
Efficient Global String Kernel with Random Features:
Beyond Counting Substructures

Lingfei Wu
∗

IBM Research

wuli@us.ibm.com

Ian En-Hsu Yen

Carnegie Mellon University

eyan@cs.cmu.edu

Siyu Huo

IBM Research

siyu.huo@ibm.com

Liang Zhao

George Mason University

lzhao9@gmu.edu

Kun Xu

IBM Research

xukun@pku.edu.cn

Liang Ma

IBM Research

maliang@us.ibm.com

Shouling Ji
†

Zhejiang University

sji@zju.edu.cn

Charu Aggarwal

IBM Research

charu@us.ibm.com

ABSTRACT
Analysis of large-scale sequential data has been one of the most

crucial tasks in areas such as bioinformatics, text, and audio mining.

Existing string kernels, however, either (i) rely on local features of

short substructures in the string, which hardly capture long dis-

criminative patterns, (ii) sum over too many substructures, such

as all possible subsequences, which leads to diagonal dominance

of the kernel matrix, or (iii) rely on non-positive-definite similar-

ity measures derived from the edit distance. Furthermore, while

there have been works addressing the computational challenge with

respect to the length of string, most of them still experience qua-

dratic complexity in terms of the number of training samples when

used in a kernel-based classifier. In this paper, we present a new

class of global string kernels that aims to (i) discover global proper-

ties hidden in the strings through global alignments, (ii) maintain

positive-definiteness of the kernel, without introducing a diagonal

dominant kernel matrix, and (iii) have a training cost linear with

respect to not only the length of the string but also the number of

training string samples. To this end, the proposed kernels are explic-

itly defined through a series of different random feature maps, each

corresponding to a distribution of random strings. We show that

kernels defined this way are always positive-definite, and exhibit

computational benefits as they always produce Random String Em-
beddings (RSE) that can be directly used in any linear classification

models. Our extensive experiments on nine benchmark datasets

corroborate that RSE achieves better or comparable accuracy in

comparison to state-of-the-art baselines, especially with the strings

∗
Corresponding author

†
Shouling Ji is also with Alibaba-Zhejiang University Joint Research Institute of

Frontier Technologies

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330923

of longer lengths. In addition, we empirically show that RSE scales

linearly with the increase of the number and the length of string.

CCS CONCEPTS
• Computing methodologies → Kernel methods.

KEYWORDS
String Kernel, String Embedding, Random Features

ACM Reference Format:
Lingfei Wu, Ian En-Hsu Yen, Siyu Huo, Liang Zhao, Kun Xu, Liang Ma,

Shouling Ji, and Charu Aggarwal. 2019. Efficient Global String Kernel

with Random Features: Beyond Counting Substructures . In The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19),
August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3292500.3330923

1 INTRODUCTION
String classification is a core learning task and has drawn consider-

able interests in many applications such as computational biology

[20, 21], text categorization [26, 44], and music classification [9].

One of the key challenges in string data lies in the fact that there is

no explicit feature in sequences. A kernel function corresponding to

a high dimensional feature space has been proven to be an effective

method for sequence classification [24, 47].

Over the last two decades, a number of string kernel methods

[7, 19, 21, 22, 24, 36] have been proposed, among which the k-
spectrum kernel [21], (k,m)-mismatch kernel and its fruitful vari-

ants [22–24] have gained much popularity due to its strong empiri-

cal performance. These kernels decompose the original strings into

sub-structures, i.e., a short k-length subsequence as a k-mer, and

then count the occurrences of k-mers (with up tom mismatches)

in the original sequence to define a feature map and its associated

string kernels. However, these methods only consider the local

properties of the short substructures in the strings, failing to cap-

ture the global properties highly related to some discriminative

features of strings, i.e., relatively long subsequences.

When considering larger k andm, the size of the feature map

grows exponentially, leading to serious diagonal dominance prob-

lem due to high-dimension sparse feature vector [12, 40]. More

https://doi.org/10.1145/3292500.3330923
https://doi.org/10.1145/3292500.3330923

importantly, the high computational cost for computing kernel ma-

trix renders them only applicable to small values of k ,m, and small

data size. Recently, a thread of research has made the valid attempts

to improve the computation for each entry of the kernel matrix

[9, 20]. However, these new techniques only solve the scalability

issue in terms of the length of strings and the size of alphabet but

not the kernel matrix construction that still has quadratic com-

plexity in the number of strings. In addition, these approximation

methods still inherit the issues of these "local" kernels, ignoring

global structures of the strings, especially for these of long lengths.

Another family of research [6, 11, 14, 29, 32, 38, 39] utilizes a

distance function to compute the similarity between a pair of strings

through the global or local alignment measure [28, 35]. These string

alignment kernels are defined resorting to the learningmethodology

of R-convolution [15], which is a framework for computing the

kernels between discrete objects. The key idea is to recursively

decompose structured objects into sub-structures and compute

their global/local alignments to derive a feature map. However, the

common issue that these string alignment kernels have to address

is how to preserve the property of being a valid positive-definite
(p.d.) kernel [33]. Interestingly, both approaches [11, 32] proposed

to sum up all possible alignments to yield a p.d. kernel, which

unfortunately suffers the diagonal dominance problem, leading to

bad generealization capability. Therefore, some treatments have to

be made in order to repair the issues, e.g. taking the logarithm of the

diagonal, which in turns breaks the positive definiteness. Another

important limitation of these approaches is their high computation

costs, with the quadratic complexity in terms of both the number

and the length of strings.

In this paper, we present a new family of string kernels that

aims to: (i) discover global properties hidden in the strings through

global alignments, (ii) maintain positive-definiteness of the kernel,

without introducing a diagonal dominant kernel matrix, and (iii)

have a training cost linear with respect to not only the length of

the string but also the number of training string samples.

To this end, our proposed global string kernels take into account

the global properties of strings through the global-alignment based

edit distance such as Levenshtein distance [48]. In addition, the

proposed kernels are explicitly defined through feature embedding

given by a distribution of random strings. The resulting kernel is

not only a truly p.d. string kernel without suffering from diagonal

dominance but also naturally produces Random String Embeddings
(RSE) by utilizing Random Features (RF) approximations. We further

design four different sampling strategies to generate an expressive

RSE, which is the key leading to state-of-the-art performance in

string classification. Owing to the short length of random strings,

we reduce the computational complexity of RSE from quadratic to
linear both in the number of strings and the length of string. We

also show the uniform convergence of RSE to a p.d. kernel that is

not shift-invariant for string of bounded length by non-trivially

extending conventional RF analysis [30].

