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Abstract. We characterize the set of solutions for the many-to-

many matching problem with quotas using centralized and decen-

tralized mechanisms. Decentralized mechanism is a simple bar-

gaining game in which courses proposes to the students they want

and students choose the most preferred courses from the observed

set of proposals. Centralized mechanism is an iterative procedure

such that at every stage every agent (meaning course or student)

chooses the most preferred set of partners over those who prefer the

agent to the current match. Usual conditions on preferences used

in the literature can not be applied for the problem with quotas.

However, the generalizations of them can be used to together with

restrictions on the space of matchings can sucesfully guarantee the

characterization of the sets of stable matchings using centralized

and decentralized mechanisms.

1 Introduction

This paper deals with many-to-many matching problem with quo-

tas and characterizations of its solutions. Given a set of students

and courses, matching is an assignment of (groups) of students to the

courses and of (groups) of courses to the students, such that student
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is assigned to the course if and only if course is assigned to the stu-

dent. In general many-to-many matching markets are not understood

as well as many-to-one markets, regardless of important examples of

real-world many-to-many matching markets.

The best-known example is probably the market for medical interns

in the U.K. (see Sotomayor (1990)). This example is important be-

cause it works through a centralized matching mechanism. Another

motivating example is actually course admission problem we introduced

above. Echenique and Oviedo (2006) use the example of firms and con-

sultants, such that every firm can hire multiple consultants as well as

every consultant can be hired by several firms. Two more real-world

many-to-many labor market example are the high school teachers in

Argentina (around 35% of teachers work for multiple schools) as well

as university professors in Russia who also usually hold appointments

at multiple universities. Note that even the U.S. around 5% of employ-

ees hold multiple jobs.

Note that those problems have quotas. In terms of course admission

problem quotas for students are minimum and maximum amount of

credits to take and quotas for courses are the minimum amount of

students needed to happen and the capacity of the course. Despite its

clear practical implications, we know little about matching problems

with quotas. We study the case in which each matching assignment

is required to satisfy both lower and upper quotas, as in Biró et al.

(2010).1

Substitutability is a crucial condition for matching theory. Hatfield

and Milgrom (2005) show that substitutability guarantees existence of

the stable matching with contracts Moreover, it is used to gurantee the

non-emptiness of the core(Ostrovsky (2008)), ascending clock auctions

(Milgrom and Strulovici (2009)), package auctions (Milgrom (2007)).

Substitability and the refinement of it called strong substitability allows

to characterize the set stable matchings for the many-to-many matching

problem as well (Echenique and Oviedo (2006)). However, preferences

in the problem with quotas cannot satisfy substitutability. This can

1For the case in which these restrictions can be violated see Fragiadakis et al.

(2016).
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be illustrated with a simple example. Let c be a course and s1, s2

be students. Assume that c prefers s1 and s2 together to s1 and s2

separately. Substitutability implies, that if some student is chosen from

a given set of alternatives, then the same student would be chosen from

a subset of original set of alternatives. Hence, the original preferences

of c satisfy substitutability. However, if we impose the lower quota of

two - the course can not operate having less than two students, then c

would prefer to stay alone (choose nothing) from the sets of alternatives

that contain only s1 or s2. This violates substitutability, even though

preferences satisfy substitutability if we consider a problem without

lower quotas. In the discussion we provide more formal discussion

of this and provide a formal proof that preferences in the non-trivial

many-to-one matching problem cannot satisfy substitutability.

We provide a characterization of the set of strong stable and setwise

stable matchings using both centralized and decentralized mechanisms.

Decentralized mechanism is a simple bargaining game in which courses

proposes to the students they want and students choose the most pre-

ferred courses from the observed set of proposals. Centralized mech-

anism (T -operator) is an iterative procedure such that at every stage

every agent (meaning course or student) chooses the most preferred set

of partners over those who prefer the agent to the current match. If

preferences of students satisfy generalized substitutability, then the set

of equilibria of simple bargaining game equals to the set of strong stable

matchings. If in addition to that preferences of courses satisfy gener-

alized strong substitutability, then the set of maximal setwise stable

matchings is equal to the set of fixed points of T -operator.

