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Abstract. We use a revealed preference approach to develop tests for the observed

behavior to be consistent with theories of social preferences. In particular, we provide

nonparametric criteria for the observed set of choices to be generated by inequality

averse preferences and increasing benevolence preferences. These tests can be applied

to games commonly used to study social preferences: dictator, ultimatum, investment

(trust) and carrot-stick games. We further apply these tests to experimental data on

dictator and ultimatum games. Finally, we show how to identify the levels of altruism

and fair outcomes using the developed revealed preference conditions.

1 Introduction

Various studies show that people have other-regarding preferences (see e.g. An-

dreoni, 1990; Andreoni and Miller, 2002; Charness and Rabin, 2002; Fisman, Kariv and

Markovits, 2007; Porter and Adams, 2016; Castillo, Cross and Freer, 2017). Moreover,

other-regarding preferences are widely used in the applied theory (see e.g. Dufwen-

berg et al., 2011; Maccheroni, Marinacci and Rustichini, 2012; Szabo and Szolnoki,

2012; Benjamin, 2015). Significant research has been devoted towards understanding

the motives for the social preferences (see e.g. Charness and Rabin, 2002; Cox, 2004).
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There are (at least) three most persistent motives: social welfare/efficiency, fairness

and reciprocity. These four motives are covered by the two theories tested in this paper:

inequality aversion and increasing benevolence.

Inequality aversion assumes that players extract utility from their own payoffs and

encounters some disutility if payoffs are unbalanced (see e.g. Fehr and Schmidt, 1999;

Bolton and Ockenfels, 2000). Hence, inequality aversion, encompasses the fairness mo-

tive. Increasing benevolence assumes that a player’s willingness to pay for an additional

dollar received by another player increases in the player’s own payoff (see Cox, Fried-

man and Sadiraj, 2008). Underlying intuition implies that the payoff of another player

is a normal good. Hence, increasing benevolence encompasses reciprocity motive and

the social welfare considerations if these are present. Finally, let us note, that both

theories are widely used in applied theory research.1

The paper constructs revealed preference tests for inequality averse and increasing

benevolence preferences. We start with a standard choice environment over linear bud-

gets in which a player decides how to allocate money between herself and another

player (dictator game). Next, we generalize tests to other games commonly used to

study social preferences: ultimatum, trust, and carrot-stick games. Note that social

welfare considerations are not prevalent in these applications. In addition, we apply

the tests to the experimental data on dictator and ultimatum games. There are three

main empirical findings. First, both theories explain behavior better than random

decision-making. Second, both inequality averse and increasing benevolence prefer-

ences are strictly nested within the other-regarding preferences. That is there is a

significant share of population consistent with having other-regarding preferences, but

not consistent with either of nested theories. Third, inequality aversion explains the

behavior of subjects quite well in both dictator (better than increasing benevolence)

and ultimatum game. However, the degree to which inequality aversion prevails over

increasing benevolence different for different populations.

The revealed preference approach, pioneered by Samuelson (1938), originates in the

fact that, we can only observe the choices of players but not their preference relations.

1Inequality aversion is popular in political economy (see e.g. Fong, 2001; Tyran and Sausgruber,

2006; Höchtl, Sausgruber and Tyran, 2012; Durante, Putterman and Van der Weele, 2014; Agranov

and Palfrey, 2015). Increasing benevolence has been used by Cox, Friedman and Sadiraj (2008) to

model the behavior in two-stage games and by (Benjamin, 2015) to guarantee the efficiency in the

bilateral exchange with social preferences.
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Revealed preference theory allows avoiding functional misspecification of preferences.

Starting with Richter (1966) and Afriat (1973) the approach has been applied to con-

struct tests of individual and collective decision-making (see Chambers and Echenique,

2016, for a comprehensive overview of the results). Revealed preference theory has

been applied to other-regarding preferences starting with Andreoni and Miller (2002).

Next, we provide a connection to the previous results on revealed social preferences.

Cox, Friedman and Sadiraj (2008) provides necessary revealed preferences conditions

for observed choices to be consistent with increasing benevolence and provides a method

of comparing subjects in terms of altruism if the demand functions are completely ob-

served. We show that conditions proposed are also sufficient and that the comparisons

in terms of altruism can be applied even if only the finite set of choices is observed.2

Deb, Gazzale and Kotchen (2014) constructs revealed preference tests for a special case

of inequality aversion (inequality aversion in differences) if budgets are linear. The test

we construct does not depend on the specification of the inequality measure. That is,

if a player is consistent with inequality averse preferences, she is consistent with in-

equality aversion preferences given any measure of inequality. Moreover, the test does

not require linearity of budgets and therefore, has a larger scope of applications.

The remainder of this paper is organized as follows. Section 2 presents the general

set up and the revealed preference tests as well as extensions of the test for other games.

Section 3 provides empirical illustrations. Section 4 presents the partial identification of

the level of altruism and notion of fair outcome using the revealed preference conditions.

Section 5 provides concluding remarks. All proofs are collected in Appendix A.

2 Theoretical Framework

We consider a dictator game, which is structured as follows. A player decides how

to allocate a given amount of money between herself and the other player, and the

chosen allocation is implemented. This game can be written as a decision problem, in

which one player chooses a two-dimensional vector allocation: payoff to self and payoff

to another player.

Let X ⊆ R2
+ be the set of alternatives. For every x ∈ X let x = (xs, xo), where

xs is the payoff to self and xo is the payoff to another player. Let p ∈ R2
++ be a price

2The original paper compared the altruism levels either pointwise or if the entire demand function

is observed. However, we preserve the assumption of the Cox, Friedman and Sadiraj (2008) that two

players had to face the same experiment (making choices over similar budgets).
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vector. Income is normalized to one at every point, and the budget set is defined as,

B(p) = {x ∈ X : px ≤ 1}. Let E = (xt, pt)Tt=1 be an experiment, which consists of

T choices (xt) at a given price vector (pt). Moreover, we assume that chosen points

xt are such that ptxt = 1.3 A function u(x) : X → R rationalizes the consumption

experiment E if for all y ∈ B(pt), u(xt) ≥ u(y) for every t ∈ {1, . . . , T}.
In what follows we present revealed preference tests for each of the theories of social

preferences. We start with other-regarding preferences. Next, we present the test for

inequality averse preferences and the test for increasing benevolence preferences. Next,

we show that the latter two theories are independent. Finally, we show how to apply

the tests to ultimatum, trust and carrot-stick games.

2.1 Other-Regarding Preferences (OR). Other-regarding preferences assume

that a player cares about her own payoff and the payoff of the recipient. Theory

does not make an explicit assumption of whether the player derives utility or disutility

from xo.

Definition 1. An experiment E = (xt, pt)Tt=1 is rationalizable with other-regarding

preferences if there is a continuous and locally non-satiated utility function u(xs, xo)

that rationalizes E.

Other-regarding preferences include utility function that is monotone in both payoffs

(altruistic preferences) as a special case. Hence, rationalizability with other-regarding

preferences can be deduced to the regular case of existence of locally non-satiated utility

function over two-dimensional space of real outcomes.

Definition 2. An experiment E = (xt, pt)Tt=1 is consistent with Generalized Axiom

of Revealed Preference (GARP) if and only if we have pt1xtn ≤ pt1xt1 for all

sequences xt1 , . . . , xtn, such that ptj+1xtj ≤ ptj+1xtj+1, j ∈ {i, . . . , n− 1}.

Figure 1 presents the violation of GARP. An allocation x1 is chosen given prices p1,

therefore, it is better than any allocation which is available at p1. At the same time x2

is available at p1, therefore, x1 is strictly directly revealed preferred to x2. Finally x2

is directly revealed preferred to x1, since x1 is available at p2.4 Hence, observed choices

could not be generated by maximization of utility function.

3This technical assumption is dictated by non-satiation of preferences. All the further reasoning

can be done without this assumption using more complicated notation.
4Formally, this is a violation of Weak Axiom of Revealed Preferences (WARP) and in the case of

two-dimensional linear budgets WARP is equivalent to GARP (see e.g. Rose, 1958). However, we
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Figure 1. Other-Regarding Preferences and GARP

Proposition 1 (Afriat (1967); Diewert (1973); Varian (1982)). An experiment is ra-

tionalizable with other-regarding preferences if and only if it satisfies GARP.

2.2 Inequality Aversion (IA) Inequality aversion assumes that player gets utility

from her own payoff and disutility if payoffs are unbalanced, In order to quantify the

“unbalancedness” of the payoffs we use the inequality measure. Some examples of

commonly used inequality measures are presented below.

– Inequality in differences (e.g. Fehr and Schmidt, 1999; Tyran and Sausgruber,

2006; Agranov and Palfrey, 2015):

f(xs, xo) =

xs − xo if xs ≥ xo

β(xs − xo) if xo > xs

where β ≤ 1.

– Inequality in shares or Lorenz curve5 (e.g., Bolton and Ockenfels, 2000):

f(xs, xo) =


xs

xs+xo
− 1

2
if xs ≥ xo

β
(

xs
xs+xo

− 1
2

)
if xo > xs

where β ≤ 1.

– Gini Index f(xs, xo) = |xs−xo|
2(xs+xo)

(e.g. Durante, Putterman and Van der Weele,

2014)

prefer to introduce the GARP, since further we deal with nonlinear budgets for which the result does

not necessarily hold.
5Intuition for Lorenz curve is the same as for inequality in shares for the two-player case since the

shape of the curve is determined by deviation of the lower payoff from equal share split.
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Further we present an axiomatization of the inequality measure. Closely related ax-

iomatization has been used by Fehr, Kirchsteiger and Riedl (1998) for the gift exchange

game. This axiomatization generalizes the examples of inequality measures presented

above.

Definition 3. A continuous function f(xs, xo) is an inequality measure if:

– f(xs, xo) ≥ 0, for every xs, xo;

– f(xs, xo) = 0 if and only if xs = xo;

– if xs > xo, then f(xs, xo) is decreasing in xo and increasing in xs;

– if xs < xo, then f(xs, xo) is increasing in xo and decreasing in xs;

– f(max{xs, xo},min{xs, xo}) ≤ f(min{xs, xo},max{xs, xo}).

Further we present the definition for rationalization with inequality averse prefer-

ences. This rationalization, in general, depends on the inequality measure chosen.

Definition 4. Let f(xs, xo) be an inequality measure. An experiment is rationaliz-

able with inequality averse preferences if there is a continuous utility function

u(xs, f(xs, xo)) increasing in xs and decreasing in f(xs, xo) that rationalizes it.

Rationalizability with inequality averse preferences requires every player to choose to

allocate to herself at least as much as to the other player. This condition is necessary,

because if xs < xo, then the player could obtain greater utility by increasing xs at

the cost of xo. Hence, player can set up x′s > xs and x′o < xo such that x′s ≤ x′o.

In this case f(x′s, x
′
o) < f(xs, xo) and therefore, (x′s, x

′
o) should be strictly better than

(xs, xo). That is the player has chosen a strictly dominated outcome and therefore

cannot be rationalized with maximization of inequality averse utility function. This

condition together with GARP is sufficient for rationalizability with inequality averse

preferences.

Proposition 2. Let f(xs, xo) be an inequality measure. An experiment is rationalizable

with inequality averse preferences if and only if it satisfies GARP and xts ≥ xto for every

t ∈ {1, . . . , T}.6

6The proposition is presented assuming budgets to be linear, while the proof is provided for non-

linear budgets as well. This is done to avoid further abuse of notation in the main text and state the

result which can be applied to dictator as well as to other games studied further.
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Condition for rationalization with inequality averse preferences does not depend on

the inequality measure. That is, condition is the same for any inequality measure.

Hence, the following corollary immediately follows from Proposition 2.

Corollary 1. An experiment is rationalizable with inequality averse preferences, if and

only if it is rationalizable with any inequality measure.

The implications of Corollary 1 are two-fold. On one hand, we cannot exploit the

particular structure of the inequality measure to refine the test. On another hand, we

can test the comprehensive assumption of inequality aversion, which does not depend

on the particular form of the inequality measure to be assumed.