Our extensive experiments on nine benchmark datasets corrobo-

rate that RSE achieves better or comparable accuracy in comparison

to state-of-the-art baselines, especially with the strings of longer

lengths. In addition, RSE scales linearly with the increase of the

number and the length of strings.

2 EXISTING STRING KERNELS AND
CONVENTIONAL RANDOM FEATURES

In this section, we first introduce existing string kernels and its sev-

eral important issues that impair their effectiveness and efficiency.

We next discuss the conventional Random Features for scaling up

large-scale kernel machines and further illustrate several challenges

why the conventional Random Features cannot be directly applied

to existing string kernels.

2.1 Existing String Kernels
We discuss existing approaches of defining string kernels and also

three issues that have been haunting existing string kernels for a

long time: (i) diagonal dominance; (ii) non-positive definite; (iii)

scalability issue for large-scale string kernels

2.1.1 String Kernel by Counting Substructures.
We consider a family of string kernels most commonly used in the

literature, where the kernel k(x ,y) between two strings x ,y ∈ X is

computed by counting the number of shared substructures between

x , y. Let S denote the set of indices of a particular substructure in

x (e.g. subsequence, substring, or single character), and S(x) be
the set of all possible such set of indices. Furthermore, let U be

all possible values of such substructure. Then a family of string

kernels can be defined as

k(x ,y) :=
∑
u ∈U

ϕu (x)ϕu (y),where ϕu (x) =
∑
S ∈S

1u (x[S])γ (S) (1)

and 1u (x[S]) is the number of substructures inx of valueu, weighted
by γ (S), which reduces the count according to the properties of S ,
such as length. For example, in a vanilla text kernel,S denotes word

positions in a document x and U denotes the vocabulary set (with

γ (S) = 1). To take string structure into consideration, the gappy
n-gram [26] considers S(x) as the set of all possible subsequences
in a string x of length k , with γ (S) = exp(−ℓ(S)) being a weight

exponentially decayed function in the length of S to penalize sub-

sequences of large number of insertions and deletions. While the

number of possible subsequences in a string is exponential in the

string length, there exist dynamic-programming-based algorithms

that could compute the kernel in Equation (1) in time O(k |x | |y |)
[26]. Similarly, or more complex, substructures were employed in

the convolution kernels [15] and [39]. Both of them have quadratic

complexity w.r.t. the string length, which is too expensive for prob-

lems of long strings.

To circumvent this issue, Leslie et al. proposed the k-spectrum
kernel (or gap-free k-gram kernel) [21], which only requires a com-

putation time O(k(|x | + |y |)) linear to the string length, by taking

S as all substrings (without gap) of length k , where they could be

even further improved to O(|x | + |y |) [36]. While this significantly

increases computational efficiency, the no gap assumption is too

strong in practice. Therefore, the (k,m)-mismatch kernel [22, 24]

is more widely used, which considers 1u (x[S]) = 1 not only when

the k-mer x[S] exactly matches u but also when they mismatch

by no more thanm characters. The algorithm has a computational

burden of O(km+1 |Σ|m (|x | + |y |)) and a number of more recent

works improved it to O(m3 + 2k (|x | + |y |)) in the exact case and

even faster in the approximate case [9, 20].

One significant issue regarding substructure-counting kernel is

the diagonally dominant problem, where the diagonal elements of

a kernel Gram matrix is significantly (often orders-of-magnitude)

larger than the off-diagonal elements, yielding an almost identity

kernel matrix that Support Vector Machine (SVM) does not perform

well on [12, 40]. This is because a string always shares a large

number of common substructures with itself, and the issue is more

serious for the problems summing over more substructures in S.

2.1.2 Edit-Distance Substitution Kernel.
Another commonly used approach is to define string kernels by

exploiting the edit distance (e.g. Levenshtein distance). With a slight

abuse of notation, let d(i, j) denote the Levenshtein distance (LD)

between two substrings d(x[1 : i],y[1 : j]). The distance can be

recursively defined as follows.

d(i, j) =


max{i, j}, i = 0 or j = 0

min


d(i − 1, j) + 1,
d(i, j − 1) + 1,

d(i − 1, j − 1) + 1x [i],y[j]

 , o.w .
(2)

Essentially, the distance (2) finds the minimum number of edits (i.e.

insertion, deletion, and substitution) required to transform x into

y. The distance measure is known as a metric, that is, it satisfies (i)
d(x ,y) ≥ 0, (ii) d(x ,y) = d(y,x), (iii) d(x ,y) = 0 ⇐⇒ x = y and

(iv) d(x ,y) + d(y,z) ≥ d(x ,z).
Then the distance-substitution kernel [14] replaces the Euclidean

distance in a typical kernel function by a new distance d(x ,y). For
example, for Gaussian and Laplacian RBF kernels, the distance

substitution leads to

kGauss (x ,y) := exp(−γd(x ,y)2) (3)

kLap (x ,y) := exp(−γd(x ,y)). (4)

The kernels, however, are not positive-definite for the case of edit
distance [29]. This implies that the use of string kernels (3), (4) in a

kernel method, such as SVM, does not correspond to a loss mini-

mization problem, and the numerical procedure can not guarantee

convergence to an optimal solution since the non-p.d. kernel matrix

yields a non-convex optimization problem. Despite being invalid,

this type of kernels is still being used in practice [27, 29].

2.2 Conventional Random Features for Scaling
Up Kernel Machine

As we discussed in the previous sections, while there have been

works addressing the computational challenge with respect to the

length of string or the size of the alphabet, all of exiting string

kernels still have quadratic complexity in terms of the number of

strings when computing the kernel matrix for string classification.

Independently, over the last decade, there has been growing

interests in the development of various low-rank kernel approxima-

tion techniques for scaling up large-scale kernel machines such as

Nystrom method [41], Random Features method [30], and other hy-

brid kernel approximation methods [34]. Among them, RF method

has attracted considerable interests due to easy implementation and

fast execution time [30, 42, 43], and has been widely applied to var-

ious applications such as speech recognition and computer vision

[2, 16]. In particular, unlike other approaches that approximates

kernel matrix, RF method approximates the kernel function directly

via sampling from an explicit feature map. Therefore, these random

features, combined with very simple linear learning techniques,

can effectively reduce the computational complexity of the exact

kernel matrix from quadratic to linear in terms of the number of

training samples.

Despite the great success the conventional RFmethod has achieved,

there are three key challenges in applying this technique to existing

string kernels introduced in the previous section. First, the conven-

tional RF methods are designed for the kernel machines that only

take the fix-length vectors. Thus, it is not clear how to extend this

technique to the string kernels that take variable-length strings.

Second, all conventional RF methods require a user-defined kernel

as inputs and then derive the corresponding random feature map.