The remainder of this paper is organized as follows. In Section 2 we

state the model of many-to-many matching with quotas. In Section 3

we provide a formal definitions of the stability concepts. In Section 4

we provide a formal definition of the centralized mechanism. In Section

5 we define a bargaining game (decentralized mechanism). In Section 6

we show and discuss the results. In Section 7 discuss connection of the

results to the previous literature and the applicability of the centralized

and decentralized mechanisms for real-world problems.
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2 Preliminary Definitions

A matching problem can be specified as a tuple Γ = (N,M,R),

where N is the set of players, M is the set of all possible matchings

and R is the preference profile.

Let us start from defining N , the set of players. For simplicity, we

will refer to the two participating sides as students and courses. We

use S = {s1, ..., sn} to denote the set of students and C = {c1, ..., cm}
to denote the set of course, and N = S ∪ C.

2.1 Mathing Recall that we consider a matching problem with quo-

tas. Therefore, to defineM we need to define quotas first. Let the lower

quotas be a function q(a) : A→ N and the upper quotas be a function

q̄(a) : A → N such that q̄(a) ≥ q(a) for every a ∈ A and A ∈ {C, S}.
Then every agent in a matching either stays unmatched or has between

q(a) and q̄(a) partners.

An assignment is a correspondence ν = (νS, νC), where νS : S → 2C

and νC : C → 2S. For the simplicity of further notation we can refer

to the match of agent a as ν(a) that would be equal to νC(a) if a ∈ C
or νS(a) if a ∈ S.

Definition 1. An assignment µ is said to be a matching if :

(i) s ∈ µ(c) if and only if c ∈ µ(s) for every s ∈ S and c ∈ C,

(ii) |µ(a)| ∈ {0} ∪ [q(a), q̄(a)] for every a ∈ C ∪ S.

That is matching is an assignment such that if course is matched to

a student, then the student is matched to the course. Moreover, we

require every agent either to stay unmatched or to have the number of

partners that satisfies quotas. There is a particular class of matchings

which attracts a lot of interest (at least in graph theory), that is a

maximal matchings.

Definition 2. A matching µ is said to be maximal if |µ(a)| ∈ [q(a), q̄(a)]

for every a ∈ C ∪ S.

That is maximal matching is a matching in which every agent has

a number of partners that satisfies quotas. The original definition of
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maximal matching is that there is no unmatched agents, and we gener-

alized it for the problem with quotas. There would not be unmatched

agents if q(a) ≥ 1. The modification we make allows us to consider

every matching as maximal if q(a) = 0. This would be important to

establish the clear connection between the results we obtain and the

results from the literature. Denote the set of all maximal matchings

by M.

2.2 Preferences Now we need to define the preference profile R,

the set of preference relations. We assume that every agent a ∈ C ∪ S
has a linear order2 of preferences over possible matches. Let R̃(a) be a

preference relation of a over sets of partners. A match X is said to be

acceptable by agent a ∈ C ∪S if XR̃(a)∅, i.e. a match X is preferred

to the stay-alone option.3 Let R(a) be the truncated preference relation,

such that any X 6= {∅} with |X| < q(a) or |X| > q̄(a) is unacceptable.

Note that if R̃(a) is a linear order, then R(a) is a linear order as well,

since it is a permutation of R̃(a) that makes several sets of partners

unacceptable. Denote by P (a) the strict part of preference relation of

R(a), for any a ∈ C ∪ S. R consists of all preference relations and

R(C) denotes all preference relations of courses and R(S) denotes all

preference relations of students.

Example: Let C = {c1}, S = {s1, s2, s3} and q(c1) = q̄(c1) = 2.

R̃(c1) : {s1, s2, s3}P (c1){s1, s2}P (c1){s1, s3}P (c1){s1}P (c1)∅ R(c1) : {s1, s2}P (c1){s1, s3}P (c1)∅

(a) Original preference relation (b) Truncated preference relation

Figure 1. Illustration of truncated preference relation

Figure 1 illustrates the construction of truncated preference relation

from the original one. Figure 1(a) shows the original preference relation

over sets of alternatives. In this case the set {s1, s2, s3} is unacceptable,

since it exceeds the capacity (upper quota) and the alternative {s1} is

unacceptable since it would not allow to fulfill lower quota. Eliminating

these alternatives we arrive to the truncated preference relation shown

in Figure 1(b).

