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Abstract. This paper analyzes collective outcomes in games from

a revealed preference perspective. A collective choice function is

rationalizable if there are “rational” individual preferences, such

that the observed choices are the only equilibria. We consider a

generalized concept of Nash equilibrium, which should be robust

to deviation by both individuals and some exogenously given coali-

tions. The paper provides sufficient as well as necessary conditions

for the collective choice function to be rationalizable given some

notion of rationality. Likewise, we show that the conditions coin-

cide and become a criteria if we relax the definition of equilibrium

to the standard definition of Nash.
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1 Introduction

Revealed preference theory, established by Samuelson (1938), ad-

dresses the problem that although we can observe agents’ choices, we

may not be able to observe their preferences. This approach has been

used to develop and apply tests for individual choice functions to be
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consistent with particular assumptions about preferences.1 However,

the literature on testable implication of the collective choice is sparser.

Sprumont (2000) provides necessary and sufficient conditions for a col-

lective choice function to be rationalizable as a Nash equilibrium in

pure strategies, using transitivity and completeness as notion of ratio-

nality. Ray and Zhou (2001) addresses the question of rationalizability

as a subgame perfect Nash equilibrium under transitive and complete

preferences. Demuynck and Lauwers (2009) generalizes the Sprumont

(2000) finding providing the criteria for rationalizability as Nash equi-

librium in mixed strategies, assuming independence, transitivity and

completeness as notion of rationality. Additionally, there are several

papers studying the testable implications of the particular (classes of)

games2 and the papers investigating the rationalizability of the collec-

tive choice as the result of maximizing Pareto relation,3 which are not

directly related to the subject of this paper.

Nash equilibrium was initially criticized for its weakness as com-

pared to cooperative solution concepts. The basis for the criticism

was that Nash equilibrium is robust only for deviations by individual

players. Aumann (1959) proposed the concept of strong Nash equi-

librium, which requires every equilibrium to be robust to deviations

of any coalition, and Bernheim et al. (1987) proposed coalition-proof

1Afriat (1967) and Richter (1966) proposed a test for the existence of a util-

ity function that rationalizes observed behavior. Varian (1983) provides tests for

homothetic rationalizability and the existence of an expected utility function that

rationalizes preferences. Forges and Minelli (2009) provides a test for the existence

of a concave utility function. Echenique and Saito (2015) provides a test for the

existence of subjective expected utility. Chambers and Echenique (2016) contains

the systematic overview of the revealed preference results.
2For instance, Cherchye et al. (2013) and Carvajal et al. (2013) study the em-

pirical implications of Cournot competition, Lee (2012) investigates testable impli-

cations of equilibrium behavior in zero-sum games.
3For instance, Sprumont (2001) studies continuous sets of actions and Echenique

and Ivanov (2011) studies finite sets of actions. Both papers address the two-person

case.
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Nash equilibrium, which requires every equilibrium to be robust to the

deviations of any sustainable coalition. Both of those concepts are to

some extent extreme, as they allow every set of players to form a coali-

tion. Myerson (1977) proposed a more general idea of the games with

coalitional structure. The set of coalitions which can be formed by

players is exogenous, and only those coalitions can deviate. We follow

this approach and consider equilibrium which is robust for a deviation

by any coalition from a given set of coalitions.

Standard notion of rationality (includes transitivity, completeness,

independence) was criticized based on experimental evidence on ob-

served behavior in the context of individual decision making as well

as in game theoretic settings. Since Allais (1953), various researchers

have been challenging the independence axiom.4 Furthermore, there

are numerous alternative theories of behavior under risk (e.g., Kahne-

man and Tversky (1979), Quiggin (1982), Cerreia-Vioglio et al. (2015)).

Another assumption which is usually criticized is selfish behavior, i.e.,

monotonicity with respect to the monetary payoffs. In certain types of

games, this assumption can be violated due to the fact that one may

care about other players’ payoffs (e.g. Charness and Rabin (2002)), in-

equality (e.g. Fehr and Schmidt (1999), Bolton and Ockenfels (2000))

etc. The generalized version of rationality we use allows for any (testable)

competing theories as the notion of rationality.