For given kernel functions like Gaussian or Laplacian RBF kernels,

it might be easy to derive random feature maps, i.e. Gaussian distri-

bution and Gamma distribution. However, it is highly non-trivial

how to derive a random feature map for a string kernel defined as

in Equations (1), (3), and (4). Finally, the theoretical foundation to

guarantee the inner product of two transformed points approxi-

mating the exact kernel is that the kernel must be shift-invariant
and positive-definite. This assumption about the kernel is hard to

hold for most of string kernels since existing string kernels are not

a shift-invariant kernel [45].

In this work, instead of using Random Features to approximate

a pre-defined kernel function, we overcome all these aforemen-

tioned issues by generalizing Random Features to develop a new

family of efficient and effective string kernels that not only are

positive-definite but also reduce the computational complexity from

quadratic to linear in both the number and the length of strings.

Note that, our approach is different from a recent work [45] on

distance kernel learning that mainly focuses on theoretical analysis

of these kernels on structured data like time-series [46] and text

[44]. Instead, we focus on developing empirical methods that could

often outperform or are highly competitive to other state-of-the-art

approaches, including kernel based and Recurrent Neural Networks
based methods, as we will show in our experiments.

3 FROM EDIT DISTANCE TO STRING KERNEL
In this section, we first introduce a family of string kernels that

utilize the global alignment measure, i.e. Edit Distance (or Leven-

shtein distance), to construct a kernel while establishing its positive
definiteness. Then we further discuss how to perform efficient com-

putation of the proposed string kernels by generating the kernel

approximation through Random Features that we refer as Random
String Embeddings. Finally, we show the uniform convergence of

RSE to a p.d. kernel that is not shift-invariant.

3.1 Global String Kernel
Suppose we are interested in strings of bounded length L, that is,
X ∈ ΣL . Let Ω ∈ ΣL also be a domain of strings and p(ω) : Ω → R
be a probability distribution over a collection of random strings
ω ∈ Ω. The proposed kernel is defined as

k(x ,y) :=

∫
ω ∈Ω

p(ω)ϕω (x)ϕω (y)dω, (5)

where ϕω (x) could be set directly to the distance

ϕω (x) := d(x ,ω) (6)

or be converted into a similarity measure via the transformation

ϕω (x) := exp(−γd(x ,ω)). (7)

In the former case, it could be illustrated as some form of the dis-

tance substitution kernel but using a distribution of random strings

instead of the original strings. In the latter case, it could be inter-

preted as a soft distance substitution kernel. Instead of substituting

distance into the function like (4), it substitutes a soft version of the

form

k(x ,y) = exp

(
−γ softminp(ω){d(x ,ω) + d(ω,y)}

)
(8)

where

softminp(ω)(f (ω)) := −
1

γ
log

∫
p(ω)e−γ f (ω)dω.

Suppose Ω only contains strings of non-zero probability (i.e.p(ω) >

0). Comparing (8) to the distance-substitution kernel (4), we notice

that

softminp(ω)(f (ω)) → min

ω ∈Ω
f (ω)

as γ → ∞. As long as X ⊆ Ω and the global alignment measure

(i.e. Levenshtein distance) satisfies the triangular inequality [25],

then we have

min

ω ∈Ω
d(x ,ω) + d(y,ω) = d(x ,y),

and therefore,

k(x ,y) → exp(−γd(x ,y))

as γ → ∞, which relates our kernel (8) to the distance-substitution

kernel (4) in the limiting case. However, note that our kernel (8) is

always positive definite by its definition (5) since∫
x

∫
y

∫
ω ∈Ω

p(ω)ϕω (x)ϕω (y)dωxy

=

∫
ω ∈Ω

p(ω)

(∫
x
ϕω (x)dx

) (∫
y
ϕω (y)dy

)
dω ≥ 0

(9)

3.2 Random String Embedding
Efficient Computation of RSE. Although the kernels (6) and (7)

are clearly defined and easy to understand, it is hard to derive a

simple analytic form of solution. Fortunately, we can easily utilize

the RF approximations for the exact kernel,

ˆkR (x ,y) ≈
〈
Z (x),Z (y)

〉
=

1

R

R∑
i=1

〈
ϕωi (x),ϕωi (y)

〉
. (10)

The feature vector Z (x) is computed using dissimilarity measure

ϕ({ωi }
R
i=1,x), where {ωi }

R
i=1 is a set of random strings of variable

length D drawn from a distribution p(ω). In particular, the func-

tion ϕ could be any edit distance measure or converted similarity

measure that consider global properties through alignments. With-

out loss of generality we consider Levenshtein distance (LD) as

our distance measure, which has been shown to be a true distance

metric [48]. We call our random approximation Random String Em-
bedding (RSE), which we will show its uniform convergence to

the exact kernel over all pairs of strings by non-trivially extend-

ing the conventional RF analysis in [30] to the kernel that is not

shift-invariant and the inputs that are not fixed-length vectors. It is

worth noting that only feature matrix Z is actually computed for

string classification tasks and there is no need to compute
ˆkR (x ,y).

Algorithm 1 Random String Embedding: An Unsupervised Feature

Representation Learning for Strings

Input: Strings {xi }Ni=1, 1 ≤ |xi | ≤ L, maximum length of ran-

dom strings Dmax , string embedding size R.
Output: Feature matrix ZN×R for input strings

1: for j = 1, . . . ,R do
2: Draw D j uniformly from [1,Dmax].

3: Generate random strings ωj of length D j from Algorithm 2.

4: Compute a feature vector Z (:, j) = ϕωi ({xi }
N
i=1) using LD in

(6) or soft-version LD in (7).

5: end for
6: Return feature matrix Z ({xi }

N
i=1) =

1√
R
[Z (:, 1 : R)]

As shown in Algorithm 1, our Random String Embedding is very

simple and can be easily implemented. There are several remarks

worth noting here. First, RSE is an unsupervised feature genera-

tion method for embedding strings, making it highly flexible to be

combined with various learning tasks beside classification. The hy-

perparamter Dmax is for both the kernel (6) and the kernel (7), and

the hyperparameter γ is only for the kernel (7) using soft-version

LD distance as features. One interesting way to illustrate the role

of D in lines 2 and 3 of Alg. 1 is to capture the longest segments

of the original strings that correspond to the highly discriminative

features hidden in the data. We have observed in our experiments

that these long segments are particularly important for capturing

the global properties of the strings of long length (L > 1000). In

practice, we have no prior knowledge about the value of D and

thus we sample each random string of D in the range [1, Dmax]

to yield unbiased estimation. In practice, D is often a constant,

typically smaller than 30. Finally, in order to learn an expressive

representation, generating a set of random strings of high-quality

is a necessity, which we defer to discuss in detail later.

