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Abstract We provide a representation theorem for revealed preference of an
agent whose consumption set is contained in a general topological space (sep-
arable Hausdorff space). We use this result to construct a revealed preference
test that applies to choice over infinite consumption streams and probability
distribution spaces, among other cases of interest in economics. In particu-
lar, we construct a revealed preference test for best-responding behavior in
strategic games.

Keywords revealed preferences, representation theorem, preference exten-
sions, equilibrium play

1 Introduction

We provide a necessary and sufficient revealed preference condition for an ob-
served set of choices to be generated by maximization of a utility function. The
condition applies to separable Hausdorff space of alternatives, thus requiring
weaker topological restrictions than those imposed in the previous literature.
In particular, we dispense with local compactness. This extension is important
because there are at least two spaces frequently used in economic theory and
modeling that do not have to satisfy local-compactness: (1) the space of in-
finite consumption streams (infinitely dimensional Hilbert space) and (2) the
space of lotteries (measurable distribution functions) over a given set of alter-
natives; for instance mixed strategies in a strategic game. We illustrate our
approach constructing a revealed preference test for best-responding behavior
in strategic games.
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Revealed preference theory, pioneered by the work of Samuelson (1938)
and Afriat (1967), builds on the fact that, although we cannot observe com-
plete preference relation profiles of players, we can observe their choices over
some budget sets. Revealed preference theory allows data to speak for itself
and therefore avoids problem of parametric misspecification of preferences.
Recent developments in statistics (e.g. Chernozhukov et al., 2007; Aguiar and
Kashaev, 2017) allow to use the revealed preference conditions as moment
inequalities and therefore, allow for testing and identification of the models
that accounts for measurement and decision making errors. Chambers and
Echenique (2016) offer a general review of the revealed preference approach
and its use for testing theories of individual behavior.

There is growing interest in developing a comprehensive approach to re-
vealed preference that can be applied in a wide variety of contexts of interest.
Recent research has proceeded along two lines: extending the scope of revealed
preference tests for a large class of behavioral theories, and relaxing the stan-
dard assumptions about budget sets and commodity spaces. Along the first
line, Demuynck (2009) provides a revealed preference test for the whole class
of theories that can be represented by a “nice” function over preference rela-
tions, and Chambers et al. (2014) provides a sufficient condition for theories
to be testable with a finite data set. Along the second line, Forges and Minelli
(2009) generalizes the classical result from Afriat (1967) to the case of nonlin-
ear budgets, and Nishimura et al. (2017) provide a general revealed preference
condition for locally compact Hausdorff space and compact budgets. This pa-
per contributes to the second strand by further relaxing the assumptions on
topological spaces.

The remainder of this paper is organized as follows. Section 2 contains basic
definitions. Section 3 shows the main result and its application to construct the
test of best-responding behavior in static games. Section 4 provides concluding
remarks. All proofs omitted in the text are collected in an Appendix.

2 Preliminaries

Consider a second countable topological space (X, τ) representing the universal
set of alternatives. A partial order ≤ is said to be separable if there is a
countable set Z ⊆ X such that for every y < x there is z ∈ Z such that
y ≤ z ≤ x. Let ≤ be a separable partial order in the space (X, τ) with <
denoting the asymmetric part of the partial order. A utility function u : X → R
is said to be monotonic if y ≤ x implies u(y) ≤ u(x) and y < x implies
u(y) < u(x).

Let B be a countable collection of compact subsets of X, representing
possible budget sets. Denote by C : B → 2X a choice correspondence over
B assigning to each B ∈ B a countable set C(B) ⊆ B. We can think of the
elements of C(B) as corresponding to different observed choices from the same
budget. A data set is a tuple (B, C) that assigns choices to every budget from
a collection. A data set (B, C) is rationalizable if there is a monotonic utility
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function u : X → R such that u(y) ≤ u(x) for every y ∈ Bt and x ∈ C(Bt) for
every Bt ∈ B.

Denote by

B≤ = {y ∈ X : there is x ∈ B such that y ≤ x}

the downward closure of budget B, and by

B< = {y ∈ X : there is x ∈ B such that y < x}

the interior of the downward closure of B.