This paper provides sufficient conditions as well as necessary condi-

tions for the collective choice function to be rationalizable as a coali-

tional Nash equilibrium (given the coalitional structure) under our gen-

eralized version of rationality. Moreover, we show that if we relax the

definition of equilibrium to the Nash equilibrium (keeping the general-

ized notion of rationality), then the necessary and sufficient conditions

coincide. However, we show that Nash rationalization is neither neces-

sary nor sufficient for the coalitional Nash rationalization.

4See Ellsberg (1961), Kahneman and Tversky (1979),Battalio et al. (1985) and

Holt (1986) for experimental designs and results.
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The remainder of this paper is organized as follows. Section 2 pro-

vides necessary definitions. Section 3 presents results of the paper.

Section 4 discusses the results. Section 5 concludes. All proofs not in

the text are collected in the Appendix.

2 Preliminaries

Let N “ t1, . . . , nu be the set of players. For every j P N let Xj

be the set of possible strategies. Let X “
Ś

jPN Xj be the set of

possible strategy profiles (joint outcomes). Let G Ď tG Ď X : DH ‰

Yj Ď Xj and G “
Ś

jPN Yj ‰ Hu be the set of non-empty Cartesian

product sets induced by X, which are the observed games.

Let K Ď 2N , such that N Ď K be the non-empty set of admissible

coalitions. Denote by GK a projection of G, that is if G “
Ś

jPN Yj,

then GK “
Ś

jPK Yj. Denote by Gx
K “ GKˆx´K , that is a subgame of

the game G in which the strategies of NzK are fixed. A set of observed

games G satisfies domain restriction if there are Gx
K P G for every

G P G, for every K P K and for every x P G.

A collective choice function C : G Ñ 2X assigns to every element G of

G a non-empty set CpGq Ď G. A collective choice function C : G Ñ 2X

is K-noncooperative when for every G P G, x P CpGq if and only if

x P CpGx
Kq for every K P K and Gx

K Ď G. Further we use term noncoo-

operative for N -noncooperative collective choice functions. Note that

K-noncooperativeness is a synonym of the “consistency” condition, the

latter is a property of (coalition-proof) Nash equilibrium (see Peleg and

Tijs (1996)).

Figure 1 illustrates the assumption of K-noncooperative behavior.

Here and further Player 1 chooses rows, Player 2 – columns and Player

3 – matrices. Asterisk symbol denotes the chosen cell. DRS is chosen

from the G, and therefore it has to be chosen by every individual (see

cases (b) GDRS
t2u , (c) GDRS

t1u and (e) GDRS
t3u ). Moreover, since players 1

and 2 can form a coalition, there is an additional subgame GDRS
t1,2u and

DRS should be chosen from that subgame as well.
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Figure 1. K-noncooperative collective choice function,

for coalitional structure K “ tt1u, t2u, t3u, t1, 2uu

Note that Figure 1 illustrates only the “forward” implication of K-

noncooperative behavior, that is if x is chosen in a game G, then it

should be chosen by every Gx
K . However, it is also necessary that if y is

not chosen, then there is at least one K P K, such that y is not chosen

from Gy
K . For instance, ULF , there is at least one player or coalition

that prefers not to choose ULF from GULF
K .

2.1 (Revealed) Preferences A set R Ď X ˆ X is said to be a

preference relation. We denote the set of all preference relations on

X by R. We denote the inverse relation R´1 “ tpx, yq|py, xq P Ru.
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We denote the symmetric (indifferent) part of R by IpRq “ R X R´1

and the asymmetric (strict) part by P pRq “ RzIpRq. We denote the

incomparable part by NpRq “ XˆXzpRYR´1q. A preference relation

R is complete if px, yq P R Y R´1 for all x, y P X (or equivalently

NpRq “ H). A preference relation R is transitive if px, yq P R and

py, zq P R implies px, zq P R.

Definition 1. A preference relation R1 is an extension of R, denoted

R ĺ R1, if R Ď R1 and P pRq Ď P pR1q.

Every collective choice function generates a revealed preference re-

lation. Let px, yq P RKpG
x
Kq if and only if x P CpGx

Kq and y P Gx
K .

Denote by RK “
Ť

Gx
KPG

RKpG
x
Kq. Denote by R̄K “

Ť

K1ĎK RK1 . De-

note by RK˚j
“

Ť

KPK: jPK R̄K for every j P N . A relation RK satisfies

internal consistency if and only if RKpG
x
Kq ĺ RK for every Gx

K P G.