One important aspect about our RSE embedding method stems

from the fact that it scales linearly both in the number of strings and

in the length of strings. Notice that a typical evaluation of LD be-

tween two data strings isO(L2) given that two strings have roughly

equal length L. With our RSE, we can reduce the computational cost

of LD to O(LD), where D is treated as a constant in Algorithm 1.

This is particular important when the length of the original strings

are very long. In addition, most of popular existing string kernels

have quadratic complexity O(N 2) in computing kernel matrix in

terms of the number of strings, rendering the serious difficulty to

scale to large data. In contrast, our RSE reduces this computational

complexity from quadratic to linear, owing to generating an em-

bedding matrix with O(NR) instead of constructing a full kernel

matrix directly. Recall that the state-of-the-art string kernels have

complexity of O(N 2(m3 + 2
kL)) [9, 20]. Therefore, with our RSE

method we have significantly improved the total complexity of

O(NRL), if we treat D as a constant, which is independent of the

size of alphabet k and the number of mismatched charactersm. We

demonstrate the linear scalability of RSE respecting to the number

Algorithm 2 Sampling Strategies for Generating Random Strings

Input: Strings {xi }
N
i=1, length of random string D j , size of

alphabet |Σ|.
Output: Random strings ωi

1: if Choose RSE(RF) then
2: Uniformly draw number D j of indices {I1, I2, . . . , ID j } =

randi(|Σ|, 1,D j)

3: Obtain random characters from Σ({I1, I2, . . . , ID j })

4: Generate random string ωi by concatenating random char-

acters

5: else if Choose RSE(RFD) then
6: compute the discrete distribution h(ω) for each character in

alphabet Σ
7: Draw number D j of indices {I1, I2, . . . , ID j } =

randi(|Σ|, 1,D j) from data letter distribution h(ω)
8: Obtain random characters from Σ({I1, I2, . . . , ID j })

9: Generate random string ωi by concatenating random char-

acters

10: else if Choose RSE(SS) then
11: Uniformly draw string index k = randi(1,N) and select the

k-th raw string

12: Obtain length Lk of the k-th raw string and uniformly draw

letter index l = randi(1,Lk − D j + 1)

13: Generate random string ωi from a continuous segment of

k-th raw string starting from l-th letter

14: else if Choose RSE(BSS) then
15: Uniformly draw string index k = randi(1,N), select the k-th

raw string, and obtain its length Lk
16: Divide k-th raw string into b = Lk/D j blocks of sub-string

17: Uniformly draw number of blocks that will be sampled l =
randi(1,b)

18: Uniformly draw block indices {B1,B2, . . . ,Bl } =

randi(b, 1, l)
19: Generate number l of random strings ωi by gathering all

drawn blocks of sub-strings (and remove if it has in {ωi })
20: end if
21: Return ωi for all generated random strings

of strings and the length of strings, making it a strong candidate

for the method of the choice for string kernels on large data.

Effective Random Strings Generation. The key to the effec-

tiveness of the RSE is how to generate a set of random strings

of high quality. We present four different sampling strategies to

produce a rich feature space derived from both data-independent

and data-dependent distributions. We summarize various sampling

strategies for generating random strings in Algorithm 2.

The first sampling strategy follows the traditional RF method,

where we find the distribution associated to the predefined ker-

nel function. However, since we define the kernel function by an

explicit distribution, we have flexibility to seek any existing distri-

bution that may apply well on the data. To this end, we use uniform

distribution to represent the true distribution of the characters in

given specific alphabet. We call this sampling scheme RSE(RF). The

second sampling strategy is a similar scheme but instead of using

existing distribution we compute histograms of each character in

the alphabet that appears in the data strings. The learned histogram

is an biased estimate for the true probability distribution. We call

this sampling scheme RSE(RFD).

The previous two sampling strategies basically consider how to

generate a random string from low-level characters. Recent studies

[17, 31] on random features have shown that a data-dependent dis-

tribution may yield better generalization error. Therefore, inspired

by these findings, we also design two data-dependent sampling

schemes to generate random strings. We do not use well-known

representative set of method to pick the whole strings since it has

been shown in [3] that this method generally leads larger general-

ization errors. A simple yet intuitive way to obtain random strings

is to sample a segment (sub-string) of variable length from the orig-

inal strings. Too long or too short sub-strings could either carry

noises or insufficient information about the true data distribution.

Therefore, we uniformly sample the length of random strings as be-

fore. We call this sampling scheme RSE(SS). In order to sample more

random strings in one sampling period, we also divide the original

string into several blocks of sub-strings and uniformly sample some

number of these blocks as our random strings. Note that in this

case it means that we sample multiple random strings and we do

not concatenate them as one long string. This scheme leads to learn

more discriminative features at the cost of more computations for

running Alg. 2 once. We call this scheme RSE(BSS).

3.3 Convergence Analysis
As our kernel (5) does not have an analytic form but only a sampling

approximation (10), it is crucial to ask: how many random features

are required in (10) to have an accurate approximation? Does such

accuracy generalize to strings beyond training data? To answer

those questions, we non-trivially extending the conventional RF

analysis in [30] to the proposed string kernels in Equation (5),

which are not shift-invariant and take the variable-length strings.

We provide the following theorem to show the uniform convergence

of RSE to a p.d. string kernel over all pairs of strings.

Theorem 1. Let ∆R (x ,y) := ˆkR (x ,y) − k(x ,y) be the difference
between the exact kernel (5) and its random-feature approximation

(10) with R samples, we have the following uniform convergence:

P

{
max

x ,y∈X
|∆R (x ,y)| > t

}
≤ 8e2L log |Σ |−Rt 2/2.

where L is a bound on the length of strings in X and |Σ| is size
of the alphabet. In other words, to guarantee |∆R (x ,y)| ≤ ϵ with

probability at least 1 − δ , it suffices to have

R = Ω

(
L log |Σ|

ϵ2
log(

γ

ϵ
) +

1

ϵ2
log(

1

δ
)

)
.

Proof Sketch. Since E[∆R (x ,y)] = 0 and |∆R (x ,y)| ≤ 1, from

Hoefding’s inequality, we have

P {|∆R (x ,y)| ≥ t} ≤ 2 exp(−Rt2/2)

and since the number of strings in X is bounded by 2|Σ|L . Through
an union bound, we have

P

{
max

x ,y∈X
|∆R (x ,y)| ≥ t

}
≤ 2|X|2 exp(−Rt2/2)

≤ 8 exp

(
2L log |Σ| − Rt2/2

)
,

which leads to the result. □

Theorem 1 tells us that for any pair of two strings x ,y ∈ X, one

can guarantee a kernel approximation of error less than ϵ as long
as R ⪆ L log(|Σ|)/ϵ2 up to the logarithmic factor.

