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ABSTRACT. We characterize the set of solutions for the many-to-
many matching problem with quotas using centralized and decen-
tralized mechanisms. Decentralized mechanism is a simple bar-
gaining game in which courses proposes to the students they want
and students choose the most preferred courses from the observed
set of proposals. Centralized mechanism is an iterative procedure
such that at every stage every agent (meaning course or student)
chooses the most preferred set of partners over those who prefer the
agent to the current match. Usual conditions on preferences used
in the literature can not be applied for the problem with quotas.
However, the generalizations of them can be used to together with
restrictions on the space of matchings can sucesfully guarantee the
characterization of the sets of stable matchings using centralized

and decentralized mechanisms.

1 INTRODUCTION

This paper deals with many-to-many matching problem with quo-
tas and characterizations of its solutions. Given a set of students
and courses, matching is an assignment of (groups) of students to the

courses and of (groups) of courses to the students, such that student
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is assigned to the course if and only if course is assigned to the stu-
dent. In general many-to-many matching markets are not understood
as well as many-to-one markets, regardless of important examples of
real-world many-to-many matching markets.

The best-known example is probably the market for medical interns
in the U.K. (see Sotomayor (1990)). This example is important be-
cause it works through a centralized matching mechanism. Another
motivating example is actually course admission problem we introduced
above. Echenique and Oviedo (2006) use the example of firms and con-
sultants, such that every firm can hire multiple consultants as well as
every consultant can be hired by several firms. Two more real-world
many-to-many labor market example are the high school teachers in
Argentina (around 35% of teachers work for multiple schools) as well
as university professors in Russia who also usually hold appointments
at multiple universities. Note that even the U.S. around 5% of employ-
ees hold multiple jobs.

Note that those problems have quotas. In terms of course admission
problem quotas for students are minimum and maximum amount of
credits to take and quotas for courses are the minimum amount of
students needed to happen and the capacity of the course. Despite its
clear practical implications, we know little about matching problems
with quotas. We study the case in which each matching assignment
is required to satisfy both lower and upper quotas, as in Biré et al.
(2010)."

Substitutability is a crucial condition for matching theory. Hatfield
and Milgrom (2005) show that substitutability guarantees existence of
the stable matching with contracts Moreover, it is used to gurantee the
non-emptiness of the core(Ostrovsky (2008)), ascending clock auctions
(Milgrom and Strulovici (2009)), package auctions (Milgrom (2007)).
Substitability and the refinement of it called strong substitability allows
to characterize the set stable matchings for the many-to-many matching
problem as well (Echenique and Oviedo (2006)). However, preferences

in the problem with quotas cannot satisfy substitutability. This can

'For the case in which these restrictions can be violated see Fragiadakis et al.
(2016).
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be illustrated with a simple example. Let ¢ be a course and s, s9
be students. Assume that ¢ prefers s; and s, together to s; and s
separately. Substitutability implies, that if some student is chosen from
a given set of alternatives, then the same student would be chosen from
a subset of original set of alternatives. Hence, the original preferences
of ¢ satisfy substitutability. However, if we impose the lower quota of
two - the course can not operate having less than two students, then ¢
would prefer to stay alone (choose nothing) from the sets of alternatives
that contain only s; or s,. This violates substitutability, even though
preferences satisfy substitutability if we consider a problem without
lower quotas. In the discussion we provide more formal discussion
of this and provide a formal proof that preferences in the non-trivial
many-to-one matching problem cannot satisfy substitutability.

We provide a characterization of the set of strong stable and setwise
stable matchings using both centralized and decentralized mechanisms.
Decentralized mechanism is a simple bargaining game in which courses
proposes to the students they want and students choose the most pre-
ferred courses from the observed set of proposals. Centralized mech-
anism (T-operator) is an iterative procedure such that at every stage
every agent (meaning course or student) chooses the most preferred set
of partners over those who prefer the agent to the current match. If
preferences of students satisfy generalized substitutability, then the set
of equilibria of simple bargaining game equals to the set of strong stable
matchings. If in addition to that preferences of courses satisfy gener-
alized strong substitutability, then the set of maximal setwise stable
matchings is equal to the set of fixed points of T-operator.

