 945–953. IEEE, 2012.

[18] Y. W. Kwon and E. Tilevich. Power-efficient and fault-tolerant dis-
tributed mobile execution. In Proc. of ICDCS, 2012.

[19] Pavel Laskov, Christian Gehl, Stefan Krüger, and Klaus-Robert Müller.
Incremental support vector learning: Analysis, implementation and
applications. The Journal of Machine Learning Research, 7:1909–1936,
2006.

[20] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting
android applications to java bytecode. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, page 6. ACM, 2012.

[21] M.R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan. Odessa: enabling interactive perception applications on mobile
devices. In Proc. of Mobisys, pages 43–56. ACM, 2011.

[22] M. Satyanarayanan, P. Bahl, R. Caceres, and N.l Davies. The case
for VM-based cloudlets in mobile computing. In IEEE Pervasive

Computing, volume 8(4), October 2009.

[23] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM

journal on computing, 1(2):146–160, 1972.

[24] Weiwen Zhang, Yonggang Wen, and Dapeng Oliver Wu. Energy-
efficient scheduling policy for collaborative execution in mobile cloud
computing. In INFOCOM, 2013 Proceedings IEEE, pages 190–194.
IEEE, 2013.

[25] Ying Zhang, Gang Huang, Xuanzhe Liu, Wei Zhang, Hong Mei,
and Shunxiang Yang. Refactoring android java code for on-demand
computation offloading. In ACM SIGPLAN Notices, volume 47, pages
233–248. ACM, 2012.