4 EXPERIMENTS
We carry out the experiments to demonstrate the effectiveness

and efficiency of the proposed method, and compare against total

five state-of-the-art baselines on nine different string datasets that

are widely used for testing the performance of string kernels. We

implement our method in Matlab and make full use of C-MEX

function for the computationally extensive component of LD.

Table 1: Statistical properties of the datasets.

Application Name Alphabet Class Train Test Length

Protein ding-protein 20 27 311 369 26/967

Protein fold 20 26 2700 1159 20/936

Protein superfamily 20 74 3262 1398 23/1264

DNA/RNA splice 4 3 2233 957 60

DNA/RNA dna3-class1 4 2 3200 1373 147

DNA/RNA dna3-class2 4 2 3620 1555 147

DNA/RNA dna3-class3 4 2 4025 1725 147

Image mnist-str4 4 10 60000 10000 34/198

Image mnist-str8 8 10 60000 10000 17/99

Datasets.Weapply ourmethod on nine benchmark string datasets

across different main applications including protein, DNA/RNA,

and image. Table 1 summarizes the properties of datasets that are

collected from the UCI Machine Learning repository [10], the Lib-

SVM Data Collection [1], and partially overlapped with various

string kernel references [9, 20]. For all datasets, the size of alphabet

is between 4 and 20. The number of classes range between 2 and

74. The larger number of classes typically make the classification

task more challenging. One particular property associated with

string data is possibly high variation in length of the strings, which

exhibits mostly in the protein datasets with range between 20 and

1264. This large variation presents significant challenges to the

most of methods. We divided each dataset into 70/30 train and test

subsets (if there was no predefined train/test split).

Variants of RSE. We have two different global string kernels

and four different random string generation methods proposed in

Section 3, resulting in the total 8 different combinations of RSE. We

will investigate the properties and performance of each variant in

the subsequent section. Here, we list the different variants as fol-

lows: i)RSE(RF-DF): RSE(RF) with direct LD distance as features in

(6); ii)RSE(RF-SF): RSE(RF) with soft version of LD distance as fea-

tures in (7); iii) RSE(RFD-DF): RSE(RFD) with direct LD distance;

iv) RSE(RFD-SF): RSE(RFD) with soft version of LD distance; v)

RSE(SS-DF): RSE(SS) with direct LD distance; vi)RSE(SS-SF): com-

bines the data-dependent sub-strings generated from dataset with

soft LD distance; vii)RSE(BSS-DF): generates blocks of sub-strings
from data-dependent distribution and uses direct LD distance; viii)

RSE(BSS-SF): generates blocks of sub-strings from data-dependent

distribution and uses soft-version LD distance.

Baselines. We compare our method RSE against five state-of-

the-art kernel and deep learning based methods:

SSK [20]: state-of-the-art scalable algorithms for computing exact

string kernels with inexact matching - (k,m)-mismatch kernel.

ASK [9]: latest advancement for approximating (k,m)-mismatch

string kernel for larger k andm.

KSVM [27]: state-of-the-art alignment based kernels using the orig-

inal (indefinite) similarity measure in the original Krein space.

LSTM [13]: long short-term memory (LSTM) architecture, state-of-

the-art models for sequence learning.

GRU [4]: a gated recurrent unit (GRU) achieving comparable per-

formance to LSTM [5].

For deep learning methods, we use Python Deep Learning Li-

brary Keras. Both LSTM and GRU models are trained using the

Adam optimizer [18], with mini-batch size 64. The learning rate is

set to 0.001. We apply the dropout strategy [37] with a ratio of 0.5 to

avoid overfitting. Gradients are clipped when their norm is bigger

than 20. We set the max number of epochs 200. It is easy to see that

most of Protein and DNA/RNA datasets have relatively small size

of datasets, except for two image datasets. Therefore, to overcome

potential over-fitting issue, we tune the number of hidden layers

(using only 1 or 2) and the size of hidden state between 60 and 150.

We use one-hot encoding scheme with the size of alphabet in the

corresponding string data.

4.1 Comparison Among All Variants of RSE
Setup.We investigate the behaviors of eight different variants of

our proposed method RSE in terms of string classification accuracy.

The best values forγ andDmax for the length of random stringwere

searched in the ranges [1e-5, 1] and [5, 100], respectively. Since we

can generate random samples from the distribution, we can use as

many as needed to achieve performance close to an exact kernel.

We report the best number in the range R = [4, 8192] (typically

the larger R is, the better the accuracy). We employ a linear SVM

implemented using LIBLINEAR [8] on the RSE embeddings.

Results. Table 2 shows the comparison results among eight

different variants of RSE for various string classification tasks. We

empirically observed some interesting conclusions. First, we can see

that the data-dependent sampling strategies (including sub-strings

and block sub-strings) generally outperform their data-independent

counterparts. This may be because the data-dependent has smaller

hypothesis space associated with given data that could capture

the global properties better with limited samples and thus yield

more favorable generalization errors. This is consistent with recent

studies about random features in [17, 31]. Second, there is no clear

winner which one is significantly better than others (with DF won

total 5 while SF won 4). However, when combining SS or BSS

sampling strategies, using soft-version LD distance as features (SF)

often achieve close performance compared to that of using LD

distance as features (DF), while the opposite is not true. Therefore,

we choose RSE(BSS-SF) to compare with other baselines in the

subsequent experiments. For instance, on datasets ding-protein

and dna3-class2, RSE(SS-SF) has significantly better accuracy than

RSE(SS-DF). It may suggest that the best candidate variant of RSE

should be combining SF with data-dependent sampling strategies

(SS or BSS) in practice.

4.2 Comparison of RSE Against All Baselines
Setup.We assess the performance of RSE against five other state-

of-the-art kernel and deep learning approaches in terms of both

string classification accuracy and computational time. For RSE, we

Table 2: Comparisons among eight variants of RSE in terms of classification accuracy. Each sampling strategy combines either
DF (direct LD distance as features in String Kernels (6)) or SF (soft version of LD distance as features in String Kernels (7)).