2.3 Increasing Benevolence (IB) Increasing benevolence means that a player’s

willingness to pay for an additional dollar given to the other player is increasing in

own payoff xs.
7 Unlike in the preiovous cases we use the statement in terms of the

demand functions. Denote the demand function for xo by Do(ps, po) and the demand

for xs by Ds(ps, po). Since we operate in a two-dimensional case, one demand can be

immediately derived from another Ds(ps, po) = 1−poDo(ps,po)
ps

.

Definition 5. An experiment is rationalizable with increasing benevolence pref-

erences if there is a rational demand function Do(ps, po) such that

– Do(p
t
s, p

t
o) = xto, and

– po
ps
≥ p′o

p′s
and 1−p′oDo(ps,po)

p′s
≥ Ds(ps, po) implies Do(ps, po) ≤ Do(p

′
s, p
′
o).

Increasing benevolence is equivalent to normality of xo. A good is said to be normal

if its demand is increasing function of income. Necessity of normality for increasing

benevolence is quite obvious. Figure 2 illustrates why normality is sufficient for in-

creasing benevolence. Assume that x1 is a point chosen from the budget defined by p1;

then, the new budget is such that ps
po
≥ p′s

p′o
(xs is relatively more expensive in the new

budget) and the old bundle is attainable. The dashed line shows the parallel downward

shift of the budget defined by p2. Hence, the choice from the dashed budget should be

7This can be defined more formally with the marginal rate of substitution – WTP = 1/MRS =
uxo

uxs

is increasing in xs. We use the reduced form definition of this, which is necessary but not sufficient.

However, it is sufficient to guarantee the empirical implications described by Cox, Friedman and

Sadiraj (2008). Moreover, if we defineMRS via the ratio of the inverse demand functions (to guarantee

the existence of MRS), some sufficiency result can be inferred. Although, one can easily check that

if we, for instance, assume that xs and xo are substitutes, then the demand conditions would be

sufficient for the MRS version.
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xs

xo

p2p1
x1

Figure 2. Increasing Benevolence and Normality

with at least as much xo as from p1 (due to the substitution effect). Furthermore, since

dashed and p2 budgets are different only in income, then normality would guarantee

that the choice from p2 would be “above” the x1.

Definition 6. An experiment E = (xt, pt)Tt=1 is consistent with Normality Axiom of

Revealed Preference (NARP) if and only if for all observations t, v ∈ {1, . . . , T}
if pto/p

t
s ≤ pvo/p

v
s and xvs ≤

1−ptoxvo
pts

, then xvo ≤ xto.

Equivalence between increasing benevolence and normality of demand in xo allows

us to employ the result from Cherchye, Demuynck and De Rock (2018) as the test for

increasing benevolence.8

Proposition 3 (Cherchye, Demuynck and De Rock (2018)). An experiment is ratio-

nalizable with increasing benevolence preferences if and only if it satisfies NARP.

2.4 Independence of Nested Theories Further we show that nested theories

(inequality aversion and increasing benevolence) are independent. Moreover, they are

not exhaustive – there can be an other-regarding preference relation, neither inequality

averse nor increasing benevolent. Hence, there are four cases: preferences consistent

with both nested theories, with only one of them or with neither of them. Next we

provide examples and intuition for each case.

8If a reader is not convinced by the equivalence argument above, please see p.375 in Cherchye,

Demuynck and De Rock (2018) where it is directly proven that the increasing benevolence property

is satisfied.
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xs

xo

p2

p1
x1

x2 xs

xo

p2p1
x1

x2

(a) IA but not IB (b) IB but not IA

xs

xo

p2

p1

x1 x2 xs

xo

p2

p1

x1

x2

(c) IA and IB (d) OR, but neither IA nor IB

Figure 3. Independence of Inequality Aversion and Increasing Benevolence

Consider budgets from Figure 3. Inequality aversion predicts choices to be at or

below the 45 degree line from the origin. Increasing benevolence requires the choice

from p2 to have more xo than the choice from p1. Figure 3(a) presents the case for

the preferences to be consistent with inequality averse preferences, but not increasing

benevolent. Indifference curves presented could be generated by the utility function

u(xs, xo) = x3s − max(|xs − xo|, 1). It guarantees that for p1 the optimal point is an

allocation close to equal split, while for p2, the optimal choice is to spend all income

on xs. Therefore, this is a violation of NARP and choices are not consistent with

increasing benevolence preferences. Figure 3(b) presents the case of preferences that

are increasing benevolent, but not inequality averse. Assume that player maximizes

the utility function u(xs, xo) = xsx
2
o. Then, for hight enough incomes (and low enough

po) the choice would lie above 45 degree line (xs < xo). Hence, such preferences

would not be consistent with inequality aversion. Figure 3(c) presents example of
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preferences consistent with both theories. Examples of such preference relations include

selfish preferences (u(xs, xo) = xs, presented on the figure) and perfect complements

(u(xs, xo) = min(αxs, xo) with α ≥ 1). Finally, Figure 3 presents example of other-

regarding preferences not consistent with either of nested theories. Example of such

preference is u(xs, xo) = 4 max(xs, 3) + xo. Idea behind, is that for low income, player

only cares about xo and as soon as she gets enough income, she becomes more selfish.

Therefore, choice from p1 would be above 45 degree line at the same time in the budget

p2 player would choose less of xo then under p1.

2.5 Revealed Social Preferences Beyond Dictator Games Extending the the-

ory of revealed social preferences to other games is of particular importance, because

different motives (that can depend on the game) can trigger different theories to per-

form better (see for instance Engellman and Strobel, 2004). Further we show how

the revealed preference tests of social preferences can be applied for ultimatum, invest-

ment and carrot-stick games. Following Cox, Friedman and Sadiraj (2008) we consider

second-movers in the two-stage games.

2.5.1 Ultimatum Game. First-mover is given an endowment mt and asked to allocate

it between herself and a second-mover, given that ptoxo + ptsxs = mt, where xo denotes

the first-mover’s earnings and xs denotes the second-mover’s earnings. Recall that

we analyze the game from the point of view of the second-mover, therefore, payoff to

proposer is considered to be as xo and payoff to responder as xs. Second-mover decides

whether to accept or reject the proposed allocation. If the allocation is accepted, it is

implemented; otherwise, both players get zero.

xs

f(xs, xo)

At

Rt

(f(xts, x
t
o), xts)

Figure 4. Acceptance and Rejection regions in Ultimatum Game
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The case of other-regarding preferences is already considered in Castillo, Cross and

Freer (2017). Increasing benevolence is not well-defined for the binary choices. Hence,

we are left to test for inequality aversion. The experiment, on the side of the responder,

is a sequence of binary decisions between proposed allocations and zero payoffs. Figure

4 presents the decision problem, as well as acceptance (At) and rejection (Rt) regions

in (f(xs, xo), xs) coordinates. To be more precise, acceptance and rejection regions can

be defined as follows.

At = {(f(xs, xo), xs) : xs ≥ xts and f(xs, xo) ≤ f(xts, x
t
o)}

and

Rt = {(f(xs, xo), xs) : xs ≤ xts and f(xs, xo) ≥ f(xts, x
t
o)}

If point yt = (f(xts, x
t
o), x

t
s) was accepted, then it is revealed preferred to zero. Hence,

every point in which is strictly better than yt should also be better than zero (by

transitivity), thereofre, should be accepted. If yt is rejected, then zero is revealed

better than yt. Hence, every point which is strictly worse than yt is also strictly worse

than zero (by transitivity), therefore, should be rejected. Note that acceptance and

rejecting regions correspond to the better than and worse than sets imputed from the

partial order imposed by inequality aversion. Hence, if yt is accepted, then every point

from its acceptance region should be accepted and if yt is rejected, then every points

from its rejecting region should be rejected. Denote the set of all accepted allocations

by Ax and the set of all rejected allocations by Rx.

Corollary 2. Let f(xs, xo) be a measure of inequality. An ultimatum game experiment

is rationalizable with inequality averse preferences if and only if

Rx ∩

( ⋃
xt∈Ax

At

)
= ∅

and

Ax ∩

( ⋃
xt∈Rx

Rt

)
= ∅.

Acceptance and rejection regions translates for different measures of inequality.

Hence, performance of different measures of inequality can be distinguished. To il-

lustrate this, we consider examples of inequality aversion in differences (f(xs, xo) =

|xs − xo|) and inequality aversion in shares (f(xs, xo) =
∣∣∣ xs
xs+xo

− 1
2

∣∣∣). We choose this
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At

Rt

xs

xo

Slope of 1

Slope of 1

At

Rt

xs

xo

(a) in Differences (b) in Shares

Figure 5. Inequality Aversion in Ultimatum Game for Different Mea-

sures of Inequality (xs > xo)

measures for the matter of illustration, since they are among the most widely applied

in the literature.

Figure 5(a) shows the acceptance and rejection regions for the inequality aversion

in difference. Every point on the line of slope one which goes through x has the same

inequality level as x. Hence, the area between two dashed lines of slope one delivers

the inequality level which is less or equal than inequality level at x. Therefore, the area

between these lines and above the horizontal dashed line (current level of xs) is strictly

better than x and specifies the acceptance region. Rejection regions (shaded regions

below the horizontal line) give the second-mover lower payoff and increase inequality,

therefore, is strictly worse than x according to the inequality averse partial order.

Figure 5(b) shows acceptance and rejection regions for inequality aversion in shares.

Every point on the line that goes through zero and x has the same inequality level as

x. The acceptance and rejection regions constructed by exactly the same logic as on

Figure 5(a), although with different lines that preserve inequality. Comparing rejection

and acceptance regions from Figures 5(a) and 5(b), we can see that they are different.

Therefore, these measures of inequality have different testable implications.

2.5.2 Investment Game. Players start with an endowment of I. The first-mover sends

an amount s ∈ [0, I] to the second-mover who receives ks, for k > 1. Then the

second-mover returns an amount of r ∈ [0, ks], and the first-mover receives pr, where

1 ≤ p ≤ k. The final payoffs are xo = I − s+ pr and xs = I + ks− r for the first- and
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second-mover correspondingly. Hence, a family of investment games with different p

and different s sufficient price generates variation to apply revealed preference tests.

xs

xo

Bt

Bs

xs

xo

Bt

(a) Violation of GARP (b) Downward closure of budgets.

Figure 6. Second-mover’s budget set in the investment game.

Figure 6(a) presents the budget set of the second-mover and the possible violation

of GARP in this case. Choices on the horizontal segments are not feasible. However,

to construct the precise test we need to take the downward closures of the budget sets

presented at the Figure 6(b). Denote by.

B↓ = {y : there is x ∈ [0, ks] such that x ≥ y}

the downward closure of B and by B↓↓ the interior of the downward closure (replacing

the weak inequality with strict one). Assume k to be fixed over the observations,

hence, investment game experiment consists of observed triples of st (determines the

income), pt (relative price of returning) and xt (chosen point). Hence, we can restate

GARP using x ∈ B↓ instead of px ≤ m and x ∈ B↓↓ instead of px < m. Using the

new notation Proposition 1 can be immediately applied (using the Forges and Minelli,

2009, result) therefore, the proof is omitted.9

9Formally we also have to assume that burning money is feasible, i.e. players can choose in the

interior of the budget set. Although, the necessity of GARP holds for both altruistic (player gets

utility from both xs and xo) and spiteful (player gets utility from own payoff and disutility from xo)

preferences, while sufficiency can be inferred from Nishimura, Ok and Quah (2017) result. Idea behind

is that spiteful player will always choose to return nothing and this choice pattern is consistent with

GARP.
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Corollary 3. An investment game experiment E = (xt, Bt)Tt=1 is rationalizable with

other-regarding preferences if and only it satisfies GARP.

Next, we consider increasing benevolence preferences. If all choices are such that

xt ∈ Bv if and only if pvxt ≤ st for every t, v ∈ {1, . . . , T}, then Proposition 3 can be

applied to test for increasing benevolence. This assumption reduces the budgets to the

linear case of dictator game. Considering the inequality aversion, we can immediately

apply the Proposition 2, substituting the linear definition of the budget with the general

definition. The reason behind is that since st ≥ 0, then xs = xo is available even for

s = 0 and clearly available for every s > 0.

