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Abstract

Ordinal data collected in surveys often consist of numerical scores that

have a natural ordering. Observed values of ordinal variables can be thought

of as a manifestation of some underlying continuous latent variable which

is related to the observed ordinal variable through a set of threshold or

“cut-points”, which partition the latent variable into intervals correspond-

ing to the observed levels of the ordinal variable. This latent distribution

is of interest to researchers for purposes of descriptive statistics and sta-

tistical modeling. However, restrictive parametric assumptions about the

latent distribution are often not adequate. A nonparametric model based

on mixtures of scaled Beta distributions is presented and estimation is car-

ried out using a version of Anderson-Darling statistic based criteria which

is shown to be computationally efficient than likelihood based criteria. A

Monte Carlo simulation shows that proposed model and estimation method
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performs well and is robust against any underlying continuous distribution.

Several empirical examples based on ordinal data from the household sec-

tion of the Agricultural Resource Management Survey (ARMS) illustrate

the versatility and adaptivity of the method in practice.

Keywords: Anderson-Darling Statistics; Bernstein polynomials; Quadratic pro-

gramming; Survey data.
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1 Introduction

Ordinal data often arise in surveys of individuals or households. Examples include

questions asking respondents to state their preferences on a Likert scale (e.g.,

agree, somewhat agree, somewhat disagree, disagree) or to report their education or

income using value codes. With value-coded variables, ordinal data can represent

discrete realizations of an unmeasured continuous variable (e.g., years of education

or income in dollars). The lower and upper limits of this interval can be viewed as

cut-points in the latent continuous distribution. Observed sampled values on the

ordinal scale only provide limited information about the latent distribution, which

is partially observed through windows of adjacent intervals separated by an upper

and lower cut-point (Tamhane, Ankeman and Yang, 2002). Thus far, inference for

this latent distribution has primarily focused on parametric methods.

1.1 Latent Distribution Estimation using Parametric Fam-

ily

The Beta distribution has been proposed as a model for ordinal data on the [0,1]

interval or data transformed to this scale. A study by Tamhane, Ankeman and

Yang (2002) uses the Beta distribution as a model for the latent response because

of its finite domain and flexibility. They compare estimation methods based on

maximum likelihood by matching sample and theoretical moments, finding that

maximum likelihood estimation is typically more efficient but suffers from con-

vergence issues near the boundaries of support. Moreover, it is well known that

maximum likelihood estimates (MLE) are efficient only under the assumption that

the true underlying distribution belongs to specified parametric family. For in-

stance, when the true underlying latent variable has a log-normal distribution and

MLEs are obtained by assuming a Gamma family, the density estimate is no longer

consistent.
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There is vast literature on modeling ordinal data as polychotomous and binary

response data (see Agresti and Kateri 2010 or Johnson and Albert 2006 for a

review). Statistical inference is based on a continuous latent response distribution

from a known parametric family. The classical approach fits a categorical response

regression model using maximum likelihood. Examples include the logit, probit,

and ordered logit or probit models, which assume a logistic or normal distribution

for the latent variable (Winship and Mare 1984). McCullagh (1980) examines the

proportional odds and proportional hazard models. Both assume a parametric

distribution for the latent response. Confirmatory factor analysis uses normality

assumptions to examine hypothesized relations among ordinal variables (Flora and

Curran 2004).

Bayesian methods for estimating a parametric latent density have also been

explored. Albert and Chib (1993) use Gibbs sampling combined with data aug-

mentation to sample from the posterior distribution of a latent density. They

develop a generalized approach that can be used to fit multinomial, hierarchical,

and ordered probit regression models.

However, parametric assumptions about the latent distribution may not be

appropriate in some cases. In these circumstances a more flexible class of statistical

models are needed, which can include mixture distributions, as well as kernel and

spline-based density estimation methods.

1.2 Nonparametric Methods

Nonparametric density estimation is a popular alternative when the underlying

true distribution can not be safely assumed to arise from a known parametric family

of distributions. The most popular nonparametric method for density estimation

is the kernel method (Parzen 1962). This method uses the weighted average of the

chosen kernel functions centered at the observed values and a bandwidth parameter

to estimate the density.
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While numerous parametric models exist for ordinal data, there has been little

research into nonparametric methods. Kottas, Muller, and Quintana (2005) pro-

pose a nonparametric method for modeling multivariate ordinal data based using

Bayesian methods to estimate a variation of a multivariate probit model. Shah

and Maden (2004) demonstrate a method for nonparametric analysis of ordinal

data in a designed factorial experiment. Sequence of Bernstein polynomials, which

can be viewed as mixtures of (scaled) Beta densities, represent another nonpara-

metric class of densities that has been shown to provide consistent estimate of

unknown continuous density and has asymptotic properties similar to kernel and

spline based density estimates.