2A linear order is a complete, anti-symmetric and transitive preference relation
3Acceptability is defined with respect to particular preference relation.
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Let Cha(X) ⊆ X be the most preferred set of agent a.4 Note that

since we assume R(a) to be a linear order, Cha(X) is unique. So,

Cha(X) is the unique subset X ′ of X, such that X ′P (a)X ′′ for any

X ′′ ⊆ X. Note that for any a ∈ C ∪S and if |X| ≤ q(a) or |X| ≥ q̄(a),

then Cha(X) = {∅}.5 Let us characterize some properties of a choice

function generated by a linear order which we will use later:

– Cha is idempotent. That is Cha(Cha(X)) = Cha(X).

– Cha is monotone. That is for anyX ⊆ X ′, Cha(X
′)R(a) Cha(X).

Let us now introduce the conditions on preferences which are com-

monly used in the literature without quotas and their generalizations

for the problem with quotas. As we mentioned above there are two

major conditions used for matching with quotas: substitutability and

strong substitutability.

Definition 3. A preference relation R(a) satisfies generalized sub-

stitutability if for every X ′ ⊆ X, such that |X ′| ≥ q(a), x ∈ Cha(X∪
{x}) implies x ∈ Cha(X ′∪{x}) where x is taken from the set of possible

partners.

Preference relation satisfies generalized substitutability if a partner

is among the best preferred set of partners from some set that it would

be among the set of most preferred partners for any subset of it.

Definition 4. A preference relation R(a) satisfies generalized strong

substitutability if for every XR̃(a)X ′, such that |X ′| ≥ q(a) and

|X| ≥ q(a) , x ∈ Cha(X ∪ {x}) implies x ∈ Cha(X ′ ∪ {x}) where x is

taken from the set of possible partners.

Preference relation satisfies generalized substitutability if a partner

is among the best preferred set of partners from some set that it would

be among the set of most preferred partners for any less preferred set

of alternatives of it. The generalization of the properties from usual

one is that we require the sets to contain at least q(a) elements that

makes condition applicable for the problem with quotas.

4In this case X is an arbitrary set that includes ∅ as an element.
5This statement is correct since we use the truncated preference relation of agents

a ∈ C ∪ S.
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3 Solution Concepts

Let us now introduce the solution concepts we are going to use. First

of them is strong stable matching concept that is stable matching in

the many-to-one sense. That is absence of the coalition that consist

of a course and set of studets who prefer to be matched to each other

rather being matched to their current partners. Second is setwise stable

matching, that is core-like concept for many-to-many matching prob-

lem. That is a generalization of strong stable matching by allowing to

have the collection of courses rather than single one.

3.1 Strong Stable Matching The definition of stable∗ matching

is similar to one from Echenique and Oviedo (2004). This concepts

prevents from the blocking the matching by coalition of course and

bunch of students and the many-to-one case stable∗ is equal to the core.

This concept is asymmetric, therefore it can be defined alternatively

with a student and collection of courses, all of the further results would

hold with the respective permutation.

Definition 5. The pair (c,D) ∈ C × 2S is a block∗ of µ ∈M if

(i) D ∩ µ(c) = ∅;
(ii) c ∈ Chs(µ(s) ∪ c) for all s ∈ D;

(iii) s ∈ Chc(µ(c) ∪D)

Definition 6. A matching µ ∈ M is stable∗ if it is individually ra-

tional and there is block∗ of µ. Denote the set of stable∗ matchings by

S∗.

Note that importance of investigating such “many-to-one driven” so-

lution concept is caused by the applications of many-to-many problem

with quotas. A lot of them primarily have students matched to one

course only, but there is a small number of students who are matched

to several courses. Requiring a setwise stability in such a framework

may be a bit of overshooting.