˚

L M R

D ˚

L R

D

(a) G (b) G̃

Figure 2. Violation of Internal Consistency

Figure 2 presents the violations of internal consistency. Player chooses

DL from the game G and DR from the game G̃. Then, pDL,DRq P

P pR1pGqq and pDR,DLq P P pR1pG̃qq. Therefore, pDL,DRq P IpR1q,

hence, P pR1pGqq Ę R1. This implies that R1 can not be an extension

of R1pGq.

2.2 Notion of Rationality We use functions over preference rela-

tions to impose the notion of rationality. The simplest example of such

a function is the transitive closure, which adds px, zq to R, whenever

there is a finite sequence x “ y1, . . . , yn “ z, such that R contains

pyj, yj`1q for every j “ 1, . . . , n´1. The transitive closure allows every

preference relation which can be extended by its transitive closure to

have a complete and transitive extension (see Richter (1966)).
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Definition 2. A function F : RÑ R is said to be

– monotone if for all R,R1 P R, if R Ď R1, then F pRq Ď F pR1q,

– closed if for all R P R, R Ď F pRq,

– idempotent if for all R P R, F pF pRqq “ F pRq,

– algebraic if for all R P R and all px, yq P F pRq, there is a

finite relation R1 Ď R such that px, yq P F pR1q,

– weakly expansive if for any R “ F pRq and NpRq ‰ H, there

is a nonempty set S Ď NpRq such that R Y S ĺ F pR Y Sq.

Any function F : R Ñ R that is monotone, closed and idempotent

is called a closure. A closure is algebraic as defined above if any el-

ement of the closure can be obtained from applying the closure to a

finite subset of the original relation.5 Weak expansiveness impose con-

ditions on the fixed points of F .6 In particular, it guarantees that for

every fixed point of F there is a set of non-comparable pairs (compar-

isons) which can be added to the fixed point, such that the enlarged

relation can be extended by F . Demuynck (2009) shows that if F is a

weakly expansive algebraic closure, then existence of a complete fixed

point extension of preference relation is equivalent to the fact that this

preference relation can be extended by F .

As we previously mentioned, the idea behind F is to impose the

desired properties or the “notion of rationality”. Further we assume

that every notion of rationality includes transitivity and completeness

of preference relations. A function F : R Ñ R induces transitivity

if T pF pRqq “ F pRq. That is, every fixed point of F is also a fixed point

of T , and as it was shown by Demuynck (2009) every fixed point of T

is a transitive relation.

2.3 Equilibrium Given a relation R on a set X and a subset G Ď X,

we denote by MpR,Gq “ tx P G|@y P G, py, xq R P pRqu the set of

maximal elements of G according to the relation R. Let Rj for

5See e.g. Davey and Priestley (2002), definition 7.12.
6Fixed point of F is such R, that F pRq “ R.
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j P N be individual preference relations of players. Denote by ΠK the

Pareto relation, px, yq P ΠK if and only if px, yq P Rj for all j P N .

Equivalently Pareto relation can be defined as ΠK “
Ş

jPK Rj.

The set of maximal elements can be defined for any preference rela-

tion (complete or not), therefore, it can be defined for Pareto relation as

well. Note that for every singleton coalition Pareto relation is equal to

the preference relation of the player. Before we proceed note that game

can be defined as a tuple pG,Rq, where G P G and R “ pR1, . . . , Rnq is

preference profile.

Definition 3. A joint outcome x P X is K-Nash equilibrium of

pG,R˚q if and only if x PMpΠ˚K , G
x
Kq for every K P K.

K-Nash equilibrium has two special cases, one of which is Nash equi-

librium (only coalitions are players on their own) and strong Nash

equilibrium (every subset of players is a coalition). Further we refer to

the N -Nash equilibrium as to Nash equilibrium.

Definition 4. A collective choice function C : G Ñ 2X is pF,Kq-Nash

Rationalizable when there is R˚j “ F pR˚j q for every j P N , such that

@G P G, x P CpGq if and only if x is K-Nash equilibrium of pG,R˚q.7

Further we refer to the pF,Nq-Nash rationalizability as to F -Nash

rationalizability.