Corollary 4. Let f(xs, xo) be an inequality measure. An investment game experiment

E = (xt, Bt)Tt=1 is rationalizable with inequality averse preferences if and only if it sat-

isfes GARP and xts ≥ xto for every t ∈ {1, . . . , T}.
Moreover, if an investment game experiment experiment is rationalizable with an in-

equality measure, then it is rationalizable with any inequality measure.

2.5.3 Carrot-Stick Game. Both players start with an endowment of I. The first-

mover chooses the amount to be sent s ∈ [0, I]. Then, the second-mover can “return”

the amount r ∈ [−ks, ks] and the first-mover receives pr. The final payoffs are xo =

I − s+ pr and xs = I + ks− |r|. Hence, the family of carrot-stick games with different

different p and different s generates sufficient price variation. Carrot-stick experiment

is defined by st, pt and xt.

xs

xo

Bt

Bs

xs

xo

xs

xo

(a) B (b) B↓ (c) B↑

Figure 7. Second-mover’s budget set in the carrot-stick game.

Figure 7(a) presents the budget sets that the second-mover faces. Unlike in the

cases of dictator and investment games there implications are different for “altruistic”
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and “spiteful” preferences, because there are both “upper” and “lower” borders of the

budgets. Preferences are said to be altruistic if utility is increasing in both xs and

xo. Preferences are said to be spiteful if utility is increasing in xs and decreasing

in xo. Therefore, the altruistic player use only carrot, while spiteful use only stick,

and each of the choices is dominated for the different type of player. Denote by Bt

the budget (as on Figure 7) based on which the player makes a choice. Denote by

B↓[↑] = {(x′s, x′o) : (xs, xo) ∈ B such that xs ≥ x′s and x′o ≥ (≤)xo}. Denote by

B↓↓[↑↑] = {(x′s, x′o) : (xs, xo) ∈ B such that xs ≥ x′s and x′o ≥ (≤)xo} with at least one

inequality being strict. Figures 7(b) and 7(c) illustrate the construction of B↓ and B↑

respectively. The shaded areas show the part of the space added by taking the closure

of the budget.

Further we refer to the A-GARP as to GARP which uses x ∈ B↓ instead of px ≥ 1

and x ∈ B↓↓ instead of px < 1 and to S-GARP as to GARP which uses x ∈ B↑ instead

of px ≥ 1 and x ∈ B↑↑ instead of px < 1. We als claim that a choice is a violation of

A-GARP is it is in B↓↓ and a choiceis a violation of S-GARP if it is in B↑↑. Hence,

we can immediately provide the criteria for rationalization with altruistic and spiteful

preferences using the result from Nishimura, Ok and Quah (2017).

Corollary 5. A carrot-stick experiment E = (xt, Bt)Tt=1 is rationalizable with altruistic

[spiteful] preferences if and only if it satisfies A-GARP [S-GARP].

Denote by pt price vector, that corresponds to the “upper boundary” of Bt. If all

choices are such that xt ∈ Bv if and only if pvxt ≤ 1 for every t, v ∈ {1, . . . , T}, then

Proposition 3 can be applied to test for increasing benevolence. Recall that increasing

benevolence is nested within altruistic preferences. Therefore, the stick is not consistent

with increasing benevolent preferences.

Next we consider inequality-averse preferences. As in ultimatum game, in the carrot-

stick game different measures of inequality have different empirical implications.10 Fig-

ure 8(a) presents the case with an inequality averse (in differences) player using the

stick. The shaded area presents the set of points better than the chosen action. None

of the points that dominate the chosen one are in the budget. Hence, the choice of

stick can be optimal if a player has inequality averse preferences. Figure 8(b) shows

that if p is low enough, then using stick is no longer rational. Figure 8(c) shows that

10The test given the measure of inequality can be easily formulated following the result of Nishimura,

Ok and Quah (2017) as we have done for the case of ultimatum game.
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Figure 8. Using the stick with inequality averse preferences.

testable implications in the carrot-stick game would depend on the particular measure

of inequality, because the budget set contains the points that dominate the chosen one.

Hence, the same choice is consistent with inequality aversion in differences (Figure

8(a)), but not with inequality aversion in shares (Figure 8(c)). Note that inequality

aversion is the only of the above-mentioned theories that can rationalize a player who

uses both carrot and stick.

Further we present restrictions on the experimental design which allows us to apply

test for inequality aversion without making parametric restrictions about the measure

of inequality. Idea behind is that we need to restrict the experiment to the collection

of budgets such that xs = xo is available. In order to implement this, it is enough

to either guarantee the second-mover the initial endowment of I. The same logic

as for investment game implies that for every s ≥ 0, the equal outcome is available.

Alternatively, one can restrict the minimal amount sent by the first-mover to s ≥ I
k+1

to

guarantee that equal outcome is available. Hence, in this case the version of Proposition

2 can be applied to test for rationalizability with inequality aversion (using the altruistic

version of GARP from Corollary 5). Finally, in this case inequality averse player would

use carrot only and never use a stick.

Corollary 6. Let f(xs, xo) be an inequality measure and E = (xt, Bt)Tt=1 be carrot-stick

experiment such that xs = xo outcome is available at every budget set. A carrot-stick

experiment E = (xt, Bt)Tt=1 is rationalizable with inequality averse preferences if and

only if it satisfies A-GARP and xts ≥ xto for every t ∈ {1, . . . , T}.
Moreover, if a carrot-stick experiment is rationalizable with an inequality measure, then

it is rationalizable with any inequality measure.
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Let us conclude with a remark on possible experimental design in order to apply the

tests. Design of experiment directly follows from the construction of the test. In order

to guarantee the sufficient price variation one can use discretized first-mover’s problem

with a strategy method. Hence, the second-mover would have to make decisions over

the budgets corresponding to every possible decision (out of the finite set) the first-

mover can make for every budget proposer would face (see Castillo and Cross, 2008;

Castillo, Cross and Freer, 2017, for the case of ultimatum game). Strategy method

allows to avoid possibility of falling short on the power of test due to specific decisions

first mover made.

3 Empirical Illustration

We present evidence from dictator and ultimatum games. While dictator game allows

for comprehensive test of inequality aversion hypothesis (see Corollary 1), ultimatum

game (theoretically) allows to distinguish between different measures of inequality.

3.1 Dictator Game We use data from two studies of dictator games. In both

studies, subjects repeatedly played a dictator game with different relative prices and

endowments. In every period subjects were asked to allocate tokens between themselves

and another person, choosing a point on a linear budget ptsxs + ptoxo ≤ mt. The first

study (Fisman, Kariv and Markovits, 2007) contains results of experiments with 76

undergraduates from UC Berkeley.11 In this study, every subject faced 50 different

budgets with randomly determined prices. The second study (Porter and Adams, 2016)

contains results of experiments with 89 subjects recruited from the general population

from the southeast region of the UK. In this study every subject faced 11 different

budgets with predetermined prices.

3.1.1 Consistency Results When applied to data, notions of rationality prove to be

very strict at least for the first data set: no more than 16% of subjects can be ratio-

nalized with other-regarding preferences and no more than 11% with nested theories.

Therefore, it makes sense to relax the notion of rationality and allow for some probabil-

ity that people make mistakes. For this purpose, we use the Houtman-Maks index

(HMI).12 HMI is the maximum fraction of data that can be rationalized by a given

11Experiment contains two other treatments which we do not consider in our analysis. One of the

treatments uses step-shaped budgets and another is a dictator game with two recipients.
12See Houtman and Maks (1985); Heufer and Hjertstrand (2015); Dean and Martin (2009). We use

the HMI because it is the only index that can be applied to test Inequality Aversion. Critical Cost
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theory. That is, if in a total of T observations, the maximum subset which is consis-

tent with the theory is τ , then HMI = τ/T . For the technical details regarding the

implementation of the HMI index, see Supplementary Materials. We report results for

the HMI level of .9. The results are robust to other levels of HMI (see Supplementary

Materials). The HMI level of .9 allows for deviations from rationality in no more than

10% of budgets.

Next, we want to control for false positives. A false positive is the probability that

a random decision making would look consistent with the test. We use two procedures

which differ in the assumption about the random behavior. First is the Bronars (1987)

power, conducted by generating 1000 random subjects who make decisions uniformly

distributed along the budget line. Power of the test is computed as the fraction of

random subjects who fail to perform consistently with the test. The second is the

bootstrap power (see e.g. Cox, 1997; Harbaugh, Krause and Berry, 2001; Andreoni

and Miller, 2002). This measure controls for possible behavioral rules that can cause

false positive results even if people would take decisions at random. To compute the

bootstrap power of the test, we calculate the empirical distribution of the shares of

income spent on each commodity – in our case the subject’s payoff and the other’s

payoff – and simulate the pseudo subjects who make their choices at random but

distributed according to the empirical distribution function.

Last, to compare pass rates controlling for the power we use the predictive success

index (PSI) introduced by Selten (1991).13 The predictive success index is defined

as the difference between the share of people that satisfies an axiom at the given level

of HMI and the probability that random choices will satisfy the axiom at the same

level of HMI. This index ranges between −1 and 1, with −1 meaning no subject passes

while all random subjects pass and 1 meaning every subject passes while none of the

random subjects do. If PSI is greater than zero, then theory describes the behavior

better than random choice, and if PSI is less or equal to zero, then the random choice

explains the observed behavior better.

Efficiency Index introduced by Afriat (1973) would not adequately work in the context of inequality

aversion. The money pump index introduced by Echenique, Lee and Shum (2011) is defined for GARP

only. The swaps index proposed by Apesteguia and Ballester (2015) can be applied only in the context

of finite choice sets.
13Methodology of using predictive success index in the revealed preference context was introduced

by Beatty and Crawford (2011). Statistical interpretation of the index which allows us to construct

confidence intervals was proposed by Demuynck (2015).
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Table 1 shows results of testing other-regarding preferences for both datasets. The

second column presents the pass rates (share of subjects who pass the test with HMI at

least .9). The third and fourth columns present the power computations according to

Bronars and the bootstrap methods.14 Last two columns present the predictive success

index using Bronars and bootstrap powers.

Power of Test PSI
Theory Pass Rate Bronars Bootstrap Bronars Bootstrap

Fisman, Kariv and Markovits (2007) data

Other-regarding 58 (76.32%) 100.00% 99.63% 0.76 0.76
95% conf. interval (65.18% - 85.32%) (99.99% - 100.00%) (99.58% - 99.67%) (0.67 - 0.86) (0.66 - 0.86)

Porter and Adams (2016) data

Other-regarding 81 (91.01%) 68.72% 80.01% 0.60 0.71
95% conf. interval (83.05% - 96.04%) (68.41% - 69.02%) (79.75% - 80.28%) (0.54 - 0.66) (0.65 - 0.77)

Table 1. Results for Other-Regarding Preferences

Subjects (in both experiments) are consistent with having other-regarding prefer-

ences. In particular 76% of subjects in the first dataset and 91% in the second one are

consistent with having other-regarding preferences. Results are robust to controlling

for the power of test.

Inequality aversion and increasing benevolence are nested within the other-regarding

preferences model. That is, a subject can only be consistent with having inequality

averse and/or increasing benevolence preferences, if she is consistent with having other-

regarding preferences. Hence, we report a nested theory analysis; that is, results are

presented for the subexperiment, which consists only of subjects who are consistent

with other-regarding preferences hypothesis (given HMI=.9).

Table 2 presents results for nested theory analysis. Structure of the table is the

same to the one of Table 1. Both theories are significantly restrictive – there is sig-

nificant share of population (15-79%) which is consistent with having other-regarding

preferences, but not with increasing benevolence or inequality averse preferences. In

addition, while 55% of subjects are consistent with inequality averse preferences in

14Power is different for different data sets first of all, because of the different amount of budgets:

50 vs 11. Difference in power is even larger for increasing benevolence. Experiment of Porter and

Adams (2016) is aimed at testing GARP, which rather requires price variations while NARP requires

rather income variation. Income variation is higher in Fisman, Kariv and Markovits (2007) data set

because of the larger amount of budgets.