Definition 1 A data set (B, C) satisfies the Generalized Axiom of Re-
vealed Preferences (GARP) if for every sequence x1, . . . , xn such that
xt ∈ C(Bt) for every t = 1, . . . , n,

xt ∈ B≤t+1 for every t = 1, . . . , n− 1 implies xn /∈ B<1 .

3 Results

3.1 A general revealed preference condition.

Theorem 1 A data set (B, C) is rationalizable if and only if it satisfies GARP.

The starting point for the proof of the theorem is an argument from the
preference extension literature. We consider revealed preference as an incom-
plete preference relation, and show that there is a converging algorithm leading
to a complete preference relation. Moreover, the algorithm guarantees that at
every step (and therefore in the limit) the preference relation is transitive
and separable, which guarantees the existence of a utility representation (see
Debreu, 1954). While our definition of GARP incorporates monotonicity, the
algorithm can incorporate other desiderata such as homotheticity and quasi-
linearity (see Appendix for more details).

3.2 Revealed best responses.

Let N = {1, . . . , n} be a set of players, Si be the set of pure strategies available
to player i ∈ N , S = ×i∈NSi be the set of strategy profiles, and φi : S → R be
the monetary payoff function of player i ∈ N . Abusing terminology, we refer
to the triple G = 〈N,S, (φi)〉 as a game form, though note that we specify only
the monetary payoffs of the players, not their actual utility payoffs. From now
on we assume that players are concerned exclusively with their own monetary
payoffs–the more money the better.

Let σi ∈ 4(Si) be a mixed strategy for player i ∈ N , and let σ = ×i∈Nσi
be a profile of mixed strategies. Each profile of strategies induces a profile of
lotteries over monetary payoffs–a single lottery for every player. We denote
by Li the space of monetary lotteries for player i generated by profiles of
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mixed strategies. This is a space of probability distributions, which we equip
with the topology of weak convergence. Note that the space as defined is a
separable Hausdorff1 space and therefore is second countable. Therefore, each
mixed strategy profile σ indices a lottery over monetary payoffs for player i
which can be described by its cumulative distribution function Fσ : R→ [0, 1]
satisfying the usual properties i.e. Fσ is nondecreasing, right-continuous and
satisfies limx→0 F (x)σ = 0 and limx→+∞ F (x)σ = 1. A lottery Fσ stochasti-
cally dominates a lottery Fσ′ (denoted by Fσ ≥FSD Fσ′) if Fσ(x) ≤ Fσ′(x)
for every x ∈ R. First order stochastic dominance as just defined is an an-
tisymmetric partial order and is separable in the space of probability dis-
tributions. Let >FSD denote the asymmetric part of ≥FSD, and note that
Fσ >FSD Fσ′ if and only if Fσ ≥FSD Fσ′ and Fσ 6= Fσ′ . We can define a
utility function Ui : Li → R over the space of lotteries for each player i; we
say that the utility function Ui is monotonic if Fσi,σ−i

>FSD Fσ′i,σ−i
implies

Ui(Fσi,σ−i
) > Ui(Fσ′i,σ−i

).

A data set in this case is a finite set of games G, and players’ choices C(G)
for each G ∈ G, where Ci(G) denotes the mixed strategy chosen by player i
in game G. Denote by Sti the set of pure strategies available to player i in
the tth observation, by σt the observed profile of mixed strategies in the tth

observation, and by F tσ the lottery over monetary payoffs for a given player
generated by the mixed strategies in the tth observation. Games may vary for
different observations. We say that a data set is rationalizable with best-
responding behavior if for each player i there is a monotonic utility function
Ui : Li → R such that Ui(F

t
σt
i ,σ

t
−i

) ≥ Ui(F tσ′i,σt
−i

) for every σ′i ∈ 4(Sti ) for every

observation t. Note that we do not require expected utility maximization.