The remainder of this paper is organized as follows. In Section 2 we
state the model of many-to-many matching with quotas. In Section 3
we provide a formal definitions of the stability concepts. In Section 4
we provide a formal definition of the centralized mechanism. In Section
5 we define a bargaining game (decentralized mechanism). In Section 6
we show and discuss the results. In Section 7 discuss connection of the
results to the previous literature and the applicability of the centralized
and decentralized mechanisms for real-world problems.
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2 PRELIMINARY DEFINITIONS

A matching problem can be specified as a tuple I' = (N, M, R),
where N is the set of players, M is the set of all possible matchings
and R is the preference profile.

Let us start from defining N, the set of players. For simplicity, we
will refer to the two participating sides as students and courses. We
use S = {s1, ..., S, } to denote the set of students and C' = {¢y, ..., ¢, }
to denote the set of course, and N = S UC.

2.1 Mathing Recall that we consider a matching problem with quo-
tas. Therefore, to define M we need to define quotas first. Let the lower
quotas be a function g(a) : A — N and the upper quotas be a function
q(a) : A — N such that g(a) > g(a) for every a € A and A € {C, S}.
Then every agent in a matching either stays unmatched or has between
g(a) and g(a) partners.

An assignment is a correspondence v = (vg, v¢), where vg : S — 2¢
and vo : C — 25, For the simplicity of further notation we can refer
to the match of agent a as v(a) that would be equal to v¢(a) if a € C
or vg(a) ifa € S.

Definition 1. An assignment i is said to be a matching if :

(i) s € p(c) if and only if ¢ € u(s) for every s € S and ¢ € C,
(i) |p(a)| € {0} U[g(a), q(a)] for every a € C'US.

That is matching is an assignment such that if course is matched to
a student, then the student is matched to the course. Moreover, we
require every agent either to stay unmatched or to have the number of
partners that satisfies quotas. There is a particular class of matchings
which attracts a lot of interest (at least in graph theory), that is a

maximal matchings.

Definition 2. A matching 1 is said to be mazimal if |(a)| € [q(a), G(a)]
for everya e CUS.

That is maximal matching is a matching in which every agent has

a number of partners that satisfies quotas. The original definition of
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maximal matching is that there is no unmatched agents, and we gener-
alized it for the problem with quotas. There would not be unmatched
agents if g(a) > 1. The modification we make allows us to consider
every matching as maximal if ¢(a) = 0. This would be important to
establish the clear connection between the results we obtain and the
results from the literature. Denote the set of all maximal matchings
by M.

2.2 Preferences Now we need to define the preference profile R,
the set of preference relations. We assume that every agent a € CU S
has a linear order? of preferences over possible matches. Let R(a) be a
preference relation of a over sets of partners. A match X is said to be
acceptable by agent a € CUS if X R(a)0), i.e. a match X is preferred
to the stay-alone option.® Let R(a) be the truncated preference relation,
such that any X # {0} with [X| < g(a) or |X| > ¢(a) is unacceptable.
Note that if R(a) is a linear order, then R(a) is a linear order as well,
since it is a permutation of ﬁi(a) that makes several sets of partners
unacceptable. Denote by P(a) the strict part of preference relation of
R(a), for any a € C' U S. R consists of all preference relations and
R(C) denotes all preference relations of courses and R(S) denotes all
preference relations of students.
Example: Let C = {c1}, S = {s1, 52,53} and ¢(c1) = q(c1) = 2.

R(Cl) : {517827 S3}P(C1){Sl,SQ}P(Cl){Sl,Sg}P((}l){Sl}P((f])w R((}l) : {817 SZ}P(C]){517 S3}P((§1)®
(a) Original preference relation (b) Truncated preference relation

FiGURE 1. Illustration of truncated preference relation

Figure 1 illustrates the construction of truncated preference relation
from the original one. Figure 1(a) shows the original preference relation
over sets of alternatives. In this case the set {s1, s9, $3} is unacceptable,
since it exceeds the capacity (upper quota) and the alternative {s;} is
unacceptable since it would not allow to fulfill lower quota. Eliminating
these alternatives we arrive to the truncated preference relation shown
in Figure 1(b).