3 Results

Before we present the results, let us state the assumptions which are

persistently made in every statement. We assume F to be a weakly

expansive algebraic closure that induces transitivity. Moreover, we as-

sume that G satisfies domain restriction. Both assumptions do not

7We assume the common notion of rationality. Formally we can assign every

player individual Fj according to which she should rational, and all the further re-

sults hold under that assumption. However, we keep the assumption of the common

notion of rationality, because individual notions of rationality seem artificial.
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relate to the collective choice function. Rather, they specify the prop-

erties of the domain of the observed games and the properties of the

notion of rationality.

Proposition 1 (Sufficient Conditions). If

– C is K-noncooperative,

– RK satisfies internal consistency for every K P K,

– RK ĺ RK˚j
for every K P K, K Ď K˚

j and

– RK˚j
ĺ F pRK˚j

q for every j P N .

Then, C : G Ñ 2X is pF,Kq-Nash Rationalizable

The idea of the proof is to assign every player the preference rela-

tion that is an extension of F pRK˚j
q. Demuynck (2009) shown that

there is a complete fixed point extension of such relation which is an

extension of F pRK˚j
q, which is an extension of Rj (by transitivity of

ĺ). Therefore, the set of maximal elements would coincide with the

observed choices function at the individual level. Maximal elements

of the Pareto relation (based on the completed individual preference

relations) would coincide with the observed choices at the coalitional

level, since every individual preference relation takes into account the

revealed preferences of coalitions.

Proposition 2 (Necessary Conditions). If C : G Ñ 2X is F K-Nash

Rationalizable, then

– C is K-noncooperative

– Rj satisfies internal consistency for every j P N ,

– Rj ĺ RK˚j
for every j P N , and

– Rj ĺ F pRjq for every j P N .

Necessary and sufficient conditions have similar structure, however,

they are different except the first one. K-noncooperative behavior

stands for the noncooperative nature of decision making. Internal con-

sistency is the condition which guarantees that there is some complete

preference relation which drives all the observed choices. Moreover, we
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require individual preference relations to be consistent with the coali-

tional preferences. The major difference is in the last condition, which

requires a revealed preference relations to be extendable by F . Recall

that this is equivalent to the existence of complete fixed point extension

of the preference relation. It is obviously necessary to guarantee the

existence of the complete extension of the individual revealed prefer-

ence relations; however, it does not have to be true for the coalitional

preferences.

3.1 Partial Rationalizability Our definition of rationalizability re-

quires not only that all the chosen points are equilibria, but also that

all non-chosen points are not equilibria. Note that the latter heavily

relies on domain restriction. Therefore, if we want to relax the domain

restriction, we must also relax the rationalizability concept. A collec-

tive choice function C : G Ñ 2X is said to be partially pF,Kq-Nash

rationalizable when there is R˚j “ F pR˚j q for every j P N , such that

@G P G, if x P CpGq then x is K-Nash equilibrium of pG,R˚q.

Remark 1 (Partial pF,Kq-Nash Rationalizability). Every C : G Ñ 2X

is partially pF,Kq-Nash rationalizable.

To show this let us assume that Rj “ XˆX for every j P N . Hence,

every player is indifferent between every pair of joint outcomes, and all

of them are K-Nash equilibria. Therefore, every outcome of the joint

choice function is K-Nash equilibrium as well.

Remark 1 shows that partial rationalizability does not have empirical

content. This result is in line with the finding in Sprumont (2000),

that every collective choice function is partially Nash rationalizable if

we take complete and transitive preferences as a notion of rationality.

3.2 F -Nash Rationalizability F -Nash rationalizability is the ex-

treme case under which K “ N and is a generalization of the Nash ra-

tionalizability for an arbitrary notion of rationality. The only allowed
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coalitions in this case are K “ tju for some j P N . Hence, neces-

sary (Proposition 2) and sufficient (Proposition 1) conditions become

equivalent, since RK˚j
“ Rj.

Corollary 1 (Nash Rationalizability). C : G Ñ 2X is F -Nash ratio-

nalizable if and only if

– C is noncooperative,

– Rj satisfies internal consistency for every j P N , and

– Rj ĺ F pRjq for every j P N .

Corollary 1 is a generalization of the results from Sprumont (2000)

and Demuynck and Lauwers (2009). It first assumes only finite sets

of alternatives and uses transitivity and completeness as a notion of

rationality. Secondly, it assumes sets of alternatives to be the mixture

space over the finite set of alternatives and uses transitivity, indepen-

dence and completeness as a notion of rationality.