20 A. DOLGOPOLOV AND M. FREER

Power of Test PSI
Theory Pass Rate Bronars Bootstrap Bronars Bootstrap

Fisman, Kariv and Markovits (2007) data

Inequality Aversion 32 (55.17%) 100.00% 92.58% 0.55 0.48
95% conf. interval (41.54% - 68.26%) (100.00% - 100.00%) (92.39% - 92.76%) (0.42 - 0.68) (0.35 - 0.61)

Increasing Benevolence 12 (20.69%) 100.00% 100.00% 0.21 0.21
95% conf. interval (11.17% - 33.35%) (100.00% - 100.00%) (100.00% - 100.00%) (0.10 - 0.31) (0.10 - 0.31)

Porter and Adams (2016) data

Inequality Aversion 51 (62.96%) 98.62% 90.50% 0.62 0.53
95% conf. interval (51.51% - 73.44%) (98.55% - 98.70%) (90.31% - 90.69%) (0.51 - 0.72) (0.43 - 0.64)

Increasing Benevolence 69 (85.19%) 85.68% 65.67% 0.71 0.51
95% conf. interval (75.55% - 92.10%) (85.44% - 85.90%) (65.35% - 65.98%) (0.63 - 0.79) (0.43 - 0.59)

Table 2. Results for Nested Theories

Fisman, Kariv and Markovits (2007) data, only 21% of them is consistent with having

increasing benevolence preferences. However, the results are opposite for the Porter

and Adams (2016) data: 63% of subjects are consistent with having inequality averse

preferences and 85% of them are consistent with having increasing benevolence pref-

erences. To sum up, inequality aversion appears to describe data better in the first

dataset; and increasing benevolence performs at least as well as inequality aversion in

the second one (difference in PSIs is not statistically significant). This inconsistency

between the two datasets provides evidence in line with Fehr, Naef and Schmidt (2006),

who showed that social preferences may depend on the demographic characteristics of

the population.

3.1.2 Mixed Types Analysis None of the nested theories can explain the behavior of

the entire sample. At the same time, both theories perform well even conditioning on

their power. In addition, different theories have quite different empirical implications,

and the correlations between pass rates for inequality aversion and increasing benevo-

lence are quite low: .22 (with a confidence interval of [−.01, .42]) for Fisman, Kariv and

Markovits (2007) data and .51 (with a confidence interval of [.34, .65]) for Porter and

Adams (2016) data.15 This shows that there is a non-trivial probability that different

15Given that the tests are binary, appropriate statistic is φ-coefficient. It is a version of correlation

coefficient for two binary variables. Both logit and probit regression coefficients are insignificant for

Fisman, Kariv and Markovits (2007) data: logit regression coefficient is 1.2 (with 95% confidence

interval of [−0.06, 2.61]) and probit regression coefficient is 0.75 (with 95% confidence interval of

[−0.04, 1.57]). That is we can not reject that two nested theories are unrelated for Fisman, Kariv

and Markovits (2007) data. For Porter and Adams (2016) data the relationship is much stronger:

logit coefficient is 3.09 (with 95% confidence interval of [1.74, 4.99]), probit coefficient is 1.84 (with
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subjects can be consistent with different notions of rationality. Therefore, we perform

a mixed type analysis. Main goal of this exercise is to find out which theory is the

most appropriate to describe behavior at the subject level, while the previous analysis

focused at the sample level.

HMIOR ≥ αOR

Y

N
IC

HMIIA ≥ αIA

Y

N

HMIIB ≥ αIB

Y
IA or IB

N
IA

HMIIB ≥ αIB

Y
IB

OR
N

18(24%)
8(9%)

19(25%)
10(11%)

7(9%)
17(19%)

21(28%)
2(2%)

11(14%)
49(55%)

Top numbers are for Fisman, Kariv and Markovits (2007) data,

bottom numbers are for Porter and Adams (2016) data.

Figure 9. Classification Tree for Dictator Game

Subjects are assigned to theories according to three sequential binary classification

steps presented in Figure 9. First, if a subject is not consistent with other-regarding

preferences at threshold αOR, she is classified as inconsistent with other-regarding pref-

erences (IC). Next, we compare whether she is consistent with inequality aversion or

increasing benevolence with thresholds αIA and αIB respectively. If the subject is not

consistent with either, she is classified as other-regarding (OR). If the subject is con-

sistent with both, she is assigned to a separate class of inequality averse or increasing

benevolent (IA or IB). If the subject is consistent with only one theory, she is classified

as inequality averse (IA) or increasing benevolent (IB).

It is still necessary to determine the thresholds for the classification tree. In order to

do this, we modify the unsupervised machine learning methodology from Liu, Xia and

Yu (2000). The approach maximizes the information gain from adding a particular

cluster. We base this measure on HMI, but the approach is general (for more detailed

explanation see Supplementary Materials). The thresholds obtained are as follows:

95% confidence interval of [1.07, 2.72]). That is, odds of the subject being consistent with inequality

aversion are at least e1.74 = 5.7 times higher if she is also consistent with increasing benevolence than

if she is not.
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αOR = 45/50; αIA = αIB = 41/50 for Fisman, Kariv and Markovits (2007) data and

αOR = αIA = αIB = 10/11 for Porter and Adams (2016) data.

In the first dataset, a large set of subjects can be described by inequality aversion but

not by increasing benevolence preferences (28% against 9%). In the second experiment,

the distinction is less clear, as the majority of subject (55%) can be described by IA or

IB.16 Remark that, 11-25% of the population cannot be explained by either inequality

aversion or increasing benevolence, but still has other-regarding preferences. This fact

also provides additional evidence for both assumptions being significantly restrictive.

The difference between the two datasets in terms of classification for nested theories is

consistent with the results in the previous subsection.

Given the significant share of population consistent with both: IA and IB especially

in Porter and Adams (2016) data set, we conduct the cross power analysis. That is we

need to simulate the random subjects which are consistent with IA but not with IB

and vise versa. This allows us to construct the modified predictive success given the

conditional power analysis. Using the results of cross power analysis we can construct

the adjusted predictive success index (APSI). To explain the idea of APSI we provide

an example of its computation for IA. We consider separate PSIs for the subsamples of

IA or IB and IA. The main difference is that for IA or IB subsample we use the cross

power. APSI in its order is equal to the weighted sum of the PSIs for each subsample,

where weights are the ratios of corresponding subsample size to the entire sample size.

Table 3 presents the APSI results for nested theories in the dictator game. The

second column presents APSI computed using the Bronars power and the third one

presents APSI computed using the bootstrap power. First, we look at the results for

Fisman, Kariv and Markovits (2007) dataset. APSI for inequality aversion is at least

as large as one for increasing benevolence. This result holds for both ways used to

compute the power. Results for Porter and Adams (2016) dataset look rather mixed.

APSI is higher for increasing benevolence if Bronars power is used and APSI is higher

for inequality aversion is higher if bootstrap power is used. Hence, inequality aversion

is a rather prevalent theory, but it is not obviously dominant in terms of explaining

16However, as a caveat here, note that power of test for increasing benevolence is significantly lower

than the one for inequality aversion. Moreover, in Porter and Adams (2016) experiment, three partic-

ipants gave more to their counterparts than they kept for themselves in all 11 budgets. Such altruistic

behavior is maximally inconsistent with inequality aversion, implying an HMI of zero (theoretically

HMI for other theories starts with 1). We exclude these three subjects from the mixed type analysis

without significantly affecting the results (see detailed results in Supplementary Materials).
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Bronars Bootstrap

Fisman, Kariv and Markovits (2007) data

Inequality Aversion .55 .31

Increasing Benevolence .31 .31

Porter and Adams (2016) data

Inequality Aversion .63 .55

Increasing Benevolence .74 .50

Table 3. APSI for Nested Theories in Dictator Game

the observed behavior. Therefore, it is of particular importance to take both theories

into account to explain the observed behavior.

3.2 Ultimatum Game We use data from Castillo, Cross and Freer (2017) who

conduct an experiment with total of 123 participants (students from Georgetown and

Texas A&M universities). Every subject had to make the accept/reject decision over 13

alternatives drawn from 9 different linear budgets, that adds up to 117 binary choices

from every subject. See Castillo, Cross and Freer (2017) for the more detailed descrip-

tion of the design and the data as well as the evidence that subjects are consistent

with other-regarding preferences.17 Next, we present the results on testing inequality

aversion in differences and inequality aversion in shares.

3.2.1 Consistency Results About 40-45% of the sample are consistent with either

versions of inequality aversion without allowing for any decision making error. Results

of the analysis from allowing for error of 5% are presented in the Table 4 (composition

of the Table similar to those for dictator game). About 87% of subjects are consistent

with inequality aversion in differences and 82% of subjects are consistent with inequality

aversion of shares. In addition to Bronars and bootstrap power we also conduct the

cutoff power analysis.

Given the specifics of the budget sets we use the cutoff rules Idea behind is that

responder uses cutoff rule – everything below cutoff is rejected and everything above

cutoff is accepted. This cutoff is determined randomly according to uniform distribu-

tion (Bronars cutoff) and empirical distribution functions (Bootstrap cutoff). Finally,

17Castillo, Cross and Freer (2017) conducted two sets of sessions, we report the results from them

together. Let us note that choices are quite different between the populations, while the consistency

with other-regarding preferences is quite uniform for both samples.
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Power of Test PSI
Theory Pass Rate Bronars Cutoff Bootstrap Cutoff Bronars Cutoff Bootstrap Cutoff

IA in Differences 107 (86.99%) 100.00% 98.45% 0.87 0.84
95% conf. interval (79.74% - 92.38%) (100.00% - 100.00%) (97.81% - 98.84%) (0.85 - 0.89) (0.81 - 0.86)

IA in Shares 101 (82.11%) 100.00% 99.00% 0.82 0.80
95% conf. interval (74.18% - 88.44%) (100.00% - 100.00%) (98.46% - 99.39%) (0.80 - 0.84) (0.77 - 0.82)

Table 4. Results for Ultaimatum Game

the power analysis shows that no more than 5% of random subjects are consistent

with either theories. Hence, both theories explain data better than the random deci-

sion making. Further analysis is aimed on distinguishing which of inequality measures

explains the data better.

Given the pass rates (86% for IA in differences and 82% for IA in shares) and

power of test (more than 95% of random subjects fail the test at the given HMI) both

theories are valid – explain the behavior better than random. Hence, let us move on to

comparing the performance of different theories. The pass rates are higher for the IA in

Differences, although, the difference is not significant. The same result holds for PSI.

Moreover, given that 107 out of 123 subjects are consistent with IA in differences and

101 are consistent with IA in shares, there is obviously a significant chunk of population

consistent with both theories.

3.2.2 Mixed Types Analysis Both versions of IA perform better than random hypothe-

sis. Therefore, next, we perform the mixed type analysis using the similar methodology

we use for dictator game. Subjects are assigned to theories according to the decision

tree presented in Figure 10. The thresholds αS = 111/117 and αD = 112/117 for IA

in shares and IA in differences correspondingly.

Only 12 subjects (10%) are not consistent with either of theories (IC). Most of the

sample 106 subject (86%) is consistent with both theories (S or D). At the same 4

subjects (3%) are consistent with IA in shares but not with IA in differences (S), and

1 subject (1%) is consistent with IA in differences but not IA in shares (D). Hence to

further disentangle performance of the theories we conduct cross-power analysis. That

is to simulate the random subjects which are consistent with IA in shares and check

which share of them is consistent with IA in differences and vice versa. Using the

results of cross power analysis we can construct the APSI as for the dictator game.