2A linear order is a complete, anti-symmetric and transitive preference relation

3Acceptability is defined with respect to particular preference relation.
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Let Chy,(X) C X be the most preferred set of agent a.* Note that
since we assume R(a) to be a linear order, Ch,(X) is unique. So,
Chy(X) is the unique subset X’ of X, such that X'P(a)X"” for any
X" C X. Note that for any a € CUS and if | X| < g(a) or | X| > ¢(a),
then Ch,(X) = {0}.° Let us characterize some properties of a choice
function generated by a linear order which we will use later:

— Ch, is idempotent. That is Ch,(Chy(X)) = Cha(X).
— Ch, is monotone. That is for any X C X', Ch,(X’) R(a) Ch,(X).

Let us now introduce the conditions on preferences which are com-
monly used in the literature without quotas and their generalizations
for the problem with quotas. As we mentioned above there are two
major conditions used for matching with quotas: substitutability and
strong substitutability.

Definition 3. A preference relation R(a) satisfies generalized sub-
stitutability if for every X' C X, such that | X'| > q(a), v € Cha(XU
{z}) implies x € Chy(X'U{x}) where x is taken from the set of possible
partners.

Preference relation satisfies generalized substitutability if a partner
is among the best preferred set of partners from some set that it would

be among the set of most preferred partners for any subset of it.

Definition 4. A preference relation R(a) satisfies generalized strong
substitutability if for every XR(a)X’, such that |X'| > q(a) and
| X| > qla) , v € Cho(X U{x}) implies v € Chy(X" U {z}) where x is

taken from the set of possible partners.

Preference relation satisfies generalized substitutability if a partner
is among the best preferred set of partners from some set that it would
be among the set of most preferred partners for any less preferred set
of alternatives of it. The generalization of the properties from usual
one is that we require the sets to contain at least g(a) elements that

makes condition applicable for the problem with quotas.

“In this case X is an arbitrary set that includes () as an element.
5This statement is correct since we use the truncated preference relation of agents
acCUS.
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3 SoLruTioN CONCEPTS

Let us now introduce the solution concepts we are going to use. First
of them is strong stable matching concept that is stable matching in
the many-to-one sense. That is absence of the coalition that consist
of a course and set of studets who prefer to be matched to each other
rather being matched to their current partners. Second is setwise stable
matching, that is core-like concept for many-to-many matching prob-
lem. That is a generalization of strong stable matching by allowing to
have the collection of courses rather than single one.

3.1 Strong Stable Matching The definition of stable* matching
is similar to one from Echenique and Oviedo (2004). This concepts
prevents from the blocking the matching by coalition of course and
bunch of students and the many-to-one case stable* is equal to the core.
This concept is asymmetric, therefore it can be defined alternatively
with a student and collection of courses, all of the further results would
hold with the respective permutation.

Definition 5. The pair (c, D) € C' x 2° is a block* of u € M if
() D (e) = 0;
(ii) ¢ € Chs(p(s) Uc) for all s € D;
p(c)

(iii) s € Che(u(c) U D)

Definition 6. A matching p € M is stable* if it is individually ra-

tional and there is block® of u. Denote the set of stable* matchings by
S*.

Note that importance of investigating such “many-to-one driven” so-
lution concept is caused by the applications of many-to-many problem
with quotas. A lot of them primarily have students matched to one
course only, but there is a small number of students who are matched
to several courses. Requiring a setwise stability in such a framework
may be a bit of overshooting.

3.2 Setwise Stable Matching The definition of setwise stable match-
ing is due to Sotomayor (1999). It is stronger than a core and stable*
matching.
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Definition 7. The triple (C',S", /') € C'x S x M is a setwise block
of p € M if
i) C"US #0;
(i) W \pCC'US forallaecC'US;
(iii) w/'(a)P(a)u(a) for alla € C"US’;
(iv) p'(a) = Cho(1/(a)) for alla e C"US".

Definition 8. A matching u € M is setwise stable if it is individu-

,u/
M’

ally rational and there is setwise block of . Denote the set of pairwise
stable matchings by SW .

4 FIXED POINT APPROACH

Now we move on to introducing the T operator. We use the T-
operator from Echenique and Oviedo (2006).

Definition 9. Let v be an assignment, then
— LetU(c,v) ={se€S: ce Chs(v(s) U{c}t} for any c € C
— LetV(s,v) ={ce C: se Ch.(v(c)U{s}} for any s € S.