4 Discussion

We address three major points in this discussion. First, we show

that sufficient conditions are not tight, i.e, we provide an example of

pF,Kq-Nash rationalizable collective choice function that fails sufficient

conditions. Second, we show that F -Nash rationalizability is not suffi-

cient for pF,Kq-Nash rationalizability of the collective choice function.

Third, we show that pF,Kq-Nash rationalizability is not sufficient for

the F -Nash rationalizability of the collective choice function.

Figure 3 illustrates the case of rationalizable collective choice func-

tion that violates internal consistency of RK . This follows from the fact

that pUL,DRq P P pRpGqq, because UL is chosen and DR is not and

at the same time pUL,DRq P IpRpG̃qq because both points are cho-

sen. However, the underlying Pareto ordering can contain pCM,DRq P

P pΠ˚
t12uq and tpUL,DRq, pUL,CMqu Ă NpΠ˚

t12uq. Figure 4 shows the

possible distribution of payoff (in utils) in the matrix, such that there
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Figure 3. pF,Kq-Nash rationalizable collective choice

function, which violates internal consistency of RK . K “
tt1u.t2u, t1, 2uu

are complete, transitive and monotone individual preference relation

which rationalize collective choice function.
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10, 5
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4, 9

0, 0 4, 9
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Figure 4. Payoff matrix for rationalization of the col-

lective choice function from Figure 3

By construction of RK every point that is chosen is better than every

point that is not chosen, although this does not have to be true in gen-

eral. Therefore, formally there may be such coalitional preferences that

every non-chosen point is dominated at least by one chosen point, and

at least one of those relations must be internally consistent. There are

many of such “candidate relations”, hence, the condition that includes

them would not be easily testable.8

8This becomes a dimension problem, which was proven to be infeasible to solve

even in the case of the finite amount of alternatives if there are more than two

players (see Yannakakis (1982)).
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However, there is a consistency condition for RK which is necessary

for the rationalization of collective choice function. We also use that

condition to show that pF,Kq-Nash rationalizability has an empirical

content comparing to F -Nash rationalizability. That is, there is an F -

Nash rationalizable function, which is not pF,Kq-Nash rationalizable.

Remark 2. If C : G Ñ 2X be an pF,Kq-Nash Rationalizable collective

choice function, then, for every K P K, P´1p
Ş

jPK F pRjqq X R̄K “ H.

The condition stated in the remark is the type of extension condition,

but we cannot claim that the R̄K is an extension of
Ş

jPK F pRjq, as

formally the latter does not have to be a subset of R̄K .

D
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L R

˚

˚ U
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˚

D

L R

˚

D
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L
˚

D
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R

˚

Figure 5. Collective choice function which is F -Nash

rationalizable, but not pF,Kq-Nash rationalizable. K “

tt1u.t2u, t1, 2uu
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Consider collective choice function from Figure 5 and function F ,

such that F pRq “ R Y tpUL,DRqu. Obviously, F is a weakly ex-

pansive algebraic closure. Collective choice function does not vio-

late conditions from Corollary 1, therefore, it is F -Nash rationaliz-

able. However, if t1, 2u P K, then this collective choice function is not

pF,Kq-Nash rationalizable, as it contains a violation of the Remark

2. Note that F pR1q “ tpUL,DLq, pDR,URq, pUL,DRqu and F pR2q “

tpUL,URq, pDR,DLq, pUL,DRqu, hence, P pF pR1qXF pR2qq “ tpUL,DRqu.

While Rt1,2u contains both pUL,DRq and pDR,ULq, as both points are

chosen and therefore, equivalent.

D

U

L R
˚ U

L R
˚

D

L R

˚

D

U

L
˚

D

U

R

˚

Figure 6. Collective choice function which is pF,Kq-
Nash rationalizable, but not F -Nash rationalizable. K “
tt1u.t2u, t1, 2uu

Figure 6 illustrates the example of the pF,Kq-Nash rationalizable

collective choice function which is not F -Nash rationalizable. Note

that DR is chosen in both GDR
t1u and GDR

t2u ; however, it is not chosen

by the coalition t1, 2u. Thus, DR cannot be K-Nash equilibrium in



15

the game, even though it is obviously the Nash equilibrium. Therefore,

this function is not F -Nash rationalizable, due to the fact it fails the

noncooperativeness condition.