We consider two different assumptions about observability. First, suppose
that we can observe perfectly the mixed strategy of the players. Assume, for
instance, that each subject is asked to write down the exact mixed strategy
(distribution) and this distribution would be used in order to generate the
payoff. Hence, the input for testing best-responding behavior would be the ex-
act mixed strategy. Corollary 1 relies on the first assumption. Second, assume
that although subjects may have a full-support mixed strategy in mind, we
only observe a finite number of choices (realizations of the mixed strategy).
For instance, we only observe a finite number of repetitions of each game. In
this case, the empirical distribution function would be a consistent estimate
of the underlying mixed strategy at every strategy profile. Corollary 2 serves
as an approximate condition for this case.

Corollary 1 The data set (G, C) is rationalizable with best-responding behav-
ior if and only if

(i) there is no σ̃ti ∈ 4(Sti ) such that F tσ̃t
i ,σ

t
−i
>FSD F tσt

i ,σ
t
−i

, and

1 We claim this having in mind the topology of weak convergence, equivalent to the Levy-
Prokhorov metrization of the space. Moreover, since the original space is separable, the space
of Borel measures is also separable.
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(ii) there is no sequence σ̃t1i , . . . , σ̃
tn
i such that F

tj

σ̃
tj
i ,σt

−i

>FSD F
tj+1

σ
tj+1
i ,σt

−i

for

every j ∈ {1, . . . , n− 1} and F tn
σ̃tn
i ,σtn

−i

>FSD F t1
σ
t1
i ,σ

t1
−i

.

The first condition checks that none of the choices is stochastically dom-
inated within the budget set. The second condition actually implements the
GARP search over all possible cycles. Corollary 1 does not imply that game
should be finite; it is applicable to continuous games as well. However, testing
stochastic dominance in a game with a continuum of strategies may not be
feasible in finite time. Moreover, due to finiteness of the data set, we may only
observe finite support distributions. Below we provide conditions which can
be used to test the consistency of data set with GARP given a finite number
of observations.

For given F tσ, denote by J(F tσ) the set of “jumps” of the empirical distribu-
tion function. Denote by F tσ �FSD F sσ′ if F tσ(x) ≤ F sσ′(x′) for every x ∈ J(F tσ)
and x′ = max{y ∈ J(F sσ′) : y ≤ x}, with F tσ(x) < F sσ′(x

′) for some x ∈ J(F tσ)

and x′ = max{y ∈ J(F sσ′) : y ≤ x}. Note that there are F̂ tσ and F̂ sσ′ equal to F tσ
and F sσ′ on J(F tσ) and J(F sσ′) correspondingly such that F̂ tσ >FSD F̂ sσ′ if and
only if F tσ �FSD F sσ′ . If all games are finite, then F tσ, F

s
σ are step functions,

so that F tσ �FSD F sσ′ if and only if F tσ >FSD F sσ′ .

Corollary 2 If

(i) there is no σ̃ti such that F tσ̃t
i ,σ

t
−i
�FSD F tσt

i ,σ
t
−i

, and

(ii) there is no sequence σ̃t1i , . . . , σ̃
tn
i such that F

tj

σ̃
tj
i ,σt

−i

�FSD F
tj+1

σ
tj+1
i ,σt

−i

for

every j ∈ {1, . . . , n− 1} and F tn
σ̃t
n,σ

t
−i
�FSD F t1

σ
t1
i ,σt

−i

,

then the data set (G, C) is rationalizable with best-responding behavior. More-
over, if all games are finite, then conditions are also necessary. In addition if
the space of outcomes is compact, then utility is continuous.

Corollary 2 immediately follows from Corollary 1. The claim about con-
tinuity follows from the fact, that the space of probability distributions over
compact separable space is compact and result from Nishimura et al. (2017)
that guarantees the continuous extension in this case. Finally let us remark
that Corollary 2 provides a computationally efficient way to test the conditions
from Corollary 1 in the case of finite games.

4 Concluding Remarks

We provide revealed preference test for existence of utility that generates the
observed choices in separable Hausdorff space and show that it can be ap-
plied to construct a revealed preference test for the best-responding behavior
in static games. Moreover, additional spillover result is complementary to ap-
plicability of the test for the infinite data sets. Reny (2015) shows that in the
case of linear budgets in the space of real vectors GARP is equivalent to the
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existence of utility function that generates the data even for the infinite data
set. We extend this result further showing that GARP is equivalent to the
existence of the utility function that generates the data even if the budgets
are nonlinear.