Set U(c, v) is the set of students that that would include ¢ into their
most preferred set from s. Set V(s,v) is the set of colleges that would
include s into their most preferred set from v (c) U {s}.

Definition 10. Now define T :V — V by

Chy(U(a,v)) if ce C

T =1 o Viaw) if ac s

The T-operator at every operator makes every agent to choose the
best set of partners from the possible set of partners that (weakly)
prefer the agent to the current match. A matching % is said to be
a fixed point of 7" if Ty = p. Denote the set of fixed points of 7'
by £. Further we refer to T-algorithm that is iterative application of
T-operator.

6In general this should be an assignment but we directly refer to Echenique
and Oviedo (2006) who shown that every fixed point of T-operator is individually
rational matching
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5 NONCOOPERATIVE IMPLEMENTATION

Let us describe the game I'. First, every course proposes a set of
partners v, C S. Courses make proposals simultaneously. Second,
after observing the proposals of courses each students proposes a set of
partners &, € C. Students make the proposals simultaneously. Finally
matching p results by s € u(c) if and only if s € 7. and ¢ € &;.

Definition 11. A strategy profile (n*,£*) is a subgame perfect Nash
equilibrium (SPNE) of T' if:

(i) & (m)N{c:sen}R(s)A for every A C{c:s€mn.};

(i) min{s:cen)}IR()XN{s:ce&(X,n)} for every X C S.

Denote by SPN E the set of matching generated by subgame perfect
Nash equilibria of T'.

The T is a generalization of the game proposed by Alcalde and
Romero-Medina (2000)” for the case of many-to-many matching done
by Echenique and Oviedo (2006).

6 REsuULTS

We can summarize the results from the paper in the Table 1. We
move all the proofs to the Appendix.

R(S)
Generalized Generalized
Substitutability | Strong Substitutability
. SWcCcEgECS*| S*=SPNE
Arbitrary
R(C) S*CSPNE |[ENM=S5*NM
Generalized
Substitutability

Arbitrary

SWNM=&ENM

TABLE 1. Results

Without making any assumptions about preferences we can already
tell that SW C £ C 5* C SPNE. That is every setwise stable match-
ing is a fixed point of the T-operator, every fixed point of the T-operator

"We use the “College-propose-and-student-choose” version of the game, but it

may be switched and all of results remain true with the respective permutation in

the concept of stable* matching and the properties about preferences.
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is stable* matching, and every stable* matching can be an outcome of
some SPNE of the bargaining game.

Assuming the generalized substitutability of students’ preferences
we are getting that matchings generated by a subgame perfect Nash
equilbibria of the bargaining game are stable*. Moreover, generalized
substitutability of students preferences also guarantees that £ N M =
S*NM = SPNE NM that is the set of all maximal matchings which
are fixed points of T-algorithm is equal to the set of all maximal stable*
matchings and to the set of maximal matchings that can be generated
by an SPNE of the bargaining game.

Assuming generalized strong substitutability of students’ preferences
and generalized substitutability of courses’ preferences we obtain that
ENM=SWNM = SPNENM, that is set of all maximal matchings
which are fixed points of T-algorithm is equal to the set of all maximal
setwise stable matchings and to the set of maximal matchings that can
be generated by an SPNE of the bargaining game.

Note at first that unlike in Echenique and Oviedo (2006) we can
not obtain the sufficient condition for the non-emptiness of the core
using the existence of fixed points of the T-operator. We can use the
simple example from Bir6 et al. (2010) to show that even when R is
generalized strongly substitutable, there may be no stable* matching.
This would imply as well that there is no setwise stable matching.

Example: Let C' = {c1,c2}, S = {51,52}, q(c1) = q(c2) = q(c1) =
q(c2) =1, g(s1) = q(s2) = q(s1) = q(s2) = 1.

Note that this is many-to-one matching problem with only one course
having non-trivial quota. Note as well that there still is a pairwise sta-
ble matching: pu(s;) = ¢; and pu(sz) = (0. There is a block* that is
(ca, {s1,52}), but since ¢o has a lower quota of 2 there is no blocking

pair. Note as well that this example fails the possible of generalization
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of the sufficient condition for non-emptiness of £ from Echenique and
Oviedo (2006). In this case R satisfies generalized strong substitutabil-
ity, but there is no fixed points of T-algorithm.®

Let us also show that our result under generalized strong substi-
tutability is tight.