5 Concluding Remarks

We can bring some “economic flavour” into the rationalization con-

cept by using the generalized notion of equilibrium. One can think

that preferences should respect some partial order, e.g., monotonicity

in payoffs (selfishness), first order stochastic dominance, or inequality

aversion. Any property which can be expressed as a partial order can

be simply incorporated into F (see Demuynck (2009)) and, therefore,

included in the notion of rationality.

Note that, we consider only complete information games. We also

assume beliefs to be rational, and consistent with the infinite regression

of rationality, i.e, “A knows that B knows that A knows ... that A is

rational”. Relaxation of any of those assumptions opens a wide range

of interesting questions.

Appendix

Proposition 3 (Theorem 2 from Demuynck (2009)). Let F be a weakly

expansive algebraic closure. There is a complete extension of R˚ “

F pR˚q of a preference relation R if and only if R ĺ F pRq.

Proof can be found in Demuynck (2009).

Lemma 1. Let R Ď R1, then R ĺ R1 if and only if P´1pRq XR1 “ H.

Proof can be found in Freer and Martinelli (2016).

Lemma 2. Let A be a finite collection of sets. Let R be a preference

relation, so that R ĺ RA for every A P A. Then R ĺ
Ť

APARA.

Proof. Obviously R Ď
Ť

APARK . On the contrary assume the contrary,

there is py, xq P P pRq such that px, yq P
Ť

APARA. Then px, yq P RT

for some T P A. But then R does not extend RA. �
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Observation 1. For every i ‰ j P´1pRiq XRj “ H.

Proof. This follows from the simple fact, that Gx
j Y Gx

i “ txu. Recall

that Ri and Rj contain pairs px, yq, and the only pair they can contain

is px, xq P IpRq if x was chosen. �

Lemma 2 and Observation 1 allow us to prove the following lemma.

Lemma 3. If P´1pRjqXRK “ H for every j P K P K, then Rj ĺ RK˚j
.

Proof. Assume on the contrary that this is not true, then py, xq P P pRq

and px, yq P R̄K . Recall that R̄K “
Ť

K1ĎK RK , then px, yq P R1K for

some K 1 P K by construction of R̄K . For every non-singleton coalition

it cannot be true by assumption of the Lemma. For every singleton

i ‰ j it cannot be true by Observation 1. Then we can conclude the

proof by applying Lemma 2. �

Proof of Proposition 1

Proof of Proposition 1. By definition of pF,Kq-Nash rationalizability,

there exist R˚j “ F pR˚j q for every j P N , such that x is a K-Nash

equilibrium if and only if x P MpGx
K ,Π

˚
Kq for every K P K. The proof

is organized as follows,

(1) We construct complete extensions of Rj, which are fixed points

of F ,

(2) We show that according to those extensions x is K-Nash equi-

librium if and only if it is chosen from G:

(2.1) We show that every chosen joint outcome is K-Nash equi-

librium, i.e., a maximal element in Gx
K for every K P K,

(2.2) We show that every element which is not chosen cannot be

a K-Nash equilibrium.

(1) Note that we guaranteed that Rj is internally consistent and

Rj ĺ RK˚j
ĺ F pRK˚j

q. Hence, Proposition 3 implies that there is a
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complete fixed point extension R˚j such that F pRK˚j
q ĺ R˚j “ F pR˚j q.

9

Then, by transitivity of ĺ we can conclude that Rj ĺ R˚j .

(2.1) By K-noncooperativeness x P CpGq if and only if x P CpGx
Kq

for every K P K. Hence, y P Gx
K : px, yq P RK Ď F pRK˚j

q Ď R˚j for all

j P K. Then, px, yq P Π˚K , this implies that there is no py, xq P P pΠ˚Kq,

because P represents the asymmetric part of relation.

(2.2) Let x P GzCpGq. By domain restriction and K-noncooperativeness

there is Gx
K , such that x R CpGx

Kq. Therefore, there is y P Gx
K Ď G,

such that py, xq P P pRKpG
x
kqq Ď P pRKq Ď P pRK˚j

q Ď P pR˚j q, for every

j P K. Then, py, xq P P pΠ˚Kq, that implies, that x RMpGx
K ,Π

˚
Kq. �

Proof of Proposition 2

Lemma 4. If C : G Ñ 2X is pF,Kq-Nash rationalizable then Rj ĺ R˚j .