Appendix: Proof of Theorem 1

Before we proceed with the proof let us introduce some additional notation.
A set R ⊆ X × X is said to be a preference relation. We denote a set of
all preference relations on X by R. We denote the reverse relation R−1 =
{(x, y)|(y, x) ∈ R}. We denote the symmetric (indifferent) part of R by I(R) =
R∩R−1 and the asymmetric (strict) part by P (R) = R \ I(R). We denote the
incomparable part by N(R) = X ×X \ (R ∪R−1). Note that

≥≡ {(x, y) ∈ X2 : y ≤ x} and >≡ {(x, y) ∈ X2 : y < x}

are preference relations.

Definition A.1 A preference relation R satisfies:

– completeness if (x, y) ∈ R∪R−1 for all x, y ∈ X (or equivalently N(R) =
∅).

– transitivity if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R for all x, y, z ∈
X.

– monotonicity if ≥⊆ R and >⊆ P (R).
– Z-separability if there is a countable Z ⊆ X such that (x, y) ∈ P (R)

implies that there is z ∈ Z such that (x, z), (z, y) ∈ R.

As we already mentioned, Theorem 1 is based in the preference extension
literature.

Definition A.2 A preference relation R′ is an extension of R, denoted R �
R′, if R ⊆ R′ and P (R) ⊆ P (R′).

We say that R is consistent with R′ if P−1(R)∩R′ = ∅. Next we show that
preference relation R′ is an extension of R ⊆ R′ if and only if R is consistent
with R′. Consistency is an operationalizable version of extension which will be
useful in what follows.

Lemma A.1 R � R′ if and only if R ⊆ R′ and P−1(R) ∩R′ = ∅.

Proof (⇒) By definition, R ⊆ R′. Assume P−1(R) ∩ R′ 6= ∅, then there is
(x, y) ∈ P−1(R)∩R′. That is (y, x) ∈ P (R) and (x, y) ∈ R′. At the same time
R � R′ implies that (y, x) ∈ P (R′), that is a contradiction.

(⇐) Assume that R ⊆ R′ but R � R′, that is P (R) * P (R′). Hence, there
is (x, y) ∈ P (R) and (x, y) /∈ P (R′). At the same time R ⊆ R′ implies that
(x, y) ∈ R. Therefore, (y, x) ∈ R, because (x, y) ∈ I(R) = R \ P (R). Hence,
(y, x) ∈ P−1(R) ∩R′ 6= ∅.



A Representation Theorem for General Revealed Preference 7

Let T : R → R be the transitive closure, defined by (x, y) ∈ T (R) if and
only if there is a finite sequence x = s1, . . . , sn = y such that (sj , sj+1) ∈ R.
The transitive closure is an example of a function over preference relations,
which we develop in what follows.

Definition A.3 For any given function F : R→ R, we let

– RF = {R ∈ R|R � F (R)},
– RZF = {R ∈ R and R is Z-separable |R � F (R)}.

RF and RZF are different sets of preference relations that are extended by F .
Next, we define a set of properties of function over preference relations

which allows to guarantee existence of complete fixed point extension of every
consistent preference relation which can be represented by a utility function.

Definition A.4 A function F : R→ R is said to be

– monotonic if R ⊆ R′ implies F (R) ⊆ F (R′) for all R,R′ ∈ R,
– closed if R ⊆ F (R) for all R ∈ R,
– idempotent if F (F (R)) = F (R) for all R ∈ R,
– algebraic if for all R ∈ R and all (x, y) ∈ F (R), there is a finite relation
R′ ⊆ R such that (x, y) ∈ F (R′),

– expansive if for every R = F (R) such that N(R) 6= ∅, there is a nonempty
set S ⊆ N(R) such that R ∪ S ∈ RF and P (R) = P (R ∪ S),

– transitivity-inducing if every preference relation satisfying R = F (R) is
transitive,

– separability-preserving with respect to some countable set Z,
if P (F (P (R))) = P (R) and R ∈ RZF imply that F (R) is Z-separable.

– convergent if F (R) = R implies P (F (P (R))) = P (R).