Table 5 presents the APSI results for IA in Differences and IA in shares. The second

column presents the APSI computed using the Bronars cutoff power, and the third one

present APSI computed using the bootstrap cutoff power. APSI for IA in shares is
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Figure 10. Classification Tree for Ultimatum Game

Bronars Cutoff Bootstrap Cutoff

IA in Differences .64 .43

IA in Shares .09 .09

Table 5. APSI for Ultimatum Game

much higher for both cases. Hence, we can conclude that a higher share of subjects is

rather consistent with IA in shares, that with IA in differences. Although, this evidence

is rather weak since the main driving factor is the power of the tests.

4 Revealing Altruism and Fairness

Further we present how the revealed preference conditions can be used for compari-

son of the level of altruism among players and partial identification of the (subjective)

notion of fair outcome player may have. To classify player in terms of altruism we need

to require them to be consistent with increasing benevolence preferences (consistent

with NARP) and use the methodology from Cox, Friedman and Sadiraj (2008). While

the original method can either compare players pointwise or to require the entire de-

mand function to be assumed, we show that under the same comparison can be done

under partial observability.

Revealation of fair outcome in refers to the genrealization of inequality aversion.

While the standard inequality averse theory assumes that players assume that the fair

outcome is the one which delivers equal split, this does not have to be true in general.
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Hence, if players have subjective notion of fair outcome, which can deviate from equal

split, but still get disutility if the outcome deviates from the fair outcome, we obtain

the generalization of inequality aversion. Therefore, conditions from Proposition 2 can

be generalized to identify the fair outcome.

4.1 Revealed Relative Altruism Cox, Friedman and Sadiraj (2008) provide the

revealed preference–based approach to classify people in terms of altruism. A demand

function D(ps, po) is more altruistic than D̃(ps, po) if Do(ps, po) ≥ D̃o(ps, po) for

every p ∈ R++. Original conditions required to observe the whole demand function,

while we show that the same method can be applied even if only finite set of choices is

observed.

Corollary 7. Consider experiments E and Ẽ in which players faced the same prices.

Moreover, assume that both experiments satisfy NARP. Experiments are rationaliz-

able with increasing benevolence preferences such that D(ps, po) is more altruistic than

D̃(ps, po) if and only if x̃to ≥ xso for all ps = p̃t.

The necessity of this condition is quite obvious since we consider experiments with

similar prices. Hence, we can reconstruct demand functions such that the first experi-

ment will be more altruistic than the second one.

4.2 Revealed Fair Outcome Next we show how to identify the fair outcome using

the revealed preference conditions. For this purpose we need formally define what is

the fair outcome. Assume that χ∗ < 1 is the fair ratio of payoffs, that is, the outcome

is fair if and only if xs/xo = χ∗. We assume that χ∗ < 1, as otherwise every player

who is consistent with GARP can be rationalized as inequality averse.

Moreover, we slightly modify the definition of the inequality measure. We assume

that f(xs, xo) = 0 if and only if xs/xo = χ∗. Moreover, f(xs, xo) is increasing in xo

and decreasing in xs if xs/xo < χ∗; and f(xs, xo) is decreasing in xo and increasing in

xs if xs/xo > χ∗. The last property of an inequality measure needs to be restated as

follows: if xs/xo = χ < χ∗, then there is x′s ≤ xs, such that f(xs, xo) ≥ f(xo, x
′
s).

Corollary 8. Let χ∗ determine the notion of fair outcome and f(xs, xo) be an inequality

measure. An experiment is rationalizable with inequality averse preferences if and only

if an experiment satisfies GARP and xts ≥ χ∗xto for every t ∈ {1, . . . , T}.
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5 Concluding Remarks

The paper presents the revealed preference tests for increasing benevolence and in-

equality averse preferences. Moreover, the tests can be applied (beyond the standard

revealed preference framework with linear budgets) to other games used to study so-

cial preferences. Although all conditions provided in the paper are deterministic, the

constraints obtained can be used as the moment inequalities. This would allow one to

construct stochastic bounds that take into account decision making and/or measure-

ment errors.18

In addition, we provide (the method for) mixed type analysis using only non-paramteric

revealed preference approach. Several previous papers (see e.g. Andreoni and Miller,

2002; Porter and Adams, 2016) attempted to classify people into distinct types accord-

ing to their giving behavior. However, in these papers particular types of preferences

were characterized with a parametric specification of the utility function, while the

method we offer, is completely non-parametric. Hence, the method proposed is more

flexible and allows for more robust classification of subjects, which can further be used

for the out-of-sample predictions.

Appendix A: Proofs

Proof of Proposition 2 We present a generalized version of the proof for Proposition

2, with not necessarily linear budgets. This allows us to get the immediate implica-

tions for the investment and carrot-stick games regardless of budgets being non-linear.

Hence, before we proceed with the further proof, let us introduce the formal definition

of the feasible budget sets. To the large extent we follow the definition of non-linear

budgets provided by Forges and Minelli (2009).

Let γ : R2
+ → R+ be a gauge function, if it is continuous, homogeneous of degree

one, and strictly monotone. We consider the experiment that contains of the budgets

described as γt(x) = 1, where γ is a gauge function. In addition we assume that equal

outcome is available at every budget, that is for every xs < xo : γ(xs, xo) = 1, then

γ(xs, xs) ≤ 1. Hence, px < 1 corresponds to γ(x) < 1 and px ≤ 1 corresponds to

γ(x) ≤ 1. Hence, experiment can be described as a collection E = {xt, γt(x)}Tt=1.

18See Chernozhukov, Hong and Tamer (2007) for general results on partial identification and Aguiar

and Kashaev (2017) for particular applications for revealed preferences with measurement error. More-

over, methodology from the latter paper directly applies to the results we state.
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Before we proceed further let us introduce the corresponding space of the inequality

aversion. Let IA = (Y,≥IA) be a partially ordered space, where Y ⊆ R2
+, with y =

(xs, f(xs, xo)) for every y ∈ Y and y ≥IA y′ if xs ≥ x′s and f(xs, xo) ≤ f(x′s, x
′
o). Denote

by >IA the strict part of ≥IA. Note that f(xs, xo) defines the injective mapping from

X to Y . Since f(xs, xo) is a continuous function and X is a compact set, then Y is a

compact set as well.

Next step is to map the budget line from X to Y . Although, we do not map the

entire budget line, but only the part of it, which corresponds to xs ≥ xo. Denote

by Z = {x ∈ X : xs ≥ xo} the half-space at which player leaves to herself at

least as much as received by another player. Denote by B the budget line in IA

obtained from mapping a budget γ(x) = 1 such that x ∈ Z. Denote by B↓ = {y :

there is y′ ∈ B such that y ≥IA y′} the downward closure of budget B. Denote by

B↓↓ = {y : there is y′ ∈ B such that y′ >IA y the interior of budget set B. Denote

by ∂B = B↓ \ B↓↓ the boundary of B↓. Then, an experiment is rationalizable

with inequality averse preferences if and only if there is a continuous and monotone

(with respect to ≥IA) utility function u(xs, f(xs, xo)), such that observed choices xt ∈
argmax
x∈(Bt)↓∩R2

+

{u(xs, f(xs, xo))}.

Hence, to construct the inequality averse utility function we need to construct a

utility function in Y . Using the result from Nishimura, Ok and Quah (2017) existence

of the utility function monotone with respect to ≥IA is equivalent to the GARP in space

Y . Formally, an experiment satisfies Y-GARP if for every sequence xt1 , . . . , xtn , such

that xtj ∈ (Btj+1)↓ for every j ∈ {i, . . . , n − 1} implies xtn ∈ (Bt1)↓↓. Hence, we

can derive the following result using the main theorem from Nishimura, Ok and Quah

(2017).19

Lemma A.1 (Nishimura, Ok and Quah (2017)). An experiment satisfies Y -GARP if

and only if it is rationalizable with inequality averse preferences.

Hence to complete the proof of Proposition 2 we need to show that GARP (in space

X) given that xts ≥ xto for every t ∈ {1, . . . , T} is equivalent to Y -GARP. We start

with a simple supplementary Lemma which allows to simplify the further reasoning.

19Topological restrictions are also satisfied. Recall that X is a compact space, therefore, IA is a

compact space as well, as a consequence of continuous mapping of compact space. Moreover, ≥IA is

a continuous order, since we consider its natural topology.
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Lemma A.2. Let x, x′ ∈ Z. If (x′s, f(x′s, x
′
o)) >IA (≥IA)(xs, f(xs, xo)), then (x′s, x

′
o) >

(≥)(xs, xo).

Proof. We only prove the case for strict inequalities. Weak inequalities can be proven

in a similar fashion. If (x′s, f(x′s, x
′
o)) >IA (xs, f(xs, xo)) then x′s ≥ xs and f(x′s, x

′
o) ≤

f(xs, xo) with at least one inequality being strict. Recall that f is increasing in xs and

decreasing in xo, hence x′o > xo. This implies that (x′s, x
′
o) > (xs, xo). �

For this purpose we need to show that budgets map to the space Y such that point

is on the border of the budget in Z if and only if it is in the border of the budget in Y

and correspondingly for the interior. We mainly need to consider points in Z, because

all chosen points belong to Z (given the conditions for sufficiency) and Y -GARP as

well as GARP are checked only using the chosen points.

Lemma A.3. Let (xs, xo) ∈ Z. (xs, f(xs, xo)) ∈ B↓ if and only if γ(xs, xo) ≤ 1.

Proof. (⇒) Take (xs, f(xs, xo)) ∈ B↓. By construction of B↓ there is x′ = (x′s, x
′
o) ∈ Z

such that γ(x′) = 1 and (x′s, f(x′s, x
′
o) ≥IA (xs, f(xs, xo)), then x′ ≥ x (see Lemma

A.2). This implies that γ(x) ≤ γ(x′) = 1.

(⇐) To prove the reverse implications we consider two separate cases.

Case 1: xs > xo. Take x = (xs, xo) such that γ(x) ≤ 1. Given that xs > xo and that

γ(x) is continuous and strictly monotone, there is x′o > xo such that γ(xs, x
′
o) ≤ 1.

This implies that f(xs, x
′
o) ≤ f(xs, xo). Therefore, (xs, f(xs, xo)) ≤IA (xs, f(xs, x

′
o),

that in its order implies that (xs, f(xs, xo)) ∈ B↓.

Case 2: xs = xo. Let 1 ≥ λ = γ(xs, xs). Hence, let x′s = xs
λ
> xs. Therefore,

x′s ≥ xs and f(x′s, x
′
s) = f(xs, xs) = 0, i.e. (x′s, f(x′s, x

′
s) ≥IA (xs, f(xs, xs)). Moreover,

by construction γ(x′s, x
′
s) = 1, therefore, (xs, f(xs, xs)) ∈ B↓. �

Next we show that if xs < xo, then the corresponding point in the IA space is in

the interior of the budget set. This allows us to show that all points in X \ Z are

strictly dominated. Moreover, it shows that the mapped set determined by γ(x) ≤ 1

is a subset of B↓.

Lemma A.4. If xs < xo and γ(xs, xo) ≤ 1, then (xs, f(xs, xo)) ∈ B↓↓.
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Proof. Recall that by construction of the budget set γ(xs, xs) = λ ≤ 1. Let x′s = xs
λ

,

then γ(x′s, x
′
s) = 1 and (x′s, f(x′s, x

′
s)) >IA (xs, f(xs, xo)). Hence, (x′s, f(x′s, x

′
s)) ∈ ∂B.

This implies (xs, f(xs, xo)) ∈ B↓↓ by construction. �

Next we show that budget line in the space Z is mapped into the boundary of the

budget in space Y and vice versa. The following result also operates over Z only,

although, it also shows that neither of choices on the boundary of the budget are not

dominated in IA space.

Lemma A.5. Let (xs, xo) ∈ Z. (xs, f(xs, xo)) ∈ ∂B if and only if γ(xs, xo) = 1.

Proof. (⇒) Take (xs, f(xs, xo)) ∈ ∂B. On the contrary, assume that γ(xs, xo) < 1.