Proof. First let us show that Rj Ď R˚j . Take px, yq P Rj, then x was

chosen in some game in which y was present. Hence, x P CpGx
j q “

MpGx
j , R

˚
j q, since x is a maximal element there is no y which is strictly

preferred to it, then by completeness of R˚j px, yq P R
˚
j .

Now let us show that P pRjq Ď P pR˚j q. Take px, yq P P pRjq, then

for Gx
j x P CpGx

j q and y R CpGx
j q, hence, x is a maximal element i

Gx
j , according to R˚j . Then, by completeness and transitivity of R˚j for

every y P Gx
j zCpG

x
j q, px, yq P P pR

˚
j q.

10 �

Proof of Proposition 2. Suppose a collective choice function C : G Ñ
2X is pF,Kq-Nash rationalizable. First note that C is K-noncooperative.

For all x P CpGq no coalition has a profitable deviation, otherwise

x R MpΠ˚K , Gq. If x R CpGq, then x is not K-Nash equilibrium and

there is K P K, such that x R MpGx
K ,Π

x
Kq. This implies, that x can

not be K-Nash equilibrium of Gx
K P G and therefore, cannot be chosen

from Gx
K .

9Recall that F is an idempotent function, therefore, F pRq is trivially F consis-

tent. This extension is an extension of Rj by transitivity of ĺ relation.
10In this case completeness guarantees that px, yq P R˚

j and transitivity guaran-

tees that px, yq R IpR˚
j q, because otherwise y has to be maximal point as well.
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Assume Rj is not internally consistent. Then, by Lemma 1 there is

Gx
j such that py, xq P P pRpGy

j qq and px, yq P Rj. According to Lemma

4 px, yq P IpR˚j q. Hence, completeness of R˚j implies, that if y is a

maximal element in Gy
j , then x has to be maximal element as well.

Since C is pF,Kq-Nash rationalizable, then all maximal elements has

to be chosen, i.e. x P CpGy
j q, this implies, that px, yq P RjpG

y
j q.

This part is proven by Lemma 3, hence we need to show that P´1pRjqX

RK “ H for every j P K P K Assume to the contrary that px, yq P

P´1pRjq XRK for some j P K P K. This implies, that there is Gx
K P G

such that x P CpGx
Kq, then by K-noncooperativeness x P CpGx

j q for

every j P K. At the same time py, xq P P pRjq implies, that y P CpG1yj q

and x P G1xj . This implies that y can be obtained from x by individual

deviation. Recall that y P Gx
K , then y P Gx

j , hence, px, yq P Rj. This

implies that py, xq R P pRjq.

F -consistency of Rj follows from Proposition 3 and Lemma 4, since

F is a weakly expansive algebraic closure, if Rj is not F -consistent then

there is no fixed point extension of it. �

Proof of Remark 2

Lemma 5. If C : G Ñ 2X is pF,Kq-Nash Rationalizatible, then P´1pΠ˚KqX

RK “ H.

Proof. Assume on the contrary, that there is py, xq P P pΠ˚Kq and px, yq P

RK . The latter implies, that there is Gx
K , such that x P CpGx

Kq and

y P Gx
K . Recall that Nash rationalizability requires all chosen points of

Gx
K to be maximal points of Πx

K , therefore, py, xq R P pΠ˚Kq. �

Note that Π˚K ĺ Π˚K1 for every K,K 1 P K, such that K Ď K 1.

This follows from the fact that Pareto relation is constructed as the

intersection of individual preference relations. Then, Lemma 5 also

implies, that P´1pΠ˚Kq X R̄K “ H, because P´1pΠ˚Kq X RK1 “ H for

every K 1 Ď K.
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Proof of Remark 2. Recall that Lemma 4 guarantees that if C is pF,Kq-
Nash Rationalizable, then Rj ĺ R˚j for every j P N . Moreover, mono-

tonicity of F and the fact that R˚j “ F pR˚j q implies, that F pRjq ĺ R˚j .

Therefore,
Ş

jPK F pRjq ĺ Π˚K “
Ş

jPK R˚j for every K P K. Since we

have shown that P´1pΠ˚KqXR̄K “ H. Then, P´1p
Ş

jPK F pRjqqXR̄K “

H, since P p
Ş

jPK F pRjqq Ď P pΠ˚Kq. �
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