Example: Let C' = {c1, 2}, S = {51,582}, q(c1) = q(c2) = q(c1) =
q(co) =2

R(s1): {c1,c} =0
R(s2): {c1,c} =0
R(cy): {s1,82} =0

R(co): {s1,82} =0
Note the in this example R satisfies generalized strong substitutabil-
ity and the problem has unique setwise stable matching that is u(c;) =
{s1,s2} and p(ce) = {s1, s2}. However, £ contains as well the matching
p(cr) = pu(er) = 0. Moreover, this matching is stable*, therefore, it is
also the outcome of SPNE of the bargaining game.

7 DISCUSSION

In the discussion we address two major points. First, we show that
neither substitutability nor strong substitutability are applicable for
the case of matching problem with non-trivial quotas. Second, we
discuss the applicability of centralized and decentralized mechanisms.

7.1 (Strong) Substitutability Echenique and Oviedo (2006) show
that if preferences of all agents satisfy substitutability, then the set of
fixed point of T-operator coincides with the set of stable* matchings
and the set is non-empty. Let us show that this is inapplicable for the
problem with quotas.

Definition 12. A preference relation R(a) satisfies substitutability
if for every X' C X x € Chy(X) implies x € Cho(X') where x is taken
from the set of possible partners.

8This immediately follows from the fact that if students have substitutable pref-
erences S* = & and S* being empty.
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Lemma 1. If there is a college ¢ € C, such that q(c) > 2 and c has at

least one acceptable set of students, then R is not substitutable.

Lemma 1 shows that if there is at least one college quota at least
two, then the college’s truncated preference relation violates substi-
tutability. Hence, the condition from Echenique and Oviedo (2006)
can not be applied for the problem with quotas. Note as well that
the results we obtain generalize the result from Echenique and Oviedo
(2006). Matching problem without quotas can be defined as g(a) = 0
for every a € C'U S. Hence, generalized substituability equivalent to
the substitutability and the set of maximal matchings coincide with
the set of all matchings.

Another result from Echenique and Oviedo (2006) tells that if pref-
erences of students are substitutable and preferences of courses are
strongly substitutable, then the set of fixed points of T-operator coin-
cides with the set of setwise stable matchings.

Definition 13. A preference relation R(a) satisfies strong substi-
tutability if for every X R(a)X', such that |X'| > qla), v € Che(X U
{z}) implies x € Ch,(X'U{x}) where x is taken from the set of possible

partners.

Note that strong substitutability implies substitutability, hence, it
also can not be applied for the problem with notrivial quotas. Similarly,
if we relax quotas, then the generalized strong substitutability becomes
equivalent to the strong substitutability and the original results from
Echenique and Oviedo (2006) holds.

7.2 Computational Complexity Note that T-algorithm can be
used to verify in polynomial time whether the matching is stable* or
setwise stable. This induce that finding a stable matching is at most
NP-hard problem. However, if T-algorithm starts not from a fixed
point it may cycle even if there are some fixed points. Hence, finding the
core element requires starting from every possible matching - finding a
fixed point of T-algorithm is NP-hard problem. Therefore, T-algorithm

is not an efficient way to find a solution for the large scale problem.
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Note that decentralized mechanism (bargaining game) allows us with
minimal assumptions guarantee that every equilibrium outcome of it
would be a stable® matching. If one is interested in finding setwise sta-
ble matchings decentralized mechanism can guarantee only that max-
imal matching is setwise stable. However, it is harder to control the

outcome of the bargaining game since the solution is decentralized.

APPENDIX: PROOFS

Arbitrary Preferences x Arbitrary Preferences. First let us list
the results from Echenique and Oviedo (2006) since we are not going
to prove them, but take them as given. Those who are interested in
proofs can proceed to Echenique and Oviedo (2006) paper.

Lemma 2. SW C £ C S*
So to complete the first sell we need to prove that S* C SPNE.
Lemma 3. S* C SPNE.