3.2 Setwise Stable Matching The definition of setwise stable match-

ing is due to Sotomayor (1999). It is stronger than a core and stable∗

matching.
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Definition 7. The triple (C ′, S ′, µ′) ∈ C ×S×M is a setwise block

of µ ∈M if

(i) C ′ ∪ S ′ 6= ∅;
(ii) µ′ \ µ ⊆ C ′ ∪ S ′ for all a ∈ C ′ ∪ S ′;
(iii) µ′(a)P (a)µ(a) for all a ∈ C ′ ∪ S ′;
(iv) µ′(a) = Cha(µ

′(a)) for all a ∈ C ′ ∪ S ′.

Definition 8. A matching µ ∈M is setwise stable if it is individu-

ally rational and there is setwise block of µ. Denote the set of pairwise

stable matchings by SW .

4 Fixed Point Approach

Now we move on to introducing the T operator. We use the T -

operator from Echenique and Oviedo (2006).

Definition 9. Let ν be an assignment, then

– Let U(c, ν) = {s ∈ S : c ∈ Chs(ν(s) ∪ {c}} for any c ∈ C
– Let V (s, ν) = {c ∈ C : s ∈ Chc(ν(c) ∪ {s}} for any s ∈ S.

Set U(c, ν) is the set of students that that would include c into their

most preferred set from s. Set V (s, ν) is the set of colleges that would

include s into their most preferred set from νC(c) ∪ {s}.

Definition 10. Now define T : V → V by

(Tv)(a) =

Cha(U(a, ν)) if c ∈ C
Cha(V (a, ν)) if a ∈ S

The T -operator at every operator makes every agent to choose the

best set of partners from the possible set of partners that (weakly)

prefer the agent to the current match. A matching µ6 is said to be

a fixed point of T if Tµ = µ. Denote the set of fixed points of T

by E . Further we refer to T -algorithm that is iterative application of

T -operator.

6In general this should be an assignment but we directly refer to Echenique

and Oviedo (2006) who shown that every fixed point of T -operator is individually

rational matching



MATCHING WITH QUOTAS 9

5 Noncooperative Implementation

Let us describe the game Γ. First, every course proposes a set of

partners νc ⊆ S. Courses make proposals simultaneously. Second,

after observing the proposals of courses each students proposes a set of

partners ξs ∈ C. Students make the proposals simultaneously. Finally

matching µ results by s ∈ µ(c) if and only if s ∈ ηc and c ∈ ξs.

Definition 11. A strategy profile (η∗, ξ∗) is a subgame perfect Nash

equilibrium (SPNE) of Γ if:

(i) ξ∗(η) ∩ {c : s ∈ ηc}R(s)A for every A ⊆ {c : s ∈ ηc};
(ii) η∗c ∩{s : c ∈ ξ∗s (η)}R(c)X ∩{s : c ∈ ξ∗s (X, η)} for every X ⊆ S.

Denote by SPNE the set of matching generated by subgame perfect

Nash equilibria of Γ.

The Γ is a generalization of the game proposed by Alcalde and

Romero-Medina (2000)7 for the case of many-to-many matching done

by Echenique and Oviedo (2006).

6 Results

We can summarize the results from the paper in the Table 1. We

move all the proofs to the Appendix.

R(S)

Arbitrary
Generalized

Substitutability

Generalized

Strong Substitutability

R(C)
Arbitrary

SW ⊆ E ⊆ S∗

S∗ ⊆ SPNE

S∗ = SPNE

E ∩M = S∗ ∩M
Generalized

Substitutability
SW ∩M = E ∩M

Table 1. Results

Without making any assumptions about preferences we can already

tell that SW ⊆ E ⊆ S∗ ⊆ SPNE. That is every setwise stable match-

ing is a fixed point of the T -operator, every fixed point of the T -operator

7We use the “College-propose-and-student-choose” version of the game, but it

may be switched and all of results remain true with the respective permutation in

the concept of stable∗ matching and the properties about preferences.
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is stable∗ matching, and every stable∗ matching can be an outcome of

some SPNE of the bargaining game.

Assuming the generalized substitutability of students’ preferences

we are getting that matchings generated by a subgame perfect Nash

equilbibria of the bargaining game are stable∗. Moreover, generalized

substitutability of students preferences also guarantees that E ∩M =

S∗ ∩M = SPNE ∩M that is the set of all maximal matchings which

are fixed points of T -algorithm is equal to the set of all maximal stable∗

matchings and to the set of maximal matchings that can be generated

by an SPNE of the bargaining game.