Methods RSE(RF-DF) RSE(RF-SF) RSE(RFD-DF) RSE(RFD-SF) RSE(SS-DF) RSE(SS-SF) RSE(BSS-DF) RSE(BSS-SF)

Datasets Accu Accu Accu Accu Accu Accu Accu Accu

ding-protein 52.57 51.76 51.22 49.32 48.50 53.65 51.49 52.30

fold 73.94 72.90 74.37 72.47 75.41 75.21 74.72 75.13

superfamily 74.03 73.46 74.67 70.88 77.46 77.13 74.82 75.52

splice 86.72 86.31 86.20 82.86 88.71 88.08 89.76 90.17
dna3-class1 78.29 77.20 77.85 79.46 81.64 80.84 83.39 82.66

dna3-class2 88.48 89.51 87.97 90.41 87.20 90.61 89.51 90.48

dna3-class3 75.94 78.55 72.0 70.72 70.89 72.87 78.20 78.78
mnist-str4 98.52 98.43 98.43 98.31 98.76 98.61 98.75 98.71

mnist-str8 98.45 98.48 98.39 98.31 98.54 98.51 98.50 98.53

Table 3: Comparing RSE against other state-of-the-art methods in terms of classification accuracy and computational time
(seconds). The symbol "–" stands for either "run out of memory" (with total 256G) or runtime greater than 36 hours.

Methods RSE(BSS-SF) SSK ASK KSVM LSTM GRU

Datasets Accu Time Accu Time Accu Time Accu Time Accu Time Accu Time

ding-protein 52.30 54.8 28.72 3.0 11.92 20.0 39.83 25.8 31.33 576.0 31.90 350.0

fold 75.13 289.51 46.5 85.0 48.83 1070.0 74.37 643.9 68.08 13778.0 66.83 6452.0

superfamily 75.52 469.9 44.63 140.0 44.70 257.0 69.59 1389.9 63.38 16778.0 62.81 7974.0

splice 90.17 78.4 71.26 68.0 71.57 184.0 67.29 148.8 86.94 166.0 88.39 93.2

dna3-class1 82.66 585.6 86.38 313.0 86.23 667.0 48.43 760.4 80.1 866.0 81.78 436.0

dna3-class2 90.48 432.2 82.76 475.0 82.63 916.0 46.10 991.8 83.08 1000.0 85.13 536.4

dna3-class3 78.78 1436.8 77.91 553.0 78.14 926.0 44.28 1297.2 83.36 2400.0 81.75 1389.0

mnist-str4 98.71 4287.2 – – – – – > 36 hours 98.63 13090.0 98.50 7542.0

mnist-str8 98.53 2010.2 – – – – 96.80 859670.0 98.61 14618.0 98.45 7386.0

101 102 103 104

Varying R

10

20

30

40

50

60

Te
st

in
g

Ac
cu

ra
cy

 %

Testing Accuracy VS R

RSE(SS-DF)
RSE(SS-SF)
RSE(BSS-DF)
RSE(BSS-SF)

(a) ding-protein

101 102 103 104

Varying R

50

60

70

80

90

Te
st

in
g

Ac
cu

ra
cy

 %

Testing Accuracy VS R

RSE(SS-DF)
RSE(SS-SF)
RSE(BSS-DF)
RSE(BSS-SF)

(b) splice

101 102 103 104

Varying R

50

60

70

80

90

100

Te
st

in
g

Ac
cu

ra
cy

 %

Testing Accuracy VS R

RSE(SS-DF)
RSE(SS-SF)
RSE(BSS-DF)
RSE(BSS-SF)

(c) dna3-class2

101 102 103 104

Varying R

30

40

50

60

70

80

90

100

Te
st

in
g

Ac
cu

ra
cy

 %

Testing Accuracy VS R

RSE(SS-DF)
RSE(SS-SF)
RSE(BSS-DF)
RSE(BSS-SF)

(d) mnist-str4

101 102 103 104

Varying R

10-1

100

101

102

103

104

R
un

tim
e

(S
ec

on
ds

)

Total Runtime VS R
RSE(SS-DF)
RSE(SS-SF)
RSE(BSS-DF)
RSE(BSS-SF)

(e) ding-protein

101 102 103 104

Varying R

10-1

100

101

102

103

R
un

tim
e

(S
ec

on
ds

)

Total Runtime VS R
RSE(SS-DF)
RSE(SS-SF)
RSE(BSS-DF)
RSE(BSS-SF)

(f) splice

101 102 103 104

Varying R

10-1

100

101

102

103

104

R
un

tim
e

(S
ec

on
ds

)

Total Runtime VS R
RSE(SS-DF)
RSE(SS-SF)
RSE(BSS-DF)
RSE(BSS-SF)

(g) dna3-class2

101 102 103 104

Varying R

100

101

102

103

104

R
un

tim
e

(S
ec

on
ds

)

Total Runtime VS R
RSE(SS-DF)
RSE(SS-SF)
RSE(BSS-DF)
RSE(BSS-SF)

(h) mnist-str4

Figure 1: Test accuracy and computational runtime of RSE(SS-DF), RSE(SS-SF), RSE(BSS-DF), and RSE(BSS-SF) when varying R.

choose the variant RSE(BSS_SF) owing to its consistently robust

performance and report the results on each dataset from Table 2.

For SSK and ASK, we use the public available implementations

of these two methods written in C and in Java, respectively. To

achieve the best performance of SSK and ASK, following [9, 20]

we generate the different combinations of (k,m)-mismatch kernel,

where k is between 8 and 12 and m is between 2 and 5. We use

LIBSVM [1] for these precomputed kernel matrices and search for

the best hyperparameter (regularization) of SVM in the range of

[1e-5 1e5]. For LSTM and GRU, all experiments were conducted on

a server with 8 CPU cores and NVIDIA Tesla K80 accelerator with

two GK210 GPU. However, to facilitate a relatively fair runtime

comparison, we directly run two deep learning models on CPU

only and report their runtime.

Results. As shown in Table 3, RSE can consistently outperform

or match all other baselines in terms of classification accuracy while

103 104 105

Varying number of strings N

10-2

100

102

104

106

108

Ti
m

e
(S

ec
on

ds
)

Runtime VS number of strings N
RSE(RF-DF)

RSE(RF-SF)

RSE(SS-DF)

RSE(SS-SF)

Linear

Quatratic

(a) Number of Strings N

102 103 104

Varying length of string L

100

102

104

106

108

Ti
m

e
(S

ec
on

ds
)

Runtime VS length of string L
RSE(RF-DF)

RSE(RF-SF)

RSE(SS-DF)

RSE(SS-SF)

Linear

Quatratic

(b) Length of String L

Figure 2: Runtime for computing RSE string embeddings, and the overall runtime when varying number of strings N and
length of string L. (Default values: number of strings N = 10000, length of string L = 512). Linear and quadratic complexity are
also plotted for easy comparisons.

requiring less computation time for achieving the same accuracy.