Proof. Suppose that p ¢ SPNE and let us show that then p ¢ S*.
One of two conditions can be violated. Let & = pu(s) and ¥ = u(c).
First, assume that there is X C {¢: s € 1z} such that X P(s)&(n) N
{¢: s €mne}, then p is not individually rational, therefore pu ¢ S*.
Second, assume that there is X C S such that X N {s : ¢ €
EX,n ) PN {s : c € &(n)}. Denote by D = X N{s:c €
EX,n  t\min{s:c e &(n)}. Note that since u is individually
rational, 77 N {s : ¢ € {(n)} U D contains at least ¢_ elements. Then
D C Ch.(u(c)UD) as well as forall s € D C S ¢ € Cs(u(s)Uc) because
D includes only students from {s : ¢ € ££(X,n* .}, that is students who
wants to accept the proposal of the course ¢. Hence (¢, D) blocks* p,

hence p ¢ S*. O

Arbitrary x Generalized Substitutable Preferences. We need to
prove that if preferences are generalized substitutable, then SPNE C
S* that together with Lemma 3 would imply that S* = SPNFE.

Lemma 4. If R(S) satisfies generalized substitutability, then SPNE C
S*.
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Proof. On the contrary assume that p € SPNE and p ¢ S*.
Let (n*,£*) be an SPNE and let Y(n_.) = {s: c € Chs({c: s €
n.t Uc)}. Then, (n*,£*) has to satisfy the following properties:

(1) &m)n{c:s€n}=Ch{c:s€n})
(2) Y (=) = Che(Y(n",))-
Let u € M be an outcome of (n*,£*).

Let (7, é) be the pair of strategies obtained from (n*,£*), by having
each s not proposing to courses that did not propose to s and each ¢
not propose to students who will reject. Hence, & = £ (n)N{c: s € .}
and 7. = Ch.(Y (n*,)). Let us show that (7),€) is SPNE as well and
its outcome is p. First t is immediate that its outcome is u: 7. = u(c)
and for all ¢ and for all s € u(c), ¢ € &. To show that (#,€) is SPNE
we need to show that conditions (1) and (2) are satisfied.

(1). Given a strategy profile n for courses, each s is indifferent
between proposing to £ and éc because & \fc is the set of courses
which would reject s.

(2). We need to show that 7.NY (7_.) = Ch.(Y (7_.)). Note that s €
Y (n-.) if and only if ¢ € Chy({c: s € n.}Uc). If pu(s) = 0 and ¢(s) > 2,
then Chg(u(s) Uc) = Chs(n. U s) = 0. Hence, s ¢ Y (1_.), therefore,
s ¢ n.NY(_) and s ¢ Ch.(Y(_.)). At the same time pu(s) = 0
implies that s ¢ u(c) = 7., hence s ¢ Ch.(Y(n*,.) = 1. N Y(n*,).
Therefore, the unmatched students with lower quotas strictly greater
than one can not generate the contradiction.

Consider, u(s) # 0 or g(s) < 1. Note that for this case holds the
following equality: Chy({c:s € n:tUc) = Chy(Chs({c:s€n:})Uc).”
Since Chs({c: s en:}) = u(s) =7, Chs({c:s e nftUc) = Chs({c:
s € N} Uc). Hence, Y(n*.) = Y(-.). Therefore, 5. N Y (n-.) =
Cho(Y (7)), A

Now, let us show that if u ¢ S*, then (7,£) is not SPNE. Assume
that p ¢ S*, then there is (¢, D) that blocks* u, that is

(1) DN ple) =0;
(i) ¢ € Chy((s) U o)

9This property is a consequence of generalized substitutability, see Echenique
and Oviedo (2006) and Blair (1988).
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(iii) D C Che(u(c) U D).

Condition (ii) implies that D C Y(n-.), since Y (n_.) is a set of
students that would prefer to include course ¢ in their current match.
Condition (iii) and D C Y (n_.) imply that D C Ch.(Y(n-.)). Con-
dition (i) implies that D N pu(c) = 0. Since p(c) = A, D N7, = 0. If
D C Ch(Y(n-.)) and D N#. = 0, then 7. NY (n_. # Ch(Y (1))
Hence 7). is not the SPNE strategy, that is a contradiction. 0

We need to prove that if preferences are generalized substitutable,
then SPNENM C £ NM that together with Lemma 3 and Lemma 2
would imply that £ N M = S* N M.

Lemma 5. If R(S) satisfies generalized substitutability, then SPNEN
M C &NM.