Then, we can apply the construction as in the (⇐) part of the proof of Lemma A.3

to get a bundle x′ such that γ(x′s, x
′
o) = 1 and (xs, f(xs, xo)) <IA (x′s, f(x′s, x

′
o)). This

implies that (xs, f(xs, xo)) ∈ B↓↓, that is a direct contradiction.

(⇐) Take x such that γ(x) = 1. On the contrary, assume that (xs, f(xs, xo)) ∈
B↓↓. Then by construction of the budget set there is x′ = (x′s, x

′
o) ∈ Z such that

(xs, f(xs, xo)) <IA (x′s, f(x′s, x
′
o)) and γ(x′s, x

′
o) = 1. At the same time Lemma A.2

implies that x < x′ and therefore, γ(x) < γ(x′) = 1, that is a contradiction. �

Lemmas A.3 and A.5 immediately imply the following corollary. Which would com-

plete the mapping of the budgets between different spaces.

Corollary A.1. Let (xs, f(xs, xo)) ∈ Z. (xs, f(xs, xo)) ∈ B↓↓ if and only if γ(x) < 1.

Hence, we can complete the proof that of equivalence between Y -GARP and GARP.

Corollary A.2. Let xt ∈ Z for every t ∈ {1, . . . , T}. An experiment satisfies GARP

then it satisfies Y -GARP.

Proof. On the contrary, assume that there is a violation of Y -GARP. Then, there

is a sequence xt1 , . . . , xtn , such that xtj ∈ (Btj+1)↓ for every j ∈ {i, . . . , n − 1} and

xtn ∈ (Bt1)↓↓. Lemma A.3 implies that γtj+1(xtj) ≤ 1 and Corollary A.1 implies that

γt1(xtn) < 1 that is a violation of GARP. �

Using the results above we can prove that conditions stated are necessary and suf-

ficient for the rationalization with inequality aversion preferences. We start from the

proof of necessity.
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Proof of Necessity. Assume that data set is rationalizable with inequality aversion pref-

erences. First we show that xt ∈ Z for every t ∈ {1, . . . , T} is a necessary condition.

Next, we show that if xt ∈ Z for every t ∈ {1, . . . , T}, then GARP is still necessary.

Assume that at some chosen point xto > xts. Hence, γt(xts, x
t
s) = λ ≤ 1. Therefore, ho-

mogeneity of the gauge function can be used to obtain xs = xts
λ

, such that γt(xs, xs) = 1.

Moreover, the xs ≥ xts and 0 = f(xs, xs) < f(xts, x
t
o). Hence, u(xs, 0) > u(xts, f(xts, x

t
o))

that is a contradiction to the experiment being rationalizable with inequality averse

preferences.

Next, we assume that xt ∈ Z for every t ∈ {1, . . . , T}. Assume there is a violation

of GARP. That is, there is a sequence xt1 , . . . , xtn , such that γtj+1(xtj) ≤ 1 for every

j ∈ {i, . . . , n − 1} and γt1(xtn) < 1. Since γtj+1(xtj) ≤ 1 then u(xtj+1) ≥ u(xtj) (see

Lemma A.3), hence u(xn) ≥ u(x1). At he same time γt1(xtn) < 1 implies u(x1) > u(xn)

(see Corollary A.1). �

Proof of Sufficiency. Suppose that xt ∈ Z for every t ∈ {1, . . . , T} and GARP is sat-

isfied. Corollary A.2 implies that there is a continuous utility function u(xs, f(xs, xo))

monotone with respect to ≥IA, such that u(xts, f(xts, x
t
o)) ≥ u(xs, f(xs, xo)) for every

(xs, f(xs, xo)) ∈ B↓. Moreover, Lemmas A.3 and A.4 imply thatBt
x = {x ∈ X : γt(x) ≤

1)} ⊆ (Bt)↓. Therefore, u(xts, f(xts, x
t
o)) ≥ u(xs, f(xs, xo)) for every γt(xs, xo) ≤ 1. �

Proof of Corollary 2 The budget in this case is Bt = {(xts, f(xtf , x
t
s)), (0, 0)}. The

comprehensive closure of the budget is (Bt)↓ = Bt ∪ Rt. The interior of the compre-

hensive closure of the budget is (Bt)↓↓ = Rt. Moreover, one can easily see that xs ∈ At

if and only if xt ∈ Rt. Hence, the proof can be concluded by applying result from

Nishimura, Ok and Quah (2017).

Proof of Corollary 4 To apply the Proposition 2 we need to show that there is a

continuous, strictly increasing and homogeneous gauge function that defines the budget

set. Hence, the proof is nothing more than direct construction of the gauge function.

Figure A.1 presents the illustration to construct the gauge function. The original

downward closure of the budget cannot be described by the strictly increasing gauge

function, because it contains flat (vertical and horizontal) segments. Hence, we con-

struct the envelope of the budget which contains only strictly sloped segments, such

that GARP on the original budget is equivalent to the GARP on the envelope bud-

gets. There are three segments (as on Figure A.1) depending on xs: (1) xs ∈ [0, I] (2)

xs ∈]I, I + kst] (3) xs ∈]I + kst,∞[.
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xs

xo

I − st + kst

pt

I − st

I I + kst

I − st + kst

pt + εy

I − st + kst + εx

Figure A.1. Construction of the enveloping budget set

We start from the first segment. Take all xr for r ∈ {1, . . . , T} such that xrs < I

and xro > I − st + kst

pt
. Given the finite amount of observations, there is 0 < εy <

xro − (I − st + kst

pt
) for every such point. Moreover, we assume that εy

I
≤ 1

pt
. Hence, let

us replace the horizontal segment with the decreasing one:

xo
1

β1
+ xs

α1

β1
= 1

where α1 = εy

I
and β1 = I − st + kst

pt
+ εy. It can be easily seen that at xs = 0,

xo = I − st + kst

pt
+ εy, and at xs = I, xo = I − st + kst

pt
. Hence, every point xr that

belongs to the original budget (interior of the downward closure) it is still inside of the

budget, because the envelope budget set is a superset of the original one. Moreover,

every point which is outside of the original budget it is still outside of the envelope

budget, by construction (recall that εy < min
xrs<I, x

r
o>I−st+ kst

pt

xro − (I − st + kst

pt
), and

maximum xo = I − st + kst

pt
+ εy in this budget ).

Next, we construct from the third segment. Similarly let εx < min
xrs>I+ks

t, xro<I−st
xro −

(I + kst). Also, make sure that I−st
εx

> 1
pt

. Hence, let us replace the vertical segment

by the following linear one.

xo
1

β3
+ xs

α3

β3
= 1

where α3 = I−st
εx

and β3 = I−st
εx

(I + kst + εx). By the same token as in the previous

case, a point is in the same case, the point belongs to the strict interior of the original

budget if and only if it belongs to the strict interior of the envelope budget.
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For the second segment, we preserve the original linear segment,

xo
1

β2
+ xs

α2

β2
= 1

where β2 = (I− st) + I+kst

pt
and α2 = 1

pt
. Hence, the gauge function can be constructed

as follows.

γ(x) = max

{
xo

1

β1
+ xs

α1

β1
, xo

1

β2
+ xs

α2

β2
, xo

1

β3
+ xs

α3

β3

}
The gauge function is continuous, strictly monotone and homogeneous of degree one

by construction. Moreover, γ(x) = 1 specifies the budget line from the Figure A.1.

It can be easily checked that β1 − α1xs < β2 − α2xs if and only if xs < I, and

β2 − α2xs < β3 − α3xs if and only if xs < I + kst.

Hence, we are left to show that at the budget line the constructed gauge function

corresponds to the budget line. Take γ(x) = 1. Take xs < I and let xo
1
β1

+ xs
α1

β1
= 1.

Take the second segment

xo
1

β2
+ xs

α2

β2
< 1

Hence, multiplying both side by β2 and replacing xo by β1 − α1xs, we obtain the

following equivalent inequality.

β1 − α1xs < β2 − α2xs

Similarly we can show that

xo
1

β3
+ xs

α3

β3
< 1

and similar proof can be conducted for other segments. Hence, to complete the proof

it suffices to apply Proposition 2, since the gauge function satisfies the conditions.

Proof of Corollary 6 We follow the same lines as in the proof of Corollary 4. There

is vertical segment which does not allow us to have the strictly increasing gauge func-

tion directly. Hence, we need to construct the enveloping budget with only slopped

segments, such that GARP on the enveloping budget is equivalent to the GARP on

the original one.

Figure A.2 illustrates the idea of constructing the budget. There are two segments:

(1) xs ∈ [0, kst] and (2) xs ∈]kst,∞[. We leave the original budget for the first segment

which can be defined as

xo
1

β1
+ xs

α1

β1
= 1

where α1 = 1
pt

and β1 = I − st + kst

pt
.
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xs

xo

I − st

I − st + kst

pt

kst

kst + ε

Figure A.2. Construction of the enveloping budget set

Next, we construct the sloped line for the second segment. Let ε < min
xrs>ks

t, xro<I−st
(xro − kst).

Hence, we can define the linear segment, which connects (kst, I − st) and (kst + ε, 0).

Hence, the GARP on the original budget is satisfied if and only if it is satisfied on the

envelope budget. Hence, we can define the linear segment of the budget as

xo
1

β2
+ xs

α2

β2
= 1

where α2 = I−st
ε

and β1 = I−st
ε

(kst + ε).

Hence, the gauge function looks as follows.

γ(x) = max

{
xo

1

β1
+ xs

α1

β1
, xo

1

β2
+ xs

α2

β2

}
The gauge function is continuous, strictly monotone and homogeneous of degree one

by construction. Hence, we are left to show that gauge function coincides with the

budget line if γ(x) = 1. To show that we use the fact that α1 − β1xs < α2 − β2xs if

and only if xs < kst. Take the second segment

xo
1

β2
+ xs

α2

β2
< 1

Hence, multiplying both side by β2 and replacing xo by β1 − α1xs, we obtain the

following equivalent inequality.

β1 − α1xs < β2 − α2xs

Similarly we can show the reverse for xs > kst. Hence, the proof can be complete the

proof by applying Proposition 2.
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Proof of Corollary 7 Let us introduce some additional notation. We rely on the

result from Cherchye, Demuynck and De Rock (2018). Let ω = po
ps

and m = 1
ps

.

Therefore, we can refer to the demands as functions of only ω and m. Moreover, we

renumerate observations s.t. p̃t = pt.

Define α, β > 0 such that

1 + β < min

{
min
t,s

{
xto
xso

: xto > xso

}
,min
t,s

{
x̃to
x̃so

: x̃to > x̃so

}}
and

a(1 + β) < min

{
min
t,s

{
xto
xso

}
,min
t,s

{
x̃to
x̃so

}}
Let δt,v = max{|wt − wv|, |mt −mv + (wt − wv)xto|, |mt −mv + (wt − wv)x̃to|} and let

ε < min δt,v. Consider the function

g(z) =


α for z ≤ −ε

1 + 1−α
ε
z for − ε ≤ z ≤ 0

1 for z ≥ 0

In addition, consider the function

h(z) =


α 1
z+ε−1 for z < −ε

1 + 1−α
ε
z for − ε ≤ z ≤ 0

1 + β z
z+1

for z ≥ 0

Then, according to Cherchye, Demuynck and De Rock (2018), the rationalization of

the demand can be obtained as a solution of the following program.

Do(w,m) = max
r
r

s.t. g(w − wt)h(mt + (w − wt)r −m)r ≤ xto ∀t ∈ {1, . . . , T}

wr ≤ x

For both experiments, the functions g(z) and h(z) are the same. Moreover, since

both experiments are composed of the same set of prices, every left-hand side of the

constraints would be the same for both experiments. In addition, if the left-hand

side is decreasing in r, then constraint is not binding, hence, we need to concentrate

only on increasing left-hand sides. At the same time every x̃to ≥ xto, hence there is

larger r and, consequently, a larger demand for xo at given prices. Therefore, the

D̃o(w,m) ≥ Do(w,m), i.e. Ẽ is more altruistic than E.
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Proof of Corollary 8 Note that the fair outcome is always available at the linear

budgets. Given χ∗ being a fair outcome, let psxs + poxo = 1 define the budget set.