Assuming generalized strong substitutability of students’ preferences

and generalized substitutability of courses’ preferences we obtain that

E ∩M = SW ∩M = SPNE ∩M, that is set of all maximal matchings

which are fixed points of T -algorithm is equal to the set of all maximal

setwise stable matchings and to the set of maximal matchings that can

be generated by an SPNE of the bargaining game.

Note at first that unlike in Echenique and Oviedo (2006) we can

not obtain the sufficient condition for the non-emptiness of the core

using the existence of fixed points of the T -operator. We can use the

simple example from Biró et al. (2010) to show that even when R is

generalized strongly substitutable, there may be no stable∗ matching.

This would imply as well that there is no setwise stable matching.

Example: Let C = {c1, c2}, S = {s1, s2}, q(c1) = q(c2) = q̄(c1) =

q̄(c2) = 1, q(s1) = q(s2) = q̄(s1) = q̄(s2) = 1.

R(s1) : c1 � c2 � ∅

R(s2) : c2 � c1 � ∅

R(c1) : {s1, s2} � ∅

R(c2) : s1 � s2 � ∅

Note that this is many-to-one matching problem with only one course

having non-trivial quota. Note as well that there still is a pairwise sta-

ble matching: µ(s1) = c1 and µ(s2) = ∅. There is a block∗ that is

(c2, {s1, s2}), but since c2 has a lower quota of 2 there is no blocking

pair. Note as well that this example fails the possible of generalization
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of the sufficient condition for non-emptiness of E from Echenique and

Oviedo (2006). In this case R satisfies generalized strong substitutabil-

ity, but there is no fixed points of T -algorithm.8

Let us also show that our result under generalized strong substi-

tutability is tight.

Example: Let C = {c1, c2}, S = {s1, s2}, q(c1) = q(c2) = q̄(c1) =

q̄(c2) = 2

R(s1) : {c1, c2} � ∅

R(s2) : {c1, c2} � ∅

R(c1) : {s1, s2} � ∅

R(c2) : {s1, s2} � ∅

Note the in this example R satisfies generalized strong substitutabil-

ity and the problem has unique setwise stable matching that is µ(c1) =

{s1, s2} and µ(c2) = {s1, s2}. However, E contains as well the matching

µ(c1) = µ(c1) = ∅. Moreover, this matching is stable∗, therefore, it is

also the outcome of SPNE of the bargaining game.

7 Discussion

In the discussion we address two major points. First, we show that

neither substitutability nor strong substitutability are applicable for

the case of matching problem with non-trivial quotas. Second, we

discuss the applicability of centralized and decentralized mechanisms.

7.1 (Strong) Substitutability Echenique and Oviedo (2006) show

that if preferences of all agents satisfy substitutability, then the set of

fixed point of T -operator coincides with the set of stable∗ matchings

and the set is non-empty. Let us show that this is inapplicable for the

problem with quotas.

Definition 12. A preference relation R(a) satisfies substitutability

if for every X ′ ⊆ X x ∈ Cha(X) implies x ∈ Cha(X ′) where x is taken

from the set of possible partners.

8This immediately follows from the fact that if students have substitutable pref-

erences S∗ = E and S∗ being empty.
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Lemma 1. If there is a college c ∈ C, such that q(c) ≥ 2 and c has at

least one acceptable set of students, then R is not substitutable.

Lemma 1 shows that if there is at least one college quota at least

two, then the college’s truncated preference relation violates substi-

tutability. Hence, the condition from Echenique and Oviedo (2006)

can not be applied for the problem with quotas. Note as well that

the results we obtain generalize the result from Echenique and Oviedo

(2006). Matching problem without quotas can be defined as q(a) = 0

for every a ∈ C ∪ S. Hence, generalized substituability equivalent to

the substitutability and the set of maximal matchings coincide with

the set of all matchings.

Another result from Echenique and Oviedo (2006) tells that if pref-

erences of students are substitutable and preferences of courses are

strongly substitutable, then the set of fixed points of T -operator coin-

cides with the set of setwise stable matchings.