The first four properties define an algebraic closure (see Demuynck, 2009).
Further we refer to a function which satisfy all of the properties above as a
rational closure. Using rational closures in the proofs allows us to simplify
the reasoning as well as to allow for possible future extensions of the result to
other theories. As we show below, the transitive closure is rational. Other ex-
amples are quasi-linear (Castillo and Freer, 2016) and homothetic (Demuynck,
2009) closures.

Lemma A.2 T is a rational closure, and moreover T (R) = R if and only if
R is transitive relation.

For the proof that T is an algebraic closure as well as for the proof that
every fixed point of transitive closure is transitive see Demuynck (2009). It
remains to be shown that T is expansive, separability-preserving and conver-
gent.

Proof

T is expansive.
Consider a relation R = T (R) and assume that N(R) 6= ∅. Take any element
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(x, y) ∈ N(R) and consider the relation R′ = R ∪ {(x, y), (y, x)}. We claim
that R′ � T (R′), which would prove that T is expansive. It is clear that
R′ ⊆ T (R′). Therefore, we only need to show that P (R′) ⊆ P (T (R′)). Assume,
on the contrary, that there are elements z and w for which (z, w) ∈ P (R′) and
(w, z) ∈ T (R′), and note that (x, y) 6= (z, w) 6= (y, x). From the definition of
T , we know that there is some finite sequence s1, . . . , sn such that s1 = w,
sn = z, and (sj , sj + 1) ∈ R′ for each j = 1, . . . , n− 1. Let m be the minimal
integer such that there is such sequence of length m, and let S be any such
sequence of length m.

Given a sequence S as described above, there is some j such that either
(sj , sj+1) = (x, y) or (sj , sj+1) = (y, x) for some 1 < j < m − 1; otherwise
(w, z) ∈ T (R) = R, contradicting (z, w) ∈ P (R′). Suppose without loss of
generality that (sj , sj+1) = (x, y) for some 1 < j < m − 1; then there is
no k 6= j such that (sk, sk+1) = (y, x) or (sk, sk+1) = (x, y), otherwise S
would not be the shortest sequence from w to z such that every consecutive
pair is in R′. Since (z, w) ∈ P (R′), we have (z, w) ∈ R′. Now consider the
finite sequence y, sj+2, . . . , sm−1, z, w, s1, . . . , sj−1, x. Note that every pair of
consecutive elements of the sequence is in R′ and is different from (x, y) and
(y, x), so every pair of consecutive elements of the sequence is in R. But then
(y, x) ∈ T (R) = R, contradicting (x, y) ∈ N(R).

T is convergent.
Since T (R) = R, we know that R is transitive (Demuynck, 2009). Note that
(x, y) ∈ T (P (R)) if and only if there is a sequence x = s1, . . . , sn = y
such that (sj , sj+1) ∈ P (R). This implies that T (P (R)) = P (R), and hence
P (T (P (R))) = P (R).

T is separability-preserving.
Take Z such that R is Z-separable. Take (x, y) ∈ P (T (R)).Then there is a
sequence x = s1, . . . , sn = y such that (s′j , sj′+1) ∈ R for all j′ = 1, . . . , n− 1
and an index j such that (sj , sj+1) ∈ P (R). Z-separability of R implies that
there is z ∈ Z such that (sj , z), (z, sj+1) ∈ R. Moreover, by construction,
(x, z), (z, y) ∈ T (R). Hence, T (R) is also separable.

Finally we define a revealed preference relation. Given a data set E =
(B, C), let (x, y) ∈ RE if there is B ∈ B such that x ∈ C(B) and y ∈ B. In
the remainder of the proof, we show that there is a complete, transitive and
separable preference relation R∗ such that ≥� R∗ and RE ⊆ R∗ if and only
if the data set satisfies GARP.

We start by showing that rationalizability is sufficient for the existence of
a monotonic utility function that is maximized by the observed choices.

Lemma A.3 The data set E = (B, C) is rationalizable if and only if there is
a complete, transitive and separable R∗ such that ≥� R∗ and RE ⊆ R∗.