The first interesting observation is that our method performs sub-

stantially better than SSK and ASK, often by a large margin, i.e.,

RSE achieves 25% - 33% higher accuracy than SSK and ASK on

three protein datasets. This is because (k,m)-mismatch string ker-

nel is sensitive to the strings of long length, which often causes the

feature space size of the short sub-strings (k-mers) exponentially

grow and leads to diagonal dominance problem. More importantly,

using only small sub-strings extracted from the original strings

results in an inherently local perspective and fails to capture the

global properties of strings of long length. Secondly, in order to

achieving the same accuracy, the required runtime of RSE could

be significantly less than that of SSK and ASK. For instance, on

dataset superfamily, RSE achieves the accuracy 46.56% using 3.7

second while SSK and ASK achieve similar accuracy 44.63% and

44.79% using 140.0 and 257.0 seconds respectively. Thirdly, RSE

achieves much better performance than KSVM on all of datasets,

highlighting the importance of truly p.d. kernel compared to the

indefinite kernel even in the Krein space. Finally, compared to two

state-of-the-art deep learning models, RSE still has shown clear

advantages over LSTM and GRU, especially for the strings of long

length. RSE achieves better accuracy than LSTM and GRU on 7

out of the total 9 datasets except on dna3-class3 and mnist-str8.

It is well-known that Deep Learning based approaches typically

require large amount of tranning data, which could be one of the

important reasons why they performed worse on relatively small

data but slightly better or similar performance on large data such

as dna3-class3 and mnist-str8.

4.3 Accuracy and Runtime of RSE When
Varying R

Setup.We now conduct experiments to investigate the behavior of

four best variants of RSE by varying the number R of random strings.

The hyperparameter Dmax is obtained from the previous cross-

validations on the training set. We set R in the range [4, 8192]. We

report both testing accuracy and runtime when increasing random

string embedding size R.

Results. Fig. 1 shows how the testing accuracy and runtime

changes when increasing R. We can see that all selected variants of

RSE converge very fast when increasing R from a small number (R =

4) to relatively large number. Interestingly, using block sub-strings

(BSS) sampling strategy typically leads to a better convergence at

the beginning since BSS could produce multiple random strings at

every sampling time that sometimes offers much help in boosting

the performance. However, when increasing R to larger number,

all variants converge similarly to the optimal performance of the

exact kernel. This confirms our analysis in Theory 1 that the RGE

approximation can guarantee the fast convergence to the exact

kernel. Another important observation is that all variants of RSE

scales linearly with increase in the size of the random string em-

bedding R. This is a particularly important property for scaling up

large-scale string kernels. On the other hand, one can easily achieve

the good trade-off between the desired testing accuracy and the

limited computational time, depending on the actual demands of

the underlying applications.

4.4 Scalability of RSE When Varying Numbers
of Strings N and Length of String L

Setup. Next, we evaluate the scalability of RSE when varying num-

ber of strings N and the length of a string L on randomly gener-

ated string dataset. We change the number of strings in the range

of N = [128, 131072] and the length of a string in the range of

L = [128, 8192], respectively. When generating random string

dataset, we choose its alphabet same as protein strings. We also set

Dmax = 10 and R = 256 for the hyperparameters related to RSE.

We report the runtime for computing string embeddings using four

variants of our method RSE.

Results.As shown in Fig. 2, we have two important observations

about the scalability of RSE. First, Fig. 2a clearly shows RSE scales

linearly when increasing the number of strings N . Second, Fig. 2b

empirically corroborated that RSE also achieves linear scalability

in terms of the length of string L. These emperical results provide

a strong evidence to demonstrate that RSE derived from our newly

proposed global string kernel indeed scales linearly in both number

of string samples and length of string. Our method opens the door

for developing a new family of string kernels that enjoy both higher

accuracy and linear scalability on real-world string data.

5 CONCLUSIONS
In this paper, we present a new family of positive-definite string ker-

nels that take into account the global properties hidden in the data

strings through the global alignments measured by Edit Distance.

Our Random String Embedding, derived from the proposed kernel

through Random Feature approximation, enjoys double benefits

of producing higher classification accuracy and scaling linearly in

terms of both number of strings and the length of a string. Our

newly defined global string kernels pave a simple yet effective way

to handle real-world large-scale string data.

Several interesting future directions are listed below: i) our

method can be further exploited with other distance measure that

consider the global or local alignments; ii) other non-linear solver

can be applied to potentially improve the classification of our em-

bedding compared to our currently used linear SVM solver; iii) our

method can be applied in the application domain like computational

biology for the domain-specific problems.

REFERENCES
[1] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector

machines. ACM transactions on intelligent systems and technology 2, 3 (2011), 27.

[2] Jie Chen, Lingfei Wu, Kartik Audhkhasi, Brian Kingsbury, and Bhuvana Ramab-

hadrari. 2016. Efficient one-vs-one kernel ridge regression for speech recognition.

In ICASSP. IEEE, 2454–2458.
[3] Yihua Chen, Eric K Garcia, Maya R Gupta, Ali Rahimi, and Luca Cazzanti. 2009.

Similarity-based classification: Concepts and algorithms. Journal of Machine
Learning Research 10, Mar (2009), 747–776.

[4] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv:1409.1259 (2014).
[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv:1412.3555 (2014).
[6] Corinna Cortes, Patrick Haffner, and Mehryar Mohri. 2004. Rational kernels:

Theory and algorithms. Journal of Machine Learning Research 5, Aug (2004),

1035–1062.

[7] Nello Cristianini, John Shawe-Taylor, et al. 2000. An introduction to support vector
machines and other kernel-based learning methods. Cambridge university press.

[8] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

2008. LIBLINEAR: A library for large linear classification. Journal of machine
learning research 9, Aug (2008), 1871–1874.

[9] Muhammad Farhan, Juvaria Tariq, Arif Zaman, Mudassir Shabbir, and Imdad Ul-

lah Khan. 2017. Efficient Approximation Algorithms for Strings Kernel Based

Sequence Classification. In NIPS. 6938–6948.
[10] Andrew Frank and Arthur Asuncion. 2010. UCI Machine Learning Repository

[http://archive. ics. uci. edu/ml]. Irvine, CA: University of California. School of
information and computer science 213 (2010).

[11] Leo Gordon, Alexey Ya Chervonenkis, Alex J Gammerman, IlhamA Shahmuradov,

and Victor V Solovyev. 2003. Sequence alignment kernel for recognition of

promoter regions. Bioinformatics 19, 15 (2003), 1964–1971.
[12] Derek Greene and Pádraig Cunningham. 2006. Practical solutions to the problem

of diagonal dominance in kernel document clustering. In ICML. ACM, 377–384.

[13] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen

Schmidhuber. 2017. LSTM: A search space odyssey. IEEE transactions on neural
networks and learning systems 28, 10 (2017), 2222–2232.