Proof. Let (n*,£*) be an SPNE that generates maximum matching and
let Y(n-.) ={s:ce€ Chs({c:s e€n.}Uc)}. Similarly to the first part
of the proof of Lemma 4 the following pair of strategies would also be
an SPNE. Let (7, €) be the pair of strategies obtained from (%, £*), by
having each s not proposing to courses that did not propose to s and
each ¢ not propose to students who will reject.

Now let us show that u € €. Let ¢ € C and recall that Y (n_.) =
U(c, ). By the definition of 7., u(c) = 1. = Ch(Ul(c, p)).

Let s € S and take ¢ € pu(s). Hence, s € u(c) = 1. = Ch (Y (1-¢)).
Therefore, 7. = Ch.(n.) = Ch.(uu(c) U{s}), so ¢ € V(s, ). This proves
that p(s) C V(s,u).

Let us show now that Chy(V(s,p)) C u(s). Let ¢ € Chg(V (s, p)),
then p(s) U{c} C V(s,p). Recall that p is maximal matching, hence,
p(s) contains at least g(s) elements. Hence, by generalized substi-
tutability ¢ € Chg(u(s) U {c}). Therefore, s € U(c, ). On the con-
trary assume that ¢ ¢ p(s) this implies that s ¢ p(c). The fact that
c € Chs(p(s) U{c}) implies that u(c) U {c}P(s)u(c). But s € U(c, p),
then u(c) U {s}P(c)u(c) contradicts p(c) = 1. = Che(U(c,p)). This
completes the proof that u(s) = Chys(V (s, p)).

Therefore, for every s € S u(s) = Chs(V (s, ) and for every ¢ € C
u(c) = Che(U(c,p)) that is a definition of fixed point of T-operator.
Hence, € €. O
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Note that we can relax the conditions in Lemma 5 and not to require
it to be maximal matching. It is enough for p to be maximal for

students, that is there is no unmatched students.

Generalized Substitutable Preferences x Generalized Strongly
Substitutable Preferences. It is enough to prove that ENM C STWN
M. From Lemma 2 we know that SW C &, hence SW "M C &N M.
Since R(C) satisfies generalized strong substitutability, then it satisfies
generalized substitutability. Hence, ENM = S*NM and S* = SPNE.
Therefore, ENM = SPNE N M.

Before proving the following Lemma let us recall one more result
from Echenique and Oviedo (2006).

Lemma 6 (Lemma 11.4 in Echenique and Oviedo (2006)). If v € €&,

then v is individually rational matching.

Lemma 7. If R(S) satisfies generalized strong substitutability and
R(C) satisfies generalized substitutability, then ENM C SW N M

Proof. Let p € £ N M, then by Lemma 6 p is individually rational
matching. On the contrary assume that g ¢ SW N M. By definition
4 is maximal matching, so let us show that p not being in SW N M
implies that there is a setwise block. Let (C”,S’, i//) be a setwise block
of u.

Fix ¢ € (', then p/(c)P(c)pu(c). From p being individually rational
and g/ (c)P(c)u(c) we can infer that Ch.(u(c) U p'(c)) € p(c).

Fix s € (Ch.(u(c) U /() N (1 (c) \ p(c)). Note that p is maximal
matching, hence p(c) has at least g(c) elements. Since u'(c)P(c)u(c),
p/(c) has at least g(c) elements. Then by generalized substitutability
of P(c) s € Ch.(u(c) U{s}), that implies ¢ € V (s, ).

On other hand s € p/(c)\p(c) implies that s € S’; then p/(s) P(s)u(s).
Recal that (C', 57, i') is a setwise block, so p/(s) = Chg(p/(c)). Further
i is a matching, then ¢ € p/(s). Recall that g is maximal match-
ing - u(s) contains at least g(s) elements, and p'(s)P(s)u(s) implies
that p/(s) contains at least ¢(s). Then s € Chy(y/'(s) U {c}) and by
generalized strong substitutability of R(s), s € Chg(u(s) U {c}).
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Recall that p € £ implies that u(s) = Ch.(V(s,n)). However, we
just shown that p(s)U{c} C V(s,u) and f € Ch.(V (s, u))\ u(s), that
is a contradiction. U

Note that the Lemma 7 would hold for R(S) satisfies generalized
substitutability and R(C') satisfies generalized strong substitutability
as well.
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