Then, in order to guarantee the fair outcome xs = 1
ps+χ∗po

and xo = 1 − poxs. Hence,

to guarantee that fair outcome is available we need to show that xo > 0, that is correct

as long as poχ
∗ > 0. Recall that by definition χ∗ ≥ 1 and po > 0, hence, this condition

is immediately satisfied.

The rest of the proof is same as the proof of Proposition 2, and is therefore omitted,

given that fair outcome is always available on a linear budget. For the nonlinear

budgets we can directly impose this requirement.
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ences for redistribution and perception of fairness: An experimental study.” Journal

of the European Economic Association, 12(4): 1059–1086.

Echenique, Federico, Sangmok Lee, and Matthew Shum. 2011. “The money

pump as a measure of revealed preference violations.” Journal of Political Economy,

119(6): 1201–1223.

Engellman, Dirk, and Martin Strobel. 2004. “Inequality aversion, efficiency, and

maximin preferences in simple distribution experiments.” The American Economic

Review, 94(4): 857–869.

Fehr, Ernst, and Klaus M Schmidt. 1999. “A theory of fairness, competition, and

cooperation.” The quarterly journal of economics, 114(3): 817–868.

Fehr, Ernst, Georg Kirchsteiger, and Arno Riedl. 1998. “Gift exchange and reci-

procity in competitive experimental markets.” European Economic Review, 42(1): 1–

34.

Fehr, Ernst, Michael Naef, and Klaus M Schmidt. 2006. “Inequality aversion,

efficiency, and maximin preferences in simple distribution experiments: Comment.”

The American economic review, 96(5): 1912–1917.

Fisman, Raymond, Shachar Kariv, and Daniel Markovits. 2007. “Individual

preferences for giving.” The American Economic Review, 97(5): 1858–1876.

Fong, Christina. 2001. “Social preferences, self-interest, and the demand for redis-

tribution.” Journal of Public economics, 82(2): 225–246.

Forges, Francoise, and Enrico Minelli. 2009. “Afriat’s theorem for general budget

sets.” Journal of Economic Theory, 144(1): 135–145.

Harbaugh, William T, Kate Krause, and Timothy R Berry. 2001. “GARP

for kids: On the development of rational choice behavior.” The American Economic

Review, 91(5): 1539–1545.

Heufer, Jan. 2014. “Generating random optimising choices.” Computational Econom-

ics, 44(3): 295–305.



REVEALED SOCIAL PREFERENCES 39

Heufer, Jan, and Per Hjertstrand. 2015. “Consistent subsets: Computation-

ally feasible methods to compute the Houtman–Maks-index.” Economics Letters,

128: 87–89.
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Supplementary Materials for “Revealed Social

Preferences”

by Artur Dolgopolov and Mikhail Freer

This supplemenemntary material is organized as follows. Section A presents the mixed

integer program used to compute the Houtman-Maks index. Section B provides de-

tailed description of the methodology used to classify subjects as well as comparison

to the minimum-sum-of-squares classification. Section C provides additional empirical

analysis and robustness checks.

A Computing Houtman-Maks index (HMI)

Multiple approaches to the problem of calculating HMI have been taken in the

literature (Choi et al. (2014), Heufer and Hjertstrand (2015)). Choi et al. (2014) and

Dean and Martin (2016) used a set cover problem approach to calculate HMI, and we

follow in a similar vein. The program below calculates HMI, but does not rely on the

linearity of budgets.

We first discuss the calculation of HMI for GARP, which allows us to test for other-

regarding preferences and inequality aversion. We will then discuss HMI for NARP,

necessary for testing increasing benevolence and other normality-related theories. We

require two constants to implement the method, and use the big-M method to selec-

tively activate constraints for a subset of data. Let M > 1 be the big-M. Moreover,

since strict constraints do not make sense for practical optimization, we introduce an

infinitesimal tolerance term ε < 1
n
.

We take as given preference relation ≥ with strict part > on space X with |X| = n.

The (mixed integer) linear program is then to find such ui ∈ [0, 1] and δ ∈ {0, 1} for

all elements in X, indexed by i ≤ n that minimize
∑n

i=1 δi, so that

ui ≥ uj + ε−M(δi + δj) for {(xi, xj) ∈ X2 : xi > xj}(1a)

ui ≥ uj −M(δi + δj) for {(xi, xj) ∈ X2 : xi ≥ xj}(1b)

Binary variables δ in the linear program make constraints active only for the chosen

subset of observations, and we thus ensure that this subset is minimal. Then we can

simply calculate HMI as 1−
∑n

i=1 δi
n

.

To calculate HMI for NARP, we only need to adjust the constraints in the program to

Definition 6. We take all pairs of observations t, v ∈ {1, . . . , T} for which pto/p
t
s ≤ pvo/p

v
s

and xvs ≤
1−ptoxvo
pts

. These are the observations for which NARP has implications. The
1



(mixed integer) linear program is then to find such δ ∈ {0, 1} for all t, v above that

minimize
∑n

i=1 δi, so that

(2) xvo ≤ xto +M(δt + δv)

HMI for JNARP, required for rationalization with both xs and xo normal, follows in the

same way, but with conditions replaced with those from Definition A.1. We therefore

omit it here.

B Classification

This section discusses our classification methodology and results in more detail. We

use the clustering technique from Liu, Xia and Yu (2000), who developed a method to

apply decision trees to the problem of organizing unlabeled data.20 Decision trees are

appropriate for our data due to the nested nature of theories.

To select HMI thresholds for the classification rule we use the information gain purity

function from Liu, Xia and Yu (2000). Unlike usual distance-based measures (e.g. sum

of squares) it can potentially be interpreted regardless of the environment. Information

gain is the difference in the expected information needed to identify observed data

points against uniform distribution before and after the test. In other words, we select

the test that minimizes the weighted entropy for all classes of players. The intuition

behind this approach is the following. We apply sequential binary tests for different

theories, checking if each data point passes the test at a given threshold level or not. All

of these binary tests convey one bit of information about each data point: whether it

passes or not. If the performance of the test is indistinguishable from testing uniformly

distributed data, then the test conveys no information. If, however, the performance

on real data is clearly different from the random data, we would suspect that the test

conveys some information about the population, and we would like to maximize this

information. Information theory suggests that information in bits conveyed by such

tests can be measured as the negative logarithm to the base 2 of the number of possible

outcomes described by the test.

To calculate the information gain for a group of n data points we introduce n ad-

ditional fictional points that have uniformly distributed HMI. We then calculate the

expected amount of information needed to classify real points against these uniformly

20Classification trees are widely applied, although mostly as supervised learning technique. That

is, it requires having “training” dataset which is already categorized.
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distributed points before and after every binary test. Formally, the information gain

from clustering with some threshold α is:

(3) 1− 1

2

((
α +

NF

n

)
EF +

(
(1− α) +

NP

n

)
EP

)
,

where n - number of subjects, NF (NP ) - number of subjects who fail (pass) the test

at HMI ≥ α, EF (EP ) - entropy for the class of data that passes (fails) the test. Then

(1 − α) and α are the fractions of points with uniformly distributed HMI that would

respectively pass and fail the test.

Information required to identify a data point against a uniform random draw before

clustering is 1 bit. After clustering this information is the weighted sum of entropy in

each cluster, which in turn is calculated for the points failing the test as

EF = −DR
F log2(D

R
F )−DD

F log2(D
D
F ),

where DR
F = αn

αn+NF
and DD

F = NF

αn+NF
. These are the fractions of random and real data

points in the cluster that fails the test. The entropy for the cluster that passes the test

is calculated in the same manner with fractions DR
P = (1−α)n

(1−α)n+NP
and DD

P = NP

(1−α)n+NP
.

By substituting expressions for EF and EP in (3), we obtain a simplified expression:

1− 1

2

(
αIRP + (1− α)IRF +

NP

n
IDP +

NF

n
IDF

)
,

where

IRP = −log2
(
DR
P

)
, IRF = −log2

(
DR
F

)
,

IDP = −log2
(
DD
P

)
, IDF = −log2

(
DD
F

)
,

These four terms represent the information from identifying a point as a data point

(D) or as a random point (R) for points that pass the test (P) and fail the test (F).

Recall that entropy is the expected amount of information required to decide if some

point is an observed data-point or a uniformly-generated random point given the result

of a binary test.

We apply this procedure sequentially, first separating the inconsistent cluster by

applying the test for other-regarding preferences and then clustering the remaining

data according to nested theories. However, we omit the inconsistent points in the

figure below.
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Fisman, Kariv and Markovits (2007) data
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Porter and Adams (2016) data
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Figure B.1. Mixed Types Analysis

Classification thresholds for nested theories and classified points are presented in

Figure B.1 along with the alternative classification based on minimizing within-cluster

sums of square distances from cluster means.

Fisman, Kariv and Markovits (2007) data

IA IB IA or IB OR IC

29 (38%) 6 (8%) 10 (13%) 13 (17%) 18 (24%)

Porter and Adams (2016) data

IA IB IA or IB OR IC

5 (6%) 8 (9%) 40 (45%) 7 (8%) 26 (29%)

Table B.1. Classification of Subjects (Minimal sum of squares)

The latter largely agrees with our information gain measure, as can be seen from

comparing classification results in Figure 9 and Table B.1. The classification is fairly
4



robust to other approaches: 4-means clustering of nested theories agrees with our

classification only for half of the data, but qualitatively the results are similar.

C Additional Empirical Analysis

C.1 Additional Theories As an alternative assumption to the increasing benev-

olence Cox, Friedman and Sadiraj (2008) offered a similar condition, but for one’s own

payoff. Moreover, it would also be a legitimate assumption to claim normality of both

goods. These are two additional theories we are going to test.

Normality of keeping (xs) may organize the data better, as has been partially shown

by Cherchye, Demuynck and De Rock (2018). While the normality of xs can be checked

by applying the permuted version of NARP, the normality in both giving and keeping

needs a different test called Joint Normality Axiom of Revealed Preferences.

Definition A.1. An experiment E = (xt, pt)Tt=1 is consistent with Joint Normality

Axiom of Revealed Preference (JNARP) if and only if for all observations t, v ∈
{1, . . . , T} if pto/p

t
s ≤ pvo/p

v
s and xto < xvo, then xts ≤ xvs.

Both xs and xo are normal goods if and only if an experiment satisfies JNARP. Proof

of this fact uses the same logic as proof of Proposition 3 and Theorem 2 in Cherchye,

Demuynck and De Rock (2018) and is omitted.

C.2 Fisman, Kariv and Markovits (2007) Data

5



0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

(a
)

O
th

er
-R

eg
ar

d
in

g
P

re
fe

re
n
ce

s

R
ea

l
B

ro
n
ar

s

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

(b
)

In
eq

u
al

it
y

A
ve

rs
io

n R
ea

l
B

ro
n
ar

s

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

(c
)

In
cr

ea
si

n
g

B
en

ev
ol

en
ce R
ea

l
B

ro
n
ar

s

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

(d
)

N
or

m
al

it
y

of
ow

n
p
ay

off R
ea

l
B

ro
n
ar

s

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

(e
)

N
or

m
al

it
y

of
b

ot
h

go
o
d
s

R
ea

l
B

ro
n
ar

s

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

R
ea

l
B

o
ot

st
ra

p

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

R
ea

l
B

o
ot

st
ra

p

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

R
ea

l
B

o
ot

st
ra

p

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

R
ea

l
B

o
ot

st
ra

p

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

H
M

I

Freqency

R
ea

l
B

o
ot

st
ra

p

F
ig
u
r
e
C
.2
.

D
is

tr
ib

u
ti

on
s

of
H

M
I

fo
r

F
is

m
an

,
K

ar
iv

an
d

M
ar

ko
v
it

s
(2

00
7)

D
at

a

6



Figure C.2 presents the distributions of HMI indexes for the theories that we are

testing. The first row demonstrates the distribution of the HMI for the real subjects

in comparison to the distribution of the HMI for the Bronars’ power test. The second

row presents the distribution of the HMI for the real subjects in comparison to the

distribution of the HMI for the bootstrap power test. In order to test the theory, we

compare the distribution of its HMI to the distribution of powers of the test. For all

five theories, we see that the real subjects pass both the Bronars’ and the bootstrap

tests; that is, they perform better than random subjects.21 We confirm that all five

theories have empirical support, and at most a quarter of the data needs to be dropped

to rationalize an average subject.