Proof Suppose there is such R∗ as stated in the lemma. The existence of a
utility function that represents R∗ is immediately guaranteed by a classical
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theorem from Debreu (1954). Moreover, since ≥� R∗, the utility function is
monotonic. Finally, RE ⊆ R∗ implies that (x, y) ∈ R∗ for every x ∈ C(B) and
y ∈ B. This in turn implies that u(x) ≥ u(y) for every x ∈ C(B) and y ∈ B.
The converse statement follows by construction of a preference relation using
the utility function.

Next, we show that ≥� T (RE ∪ ≥) is necessary and sufficient for the
existence of a complete, transitive and separable relation R∗.

Proposition A.1 The data set E = (B, C) is rationalizable if and only if
≥� T (RE ∪ ≥).

Proof (Proof of necessity in Proposition A.1) We proceed by contradiction.
Suppose ≥� T (RE ∪ ≥); i.e. there is (x, y) ∈>−1 ∩T (RE ∪ ≥). Hence, there
is (y, x) ∈> and (x, y) ∈ T (RE ∪ ≥). Consider a sequence of minimal length
(sj , sj+1) ∈ RE ∪ ≥ for j ∈ {1, . . . , n−1}, with x = s1 and y = sn, that is used
to add (x, y) to T (RE ∪ ≥). If the choices are generated by a monotonic utility
function, then (sj , sj+1) ∈ RE ∪ ≥ implies that u(sj) ≥ u(sj+1). Hence, we
can conclude that u(x) ≥ u(y), by transitivity of ≥. At the same time y > x,
hence monotonicity implies that u(y) > u(x), a contradiction.

Proving sufficiency requires introducing some additional auxiliary results.

Lemma A.4 If F : R→ R is a closed, monotone and algebraic function, then
for any countable Z and every chain

R0 � R1 � · · · � Rα � · · ·

such that Rα ∈ RZF for all α, we have ∪α≥0Rα ∈ RZF .

Proof Let R = ∪α≥0Rα. If the chain is finite R is itself an element (the last
element) of the chain, so that R ∈ RF is immediate. Thus, we only need to be
concerned with infinite chains. We know that each element Rα of the chain is
F -consistent (from Lemma A.1) and Z-separable, and we only need to show
that R is consistent and separable.

For consistency of R, assume that there is (x, y) ∈ F (R) but (y, x) ∈ P (R).
By construction of R we know that (y, x) ∈ Ra for some relation Ra (with
finite index a), and therefore (y, x) ∈ Rα for α ≥ a. Since F is algebraic,
there is some finite relation R′ ⊆ R such that (x, y) ∈ F (R′). Moreover, since
R′ is finite, there is some Rb (with finite index b) in the chain such that
R′ ⊆ Rb. Since F is monotonic, F (R′) ⊆ F (Rb) and therefore (x, y) ∈ F (Rb).
By monotonicity again, (x, y) ∈ F (Rα) for α ≥ b. Hence, there is a finite
c = max{a, b} such that Rc is not consistent, a contradiction.

For Z-separability of R, suppose that (x, y) ∈ P (R). By construction of
R we know that (x, y) ∈ Rd for some relation Rd (with finite index d), and
(y, x) /∈ Rα for any α. Hence (x, y) ∈ P (Rd). From Z-separability of Rd, there
is z ∈ Z such that (x, z) ∈ Rd and (z, y) ∈ Rd. But then (x, z) ∈ R and
(z, y) ∈ R.
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Lemma A.4 shows that in the partially ordered space of separable and con-
sistent extensions of a preference relation every chain has a maximal element.
Therefore, one can apply Zorn’s Lemma to show that there is a maximal el-
ement in the partially ordered space. Next, we use that and prove that this
maximal element has to be complete, transitive and monotone. First we need
to ensure that T (RE ∪ ≥) is a separable preference relation.

Lemma A.5 Let E = (B, C) be a data set. If ≥ is separable, then T (RE ∪ ≥)
is separable.