Definition 13. A preference relation R(a) satisfies strong substi-

tutability if for every XR̃(a)X ′, such that |X ′| ≥ q(a), x ∈ Cha(X ∪
{x}) implies x ∈ Cha(X ′∪{x}) where x is taken from the set of possible

partners.

Note that strong substitutability implies substitutability, hence, it

also can not be applied for the problem with notrivial quotas. Similarly,

if we relax quotas, then the generalized strong substitutability becomes

equivalent to the strong substitutability and the original results from

Echenique and Oviedo (2006) holds.

7.2 Computational Complexity Note that T -algorithm can be

used to verify in polynomial time whether the matching is stable∗ or

setwise stable. This induce that finding a stable matching is at most

NP-hard problem. However, if T -algorithm starts not from a fixed

point it may cycle even if there are some fixed points. Hence, finding the

core element requires starting from every possible matching - finding a

fixed point of T -algorithm is NP-hard problem. Therefore, T -algorithm

is not an efficient way to find a solution for the large scale problem.
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Note that decentralized mechanism (bargaining game) allows us with

minimal assumptions guarantee that every equilibrium outcome of it

would be a stable∗ matching. If one is interested in finding setwise sta-

ble matchings decentralized mechanism can guarantee only that max-

imal matching is setwise stable. However, it is harder to control the

outcome of the bargaining game since the solution is decentralized.

Appendix: Proofs

Arbitrary Preferences × Arbitrary Preferences. First let us list

the results from Echenique and Oviedo (2006) since we are not going

to prove them, but take them as given. Those who are interested in

proofs can proceed to Echenique and Oviedo (2006) paper.

Lemma 2. SW ⊆ E ⊆ S∗

So to complete the first sell we need to prove that S∗ ⊆ SPNE.

Lemma 3. S∗ ⊆ SPNE.

Proof. Suppose that µ /∈ SPNE and let us show that then µ /∈ S∗.

One of two conditions can be violated. Let ξ∗s = µ(s) and η∗c = µ(c).

First, assume that there is X ⊆ {c̄ : s ∈ ηc̄} such that XP (s)ξ∗s (η)∩
{c̄ : s ∈ ηc̄}, then µ is not individually rational, therefore µ /∈ S∗.

Second, assume that there is X ⊆ S such that X ∩ {s : c ∈
ξ∗s (X, η∗−c)}P (c)η∗c ∩ {s : c ∈ ξ∗s (η)}. Denote by D = X ∩ {s : c ∈
ξ∗s (X, η∗−c} \ η∗c ∩ {s : c ∈ ξ∗s (η)}. Note that since µ is individually

rational, η∗c ∩ {s : c ∈ ξ∗s (η)} ∪ D contains at least q
c

elements. Then

D ⊆ Chc(µ(c)∪D) as well as for all s ∈ D ⊆ S c ∈ Cs(µ(s)∪c) because

D includes only students from {s : c ∈ ξ∗s (X, η∗−c}, that is students who

wants to accept the proposal of the course c. Hence (c,D) blocks∗ µ,

hence µ /∈ S∗. �

Arbitrary ×Generalized Substitutable Preferences. We need to

prove that if preferences are generalized substitutable, then SPNE ⊆
S∗ that together with Lemma 3 would imply that S∗ = SPNE.

Lemma 4. If R(S) satisfies generalized substitutability, then SPNE ⊆
S∗.
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Proof. On the contrary assume that µ ∈ SPNE and µ /∈ S∗.
Let (η∗, ξ∗) be an SPNE and let Y (η−c) = {s : c ∈ Chs({c : s ∈

ηc} ∪ c)}. Then, (η∗, ξ∗) has to satisfy the following properties:

(1) ξ∗c (η) ∩ {c : s ∈ ηc} = Chs({c : s ∈ ηc})
(2) η∗c ∩ Y (η∗−c) = Chc(Y (η∗−c)).

Let µ ∈M be an outcome of (η∗, ξ∗).