Further, we present comparisons of the theories. For this part of the analysis, we

restrict our attention to the HMI levels of .8, .9, .95 and 1 (no deviations).

HMI = .80 .90 .95 1
0

0.2

0.4

0.6

0.8

1

P
as

s
R

at
e

(a) Unconditional

Other-Regarding Preferences
Inequality Aversion

Increasing Benevolence
Normality of both goods
Normality of own payoff

HMI = .80 .90 .95 1
0

0.2

0.4

0.6

0.8

1

(b) Conditional

Other-Regarding Preferences
Inequality Aversion

Increasing Benevolence
Normality of both goods
Normality of own payoff

Figure C.3. Pass Rates for Fisman, Kariv and Markovits (2007) Data

21For other-regarding preferences the mean HMI for real subjects is .92; for Bronars subjects it

is .7; for bootstrap subjects it is .76 (p-values< .001 for both comparisons using Wilcoxon test and

t-tests). For inequality aversion the mean HMI for real subjects is .79; for Bronars subjects it is .4;

for bootstrap subjects it is .66 (p-values< .001 for both comparisons using Wilcoxon test and t-tests).

For increasing benevolence preferences the mean HMI for real subjects is .74; for Bronars subjects it

is .52; for bootstrap subjects it is .57 (p-values< .001 for both comparisons using Wilcoxon test and

t-tests). For normality of xs the mean HMI for real subjects is .83; for Bronars subjects it is .52; for

bootstrap subjects it is .58 (p-values< .001 for both comparisons using Wilcoxon test and t-tests).

For normality of both xs and xo the mean HMI for real subjects is .67; for Bronars subjects it is .38;

for bootstrap subjects it is .45 (p-values< .001 for both comparisons using Wilcoxon test and t-tests).
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Figure C.3 presents the pass rates with a confidence interval for every theory.22 We

can see that other-regarding preferences demonstrate higher pass rates for all given

levels of HMI.

Figure C.3(a) shows that increasing benevolence preferences perform significantly

worse than other-regarding preferences. Inequality aversion does better than increas-

ing benevolence (the difference is significant for the HMI levels of .8, .9) and worse than

other-regarding preferences (the difference is significant for the HMI levels of .8, .9).

Figure C.3(b) presents the conditional pass rates. In particular, it shows that inequal-

ity aversion still outperforms the increasing benevolence preferences (the difference is

significant for the HMI levels of .8, .9). Moreover, if we assume the inequality aver-

sion preferences, then at least 20% of population who have other-regarding preferences

are not behaving as if they have inequality aversion preferences. Assuming increasing

benevolence preferences would cost us about 50% of population. This shows that all

nested theories are significantly restrictive. Furthermore, the normality of xs organizes

data better than increasing benevolence and joint normality. This result confirms the

findings of Cherchye, Demuynck and De Rock (2018) who applied these tests to the

Andreoni and Miller (2002) data. Finally, the normality in the own payoff performs as

successfully as inequality aversion in this data.

The top row in Figure C.4 shows the predictive success levels with confidence in-

tervals with both Bronars and bootstrap as the control. First of all, we see that the

lower bounds of the confidence intervals for the predictive success of all the theories

are above zero. Therefore, all of the presented theories predicts the observed behavior

better than random (Bronars or bootstrap) decision making. Comparing the predictive

success of other-regarding and inequality aversion preferences we see mixed evidence.

While the predictive success is always higher for other-regarding preferences, the differ-

ence is not always significant. We also see that other-regarding preferences outperform

the increasing benevolence preferences at every level of HMI for both Bronars and

bootstrap random controls.

In order to compare the predictive success of inequality aversion and increasing

benevolence preferences, we take into account the fact that theories are nested. This

requires us to not only use the subset of subjects who are consistent with the other-

regarding preferences at the given HMI, but to also use random subjects who are also

22Confidence intervals are computed using the Clopper-Pearson procedure, since the pass rate can

be perceived as a binomial variable.
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Figure C.4. Predictive Success Index for Fisman, Kariv and Markovits

(2007) Data

consistent with other-regarding preferences rationalization at the given level of HMI.

In particular, if we consider the conditional predictive success for HMI=90%, we take

only the subsample of subjects who are consistent with other-regarding preferences

rationalization with the HMI of 90%. We then generate for every set of budgets a 1000

random pseudo-subjects who are consistent with other-regarding preferences rational-

ization with the HMI of 90%. We then compute their HMIs for inequality aversion and

increasing benevolence preferences to use those as random pass rates for corresponding

predictive success indexes. In order to generate random choices that are consistent

with other-regarding preferences rationalization at a given HMI, we use the follow-

ing procedure. We take the random subsample of the experiment that contains 80%,

90% or 95% of budgets and generate the random choices which are consistent with

other-regarding preferences rationalization using the Heufer (2014) procedure. We un-

conditionally place the random choices for the remaining budgets. We calculate this
9



both for the Bronars’ and bootstrap tests. The first case follows Heufer (2014) exactly,

generating choices that approximate a uniform distribution on each budget, while sat-

isfying GARP. With bootstrap we only need to truncate the empirical distribution at

each step to the admissible region, and draw choice points from the resulting distribu-

tion. This step is trivial for the Bronars case, since conditional distribution is also a

uniform distribution.

The bottom row in Figure C.4 presents the conditional predictive success index.

Under the Bronars test, inequality averse preferences theory outperforms increasing

benevolence preferences at every level of HMI, and difference is significant at HMI = .8

and HMI = .9. Under the bootstrap test, we see that for higher levels of HMI,

inequality aversion performs better than increasing benevolence, while difference is

only significant at HMI = .9.

C.3 Porter and Adams (2016) Data In this experiment every subject has played

two sets of budgets in a row. One of them giving to strangers and the other one

giving to parents, while the order differs between treatments. We only consider giving

to strangers since we want to remain consistent with the analysis we conducted for

Fisman, Kariv and Markovits (2007) data.23 We only consider treatments in which

subjects started with a dictator game with strangers to guarantee comparability with

the other dataset. Moreover, the second part was a surprise for subjects (it was not

announced before the end of the first part), so we can consider the games as comparable.

However, there are some differences in design. The first difference is the population.

Fisman, Kariv and Markovits (2007) conducted an experiment with undergraduates

from UC Berkley, while Porter and Adams (2016) used a sample of the adults from

the southeast region of the UK. Another important difference is that Fisman, Kariv

and Markovits (2007) used a constant exchange rate of tokens (experimental currency)

to dollars, while Porter and Adams (2016) had a changing exchange rate, through

which the price variation was implemented. Let us illustrate this with an example of a

decision problem. The subject is given 40 tokens and can decide how much to pass and

to hold, while every token she holds converts into 10 pence and every token she passes

converts into 30 pence. If one wants to get an equal allocation of tokens (20 pass and

20 hold), then the allocation of real world currency will not be equal (6 pounds pass

and 2 pounds hold). One the other hand, if one wants to keep an equal allocation of

23Porter and Adams (2016) show that preferences of giving to strangers and parents are significantly

different.
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real world currency (3 pounds pass and 3 pounds hold), then the allocation of tokens

will not be equal (10 tokens pass and 30 tokens hold).

This design feature is important, as the inequality measure for Fisman, Kariv and

Markovits (2007) data would be similar whether we think about endowments in tokens

or dollars. For Porter and Adams (2016), it would be different. Therefore, we look

at both inequality aversion in real currency and in experimental currency. Remark 8

allows us to test for inequality aversion in experimental currency in the same manner

as for inequality aversion in real currency. We simply set the equal allocation of tokens

as the fair outcome x∗, while the inequality measure is still in terms of real currency

payoffs.

We present an analysis similar to one we conducted for Fisman, Kariv and Markovits

(2007) data with the only difference that we have two separate versions of inequality

aversion. We also report tests for normality of own payoff and normality of both goods.

This brings the total number of theories to six. In addition, since this experiment has

fewer budgets, we use the following levels of HMI= 9/11, 10/11, 11/11.

Figure C.5 presents the distribution of the HMI for all theories. As before, we

use the Bronars and bootstrap tests to estimate power. Figure C.5 consists of six

panels: (a) for other-regarding preferences; (b) for inequality aversion in real currency;

(c) for inequality aversion in experimental currency; (d) for increasing benevolence

preferences; (e) for normality of own payoff and (f) for normality of both goods. Most

theories outperform random decision making for this data as well.24 The exception is

24For other-regarding preferences, the mean HMI for real subjects is .96; for Bronars subjects it

is .82; for bootstrap subjects it is .78 (p-values< .001 for both comparisons using Wilcoxon test and

t-tests). For inequality aversion in real currency, the mean HMI for real subjects is .84; for Bronars

subjects it is .46; for bootstrap subjects it is .59 (p-values< .001 for both comparisons using Wilcoxon

test and t-tests). For increasing benevolence preferences, the mean HMI for real subjects is .93; for

Bronars subjects it is .68; for bootstrap subjects it is .7 (p-values< .001 for both comparisons using

Wilcoxon test and t-tests). For normality of xs, the mean HMI for real subjects is .95; for Bronars

subjects it is .68; for bootstrap subjects it is .68 (p-values< .001 for both comparisons using Wilcoxon

test and t-tests). For normality of both xs and xo, the mean HMI for real subjects is .92; for Bronars

subjects it is .57; for bootstrap subjects it is .6 (p-values< .001 for both comparisons using Wilcoxon

test and t-tests).
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(a) Other-regarding Preferences (b) Inequality Aversion in real currency (c) Inequality Aversion in experimental currency
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(d) Increasing Benevolence (e) Normality of own payoff (f) Normality of both goods
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Figure C.5. Distributions of HMI for Porter and Adams (2016) Data

inequality aversion in experimental currency. Although it performs better under the

Bronars test, it shows almost the same levels of HMI as bootstrap subjects.25

25For inequality aversion in experimental currency the mean HMI for real subjects is .77; for Bronars

subjects it is .49; for bootstrap subjects it is .68 (p-values< .001 for both comparisons using Wilcoxon

test and t-tests).
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Figure C.2 shows that regardless of framing, subjects are more prone to be inequality

averse in real currency than in experimental one. Moreover, power for increasing

benevolence is lower in this experiment. Therefore, further comparison should be done

based on the predictive success index.
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Figure C.6. Pass Rates for Porter and Adams (2016) Data

Figure C.6 presents the pass rates for all theories. Since the latter five theories are

nested within the other-regarding preferences, we also present the pass rates condi-

tional on a subject being consistent with other-regarding preferences at a given level of

HMI. All nested theories are significantly restrictive, moreover, we observe the order-

ing of nested theories which is reverse from the one obtained using Fisman, Kariv and

Markovits (2007) data. Increasing benevolence preferences tend to be more consistent

with the data than inequality averse preferences. Moreover, the difference is statisti-

cally significant for HMI = 9/11 and HMI = 10/11. Let us move on to the predictive

success in order to further investigate this, while controlling for the power of the test.

Figure C.7 presents the value of predictive success indexes. As before, we use the

Bronars and bootstrap tests to control for both conditional and unconditional predic-

tive success. Ordering of the theories is preserved controlling for power of the test if we

restrict HMI for a high enough level (≥ 10/11). Observation that the subject’s own

payoff appears to act as a normal good carries on to this dataset as well. Normality of

xs organizes data better than normality of xo. Moreover the difference is statistically

significant for the bootstrap test and HMI ≤ 10/11. Additionally, due to the small
13
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Figure C.7. Predictive Success Index for Porter and Adams (2016) Data

number of budgets for the low levels of HMI, normality in both goods looks rather fa-

vorable, since it has the higher power. However, this effect disappears at high enough

levels of HMI.
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