Proof Denote by Z≥ the countable set with regards to which ≥ is separable
and let ZRE

= ∪B∈BC(B). Note that ZRE
is countable, and therefore so is

Z. Recall that (x, y) ∈ T (RE ∪ ≥) if and only if there is a sequence x =
s1, . . . , sn = y such that (sj , sj+1) ∈ RE ∪ ≥. Take (x, y) ∈ P (T (RE ∪ ≥)),
then there is a j ∈ {1, . . . , n−1} such that (sj , sj+1) ∈ P (RE) or (sj , sj+1) ∈>.
In the first case z = sj has to be a chosen point and therefore an element of
ZRE

; in the second case there is an element z ∈ Z≥, such that sj ≥ z ≥ sj+1.
Finally, by construction of the transitive closure we know that (x, z) ∈ T (RE)
and (z, y) ∈ T (RE). Therefore, T (RE) is a separable preference relation.

Proof (Proof of sufficiency in Proposition A.1) We prove the result for rational
closures in general; recall that T is a transitive closure. Let F be a rational
closure and suppose R ∈ RZF . Let

Ω = {R′ ∈ RZF : F (R) � R′ and F (P (R′)) = P (R′)}

be the set of extensions of F (R) that are themselves Z-separable, can be
extended by F , and are invariant towards applying F to their strict part.
Clearly, � is a partial order (reflexive, antisymmetric and transitive binary
relation) on Ω and we just showed that every chain has an upper bound.
Hence, every preference relation in Ω extends R and by Zorn’s lemma, there
is maximal element of Ω, which we can denote by R∗.

We claim that R∗ is complete. To see this, assume on the contrary that
N(R∗) 6= ∅. If it is not a fixed point of F , then F (R∗) is an extension of R∗

which is Z-separable (since F is separability preserving) and P (F (P (R∗))) =
P (R∗) (since F is convergent). If R∗ is a fixed point of F the existence of such
extension is guaranteed by Lemma A.4.

We claim further that R∗ is a fixed point of F (R), i.e. F (R∗) = R∗. To see
this, note that R∗ ⊆ F (R∗) follows from the fact that R∗ � F (R∗). To get
the reverse, assume that (x, y) ∈ F (R∗) and (x, y) /∈ R∗. From completeness
of R∗, (y, x) must be an element of P (R∗) which contradicts R∗ � F (R∗).
Therefore, F (R∗) ⊆ R∗.

We are left to show that there is a utility function that represents R∗ =
F (R∗). We just showed that R∗ is complete. Since F is a rational closure, R∗

is transitive as well. As we already showed R∗ ∈ Ω ⊆ RZF , it follows that R∗

is Z-separable.

To complete the proof of Theorem 1 we are only left to show that GARP
is equivalent to the consistency condition from Proposition A.1.
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Lemma A.6 The data set E = (B, C) satisfies GARP if and only if ≥�
T (RE ∪ ≥).

Proof (⇒) Assume that there is (x, y) ∈>−1 ∩T (RE ∪ ≥) so there is a vi-
olation of consistency by lemma A.1. Consider the shortest sequence x =
s1, . . . , sn = y such that (sj , sj+1) ∈ RE ∪ ≥ which adds (x, y) to T (RE ∪ ≥).
For all j = 1, . . . , n − 1 either st ≥ sj+1 or there is some Bj such that
xj ∈ C(Bj) and st ∈ Bj . Since ≥ is a partial order, it is transitive, so if
xj ≥ xj+1 for all j ∈ 1, . . . , n − 1 we get x ≥ y which contradicts y > x.
Thus, there must be some subsequence s′1, . . . , s

′
m = y such that s′k ∈ C(Bk),

s′k+1 ∈ B
≥
k , and y > s1. Since y > s1 and y ∈ B≥sm , we get s1 ∈ B>sm , which

contradicts GARP.

(⇐) Assume there is a sequence s1, . . . , sn such that sj+1 ∈ B≤j for j =
1, . . . , n − 1 and s1 ∈ B>n , so there is a violation of GARP. By construction
of T (RE ∪ ≥) we know that (x1, y) ∈ T (RE ∪ ≥) for every y ∈ B≥n . However,
x1 ∈ B>n implies that there is y ∈ B≥n such that (y, x1) ∈>. Hence, (x1, y) ∈
>−1 ∩ T (RE ∪ ≥), which contradicts consistency.
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