[14] Bernard Haasdonk and Claus Bahlmann. 2004. Learning with distance substitu-

tion kernels. In Joint Pattern Recognition Symposium. Springer, 220–227.

[15] David Haussler. 1999. Convolution kernels on discrete structures. Technical Report.
Department of Computer Science, University of California at Santa Cruz.

[16] Po-Sen Huang, Haim Avron, Tara N Sainath, Vikas Sindhwani, and Bhuvana

Ramabhadran. 2014. Kernel methods match Deep Neural Networks on TIMIT..

In ICASSP. 205–209.
[17] Catalin Ionescu, Alin Popa, and Cristian Sminchisescu. 2017. Large-scale data-

dependent kernel approximation. In AIStats. 19–27.

[18] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. CoRR abs/1412.6980 (2014).

[19] Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and

Christina Leslie. 2005. Profile-based string kernels for remote homology detection

and motif extraction. Journal of bioinformatics and computational biology 3, 03

(2005), 527–550.

[20] Pavel P Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. 2009. Scalable algorithms

for string kernels with inexact matching. In NIPS. 881–888.
[21] Christina Leslie, Eleazar Eskin, and William Stafford Noble. 2001. The spectrum

kernel: A string kernel for SVM protein classification. In Biocomputing 2002.
World Scientific, 564–575.

[22] Christina Leslie, Eleazar Eskin, Jason Weston, and William Stafford Noble. 2003.

Mismatch string kernels for SVM protein classification. In NIPS. Neural informa-

tion processing systems foundation.

[23] Christina Leslie and Rui Kuang. 2004. Fast string kernels using inexact matching

for protein sequences. Journal of Machine Learning Research 5, Nov (2004),

1435–1455.

[24] Christina S Leslie, Eleazar Eskin, Adiel Cohen, JasonWeston, andWilliam Stafford

Noble. 2004. Mismatch string kernels for discriminative protein classification.

Bioinformatics 20, 4 (2004), 467–476.
[25] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.
[26] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris

Watkins. 2002. Text classification using string kernels. Journal of Machine
Learning Research 2, Feb (2002), 419–444.

[27] Gaëlle Loosli, Stéphane Canu, and Cheng Soon Ong. 2016. Learning SVM in

Krein spaces. IEEE transactions on pattern analysis and machine intelligence 38, 6
(2016), 1204–1216.

[28] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable

to the search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology 48, 3 (1970), 443–453.

[29] Michel Neuhaus and Horst Bunke. 2006. Edit distance-based kernel functions for

structural pattern classification. Pattern Recognition 39, 10 (2006), 1852–1863.

[30] Ali Rahimi and Benjamin Recht. 2008. Random features for large-scale kernel

machines. In NIPS. 1177–1184.
[31] Alessandro Rudi and Lorenzo Rosasco. 2017. Generalization properties of learning

with random features. In NIPS. 3218–3228.
[32] Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. 2004.

Protein homology detection using string alignment kernels. Bioinformatics 20,
11 (2004), 1682–1689.

[33] Bernhard Schölkopf, Koji Tsuda, Jean-Philippe Vert, Director Sorin Istrail, Pavel A

Pevzner, Michael SWaterman, et al. 2004. Kernel methods in computational biology.
MIT press.

[34] Si Si, Cho-Jui Hsieh, and Inderjit S Dhillon. 2017. Memory efficient kernel

approximation. The Journal of Machine Learning Research 18, 1 (2017), 682–713.

[35] Temple F Smith and Michael S Waterman. 1981. Comparison of biosequences.

Advances in applied mathematics 2, 4 (1981), 482–489.
[36] Alex J Smola and SVN Vishwanathan. 2003. Fast kernels for string and tree

matching. In NIPS. 585–592.
[37] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[38] MICHAEL SWaterman, JANA Joyce, andMark Eggert. 1991. Computer alignment

of sequences. Phylogenetic analysis of DNA sequences (1991), 59–72.
[39] Chris Watkins. 1999. Dynamic alignment kernels. NIPS (1999), 39–50.
[40] Jason Weston, Bernhard Schölkopf, Eleazar Eskin, Christina Leslie, and

William Stafford Noble. 2003. Dealing with large diagonals in kernel matrices.

Annals of the Institute of Statistical Mathematics 55, 2 (2003), 391–408.
[41] Christopher KI Williams and Matthias Seeger. 2001. Using the Nyström method

to speed up kernel machines. In NIPS. 682–688.
[42] Lingfei Wu, Pin-Yu Chen, Ian En-Hsu Yen, Fangli Xu, Yinglong Xia, and Charu

Aggarwal. 2018. Scalable spectral clustering using random binning features. In

KDD. ACM, 2506–2515.

[43] Lingfei Wu, Ian EH Yen, Jie Chen, and Rui Yan. 2016. Revisiting random binning

features: Fast convergence and strong parallelizability. In KDD. ACM, 1265–1274.

[44] Lingfei Wu, Ian EH Yen, Kun Xu, Fangli Xu, Avinash Balakrishnan, Pin-Yu Chen,

Pradeep Ravikumar, and Michael J Witbrock. 2018. Word Mover’s Embedding:

From Word2Vec to Document Embedding. EMNLP (2018), 4524âĂŞ4534.

[45] LingfeiWu, Ian En-Hsu Yen, Fangli Xu, Pradeep Ravikuma, andMichaelWitbrock.

2018. D2KE: From Distance to Kernel and Embedding. arXiv:1802.04956 (2018).
[46] Lingfei Wu, Ian En-Hsu Yen, Jinfeng Yi, Fangli Xu, Qi Lei, and Michael Witbrock.

2018. Random Warping Series: A Random Features Method for Time-Series

Embedding. In AIStats. 793–802.
[47] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. 2010. A brief survey on sequence

classification. ACM Sigkdd Explorations Newsletter 12, 1 (2010), 40–48.
[48] Li Yujian and Liu Bo. 2007. A normalized Levenshtein distance metric. IEEE

transactions on pattern analysis and machine intelligence 29, 6 (2007), 1091–1095.

	Abstract
	1 Introduction
	2 Existing String Kernels and Conventional Random Features
	2.1 Existing String Kernels
	2.2 Conventional Random Features for Scaling Up Kernel Machine

	3 From Edit Distance to String Kernel
	3.1 Global String Kernel
	3.2 Random String Embedding
	3.3 Convergence Analysis

	4 Experiments
	4.1 Comparison Among All Variants of RSE
	4.2 Comparison of RSE Against All Baselines
	4.3 Accuracy and Runtime of RSE When Varying R
	4.4 Scalability of RSE When Varying Numbers of Strings N and Length of String L

	5 Conclusions
	References