Let (η̂, ξ̂) be the pair of strategies obtained from (η∗, ξ∗), by having

each s not proposing to courses that did not propose to s and each c

not propose to students who will reject. Hence, ξ̂s = ξ∗c (η)∩{c : s ∈ ηc}
and η̂c = Chc(Y (η∗−c)). Let us show that (η̂, ξ̂) is SPNE as well and

its outcome is µ. First t is immediate that its outcome is µ: η̂c = µ(c)

and for all c and for all s ∈ µ(c), c ∈ ξ̂s. To show that (η̂, ξ̂) is SPNE

we need to show that conditions (1) and (2) are satisfied.

(1). Given a strategy profile η for courses, each s is indifferent

between proposing to ξ∗s and ξ̂c because ξ∗s \ ξ̂c is the set of courses

which would reject s.

(2). We need to show that η̂c∩Y (η̂−c) = Chc(Y (η̂−c)). Note that s ∈
Y (η−c) if and only if c ∈ Chs({c : s ∈ ηc}∪c). If µ(s) = ∅ and q(s) ≥ 2,

then Chs(µ(s) ∪ c) = Chs(η̂c ∪ s) = ∅. Hence, s /∈ Y (η̂−c), therefore,

s /∈ η̂c ∩ Y (η̂−c) and s /∈ Chc(Y (η̂−c)). At the same time µ(s) = ∅
implies that s /∈ µ(c) = η̂c, hence s /∈ Chc(Y (η∗−c)) = η̂c ∩ Y (η∗−c).

Therefore, the unmatched students with lower quotas strictly greater

than one can not generate the contradiction.

Consider, µ(s) 6= ∅ or q(s) ≤ 1. Note that for this case holds the

following equality: Chs({c : s ∈ η∗c}∪ c) = Chs(Chs({c : s ∈ η∗c})∪ c).9

Since Chs({c : s ∈ η∗c}) = µ(s) = η̂s, Chs({c : s ∈ η∗c} ∪ c) = Chs({c :

s ∈ η̂c} ∪ c). Hence, Y (η∗−c) = Y (η̂−c). Therefore, η̂c ∩ Y (η̂−c) =

Chc(Y (η̂−c)).

Now, let us show that if µ /∈ S∗, then (η̂, ξ̂) is not SPNE. Assume

that µ /∈ S∗, then there is (c,D) that blocks∗ µ, that is

(i) D ∩ µ(c) = ∅;
(ii) c ∈ Chs(µ(s) ∪ c);

9This property is a consequence of generalized substitutability, see Echenique

and Oviedo (2006) and Blair (1988).
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(iii) D ⊆ Chc(µ(c) ∪D).

Condition (ii) implies that D ⊆ Y (η−c), since Y (η−c) is a set of

students that would prefer to include course c in their current match.

Condition (iii) and D ⊆ Y (η−c) imply that D ⊆ Chc(Y (η−c)). Con-

dition (i) implies that D ∩ µ(c) = ∅. Since µ(c) = η̂c, D ∩ η̂c = ∅. If

D ⊆ Chc(Y (η−c)) and D ∩ η̂c = ∅, then η̂c ∩ Y (η−c 6= Chc(Y (η−c)).

Hence η̂c is not the SPNE strategy, that is a contradiction. �

We need to prove that if preferences are generalized substitutable,

then SPNE ∩M ⊆ E ∩M that together with Lemma 3 and Lemma 2

would imply that E ∩M = S∗ ∩M.

Lemma 5. If R(S) satisfies generalized substitutability, then SPNE∩
M ⊆ E ∩M.

Proof. Let (η∗, ξ∗) be an SPNE that generates maximum matching and

let Y (η−c) = {s : c ∈ Chs({c : s ∈ ηc} ∪ c)}. Similarly to the first part

of the proof of Lemma 4 the following pair of strategies would also be

an SPNE. Let (η̂, ξ̂) be the pair of strategies obtained from (η∗, ξ∗), by

having each s not proposing to courses that did not propose to s and

each c not propose to students who will reject.

Now let us show that µ ∈ E . Let c ∈ C and recall that Y (η−c) =

U(c, µ). By the definition of η̂c, µ(c) = η̂c = Chc(U(c, µ)).

Let s ∈ S and take c ∈ µ(s). Hence, s ∈ µ(c) = η̂c = Chc(Y (η̂−c)).

Therefore, η̂c = Chc(η̂c) = Chc(µ(c)∪{s}), so c ∈ V (s, µ). This proves

that µ(s) ⊆ V (s, µ).

Let us show now that Chs(V (s, µ)) ⊆ µ(s). Let c ∈ Chs(V (s, µ)),

then µ(s) ∪ {c} ⊆ V (s, µ). Recall that µ is maximal matching, hence,

µ(s) contains at least q(s) elements. Hence, by generalized substi-

tutability c ∈ Chs(µ(s) ∪ {c}). Therefore, s ∈ U(c, µ). On the con-

trary assume that c /∈ µ(s) this implies that s /∈ µ(c). The fact that

c ∈ Chs(µ(s) ∪ {c}) implies that µ(c) ∪ {c}P (s)µ(c). But s ∈ U(c, µ),

then µ(c) ∪ {s}P (c)µ(c) contradicts µ(c) = η̂c = Chc(U(c, µ)). This

completes the proof that µ(s) = Chs(V (s, µ)).

Therefore, for every s ∈ S µ(s) = Chs(V (s, µ)) and for every c ∈ C
µ(c) = Chc(U(c, µ)) that is a definition of fixed point of T -operator.

Hence, µ ∈ E . �
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Note that we can relax the conditions in Lemma 5 and not to require

µ to be maximal matching. It is enough for µ to be maximal for

students, that is there is no unmatched students.

Generalized Substitutable Preferences ×Generalized Strongly

Substitutable Preferences. It is enough to prove that E∩M ⊆ SW∩
M. From Lemma 2 we know that SW ⊆ E , hence SW ∩M ⊆ E ∩M.

Since R(C) satisfies generalized strong substitutability, then it satisfies

generalized substitutability. Hence, E ∩M = S∗∩M and S∗ = SPNE.

Therefore, E ∩M = SPNE ∩M.

Before proving the following Lemma let us recall one more result

from Echenique and Oviedo (2006).

Lemma 6 (Lemma 11.4 in Echenique and Oviedo (2006)). If ν ∈ E,

then ν is individually rational matching.

Lemma 7. If R(S) satisfies generalized strong substitutability and

R(C) satisfies generalized substitutability, then E ∩M ⊆ SW ∩M

Proof. Let µ ∈ E ∩ M, then by Lemma 6 µ is individually rational

matching. On the contrary assume that µ /∈ SW ∩M. By definition

µ is maximal matching, so let us show that µ not being in SW ∩M
implies that there is a setwise block. Let (C ′, S ′, µ′) be a setwise block

of µ.

Fix c ∈ C ′, then µ′(c)P (c)µ(c). From µ being individually rational

and µ′(c)P (c)µ(c) we can infer that Chc(µ(c) ∪ µ′(c)) * µ(c).

Fix s ∈ (Chc(µ(c) ∪ µ′(c))) ∩ (µ′(c) \ µ(c)). Note that µ is maximal

matching, hence µ(c) has at least q(c) elements. Since µ′(c)P (c)µ(c),

µ′(c) has at least q(c) elements. Then by generalized substitutability

of P (c) s ∈ Chc(µ(c) ∪ {s}), that implies c ∈ V (s, µ).

On other hand s ∈ µ′(c)\µ(c) implies that s ∈ S ′, then µ′(s)P (s)µ(s).

Recal that (C ′, S ′, µ′) is a setwise block, so µ′(s) = Chs(µ
′(c)). Further

µ′ is a matching, then c ∈ µ′(s). Recall that µ is maximal match-

ing - µ(s) contains at least q(s) elements, and µ′(s)P (s)µ(s) implies

that µ′(s) contains at least q(s). Then s ∈ Chs(µ
′(s) ∪ {c}) and by

generalized strong substitutability of R(s), s ∈ Chs(µ(s) ∪ {c}).
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Recall that µ ∈ E implies that µ(s) = Chc(V (s, µ)). However, we

just shown that µ(s)∪{c} ⊆ V (s, µ) and f ∈ Chc(V (s, µ)) \µ(s), that

is a contradiction. �

Note that the Lemma 7 would hold for R(S) satisfies generalized

substitutability and R(C) satisfies generalized strong substitutability

as well.
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