1.3 Density Estimation using Sequence of Bernstein Poly-

nomials

Bernstein polynomials are a polynomial approximation approach to density esti-

mation that fits a flexible class of a mixture of (scaled) Beta densities. Vitale

(1975) was the first to propose the use of Bernstein polynomials for density es-

timation. Babu, Canty and Chaubey (2002) explore the asymptotic properties

of Bernstein polynomial and show how they can be adapted for smooth estima-

tion of a distribution function supported on a bounded interval. They also show

that Bernstein polynomials may be preferable to the kernel-density estimator un-

der certain circumstances. Leblanc (2012a) explores higher order expansion for

the asymptotic (integrated) mean-squared error of Bernstein estimators and finds

they outperform empirical distribution functions. Further work by Leblanc (2012b)

studies the properties of Bernstein polynomials with bounded support and finds

the estimator to have less bias and variance in the boundary regions.

Recent developments have explored both the speed and convergence of the

Bernstein approximation and advanced the use of Bernstein polynomials with

Bayesian methods. Petrone (1999) studied a fully Bayesian approach to non-
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parametric density estimation. Ghosal (2001) and Petrone and Wasserman (2002)

show that under mild assumptions a Bernstein polynomial prior will provide a con-

sistent posterior density. Leblanc (2010) shows how a bias reduction method can

lead to a Bernstein polynomial estimator that converges at a faster rate. Manté

(2015) shows how to use the eigenstructure of the Bernstein operator to improve

the convergence of the Bernstein polynomial method.

A recent study by Turnbull and Ghosh (2014) uses Bernstein polynomials to

approximate an unknown continuous unimodal density. They show that estimation

of the mixing weights can be accomplished by minimizing a version of Anderson-

Darling (AD) statistic (Anderson and Darling 1954), leading to a weighted least

squares criteria subject to a set of linear inequality constraints. Thus, the esti-

mates can be computed efficiently using quadratic programming methods. This is

advantageous compared to a maximum likelihood method which requires nonlinear

optimization techniques.

While there is a large literature on Bernstein polynomials, we are not aware of

any studies that use this method to estimate the latent density for ordinal data.

This paper adds to the current literature by using cut-point methods to estimate

the latent density of ordinal data using Bernstein polynomials. We also extend the

unimodal density estimator developed in Turnbull and Ghosh (2014) to consider

multimodal latent densities.

This paper presents a method for estimating a the latent density of ordinal

data using both parametric and nonparametric methods. Section 2 presents the

general modeling framework and associated estimation methods based on maxi-

mum likelihood and the AD method. In Section 3, we provide several empirical

scenarios based on simulated data sets to exhibit the performance of the proposed

AD method and compare them with maximum likelihood-based methods. In Sec-

tion 4, we illustrate the methodologies on several ordinal variables obtained from

ARMS data. Finally in Section 5, we provide overall conclusions and directions
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for future research.

2 Methodology

Consider a sample of n ordinal observations X1, X2, . . . , Xn that are an indepen-

dently and identically distributed (i.i.d) sequence of an ordinal random variable X.

Assume that the random variable X takes on finitely many value codes 1, 2, . . . ,m

with probabilities p1, p2, . . . , pm, respectively; in other words, pk = Pr[X = k] for

k = 1, 2, . . . ,m. Using the well-accepted notion that ordinal variables are simply a

manifestation of some underlying continuous variable, we propose a method that

models the observed ordinal variable against this latent continuous variable. We

take a completely flexible approach by employing a linear combination of basis

functions to model the latent distribution.

The latent variable is of course unobserved, but is related to the observed

ordinal variable through a set of threshold or “cut-points”, which partition the

latent variable into intervals corresponding to the observed levels of the ordinal

variable. More formally, we assume that the observed realization of the ordinal

variable X is related to a latent continuous variable U by the following: X =∑m
j=1 I(U > cj−1), where U ∈ R and −∞ ≤ c0 < c1 < c2 < · · · < cm−1 < cm ≤ ∞,

are known ordered cut-points. If F (u) = Pr[U ≤ u] denotes the distribution

function, then it follows that pk = F (ck) − F (ck−1) because X = k if and only if

ck−1 < U ≤ ck. We assume throughout that F (c0) = 0 = 1−F (cm). The goal here

is to estimate the unknown distribution function F (·) based on n i.i.d. realizations

of the ordinal random variable X. The nonparametric log-likelihood function is

given by

L(F ) =
m∑
k=1

fk log[F (ck)− F (ck−1)] where fk =
n∑

i=1

I(Xi = k). (1)

It easily follows that the above likelihood function is maximized by a function
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F̂ such that F̂ (ck) =
∑k

j=1 fj/n. Thus, it is evident that we cannot (nonparanter-

ically) estimate the distribution function F except at the cut-points. So, in order

to estimate F we need to make further assumptions about F .

To begin with, we assume a parametric form for F given by F (x) = F0(x,θ)

where F0(·) is a known functional form with unknown parameter vector θ, then

the log-likelihood function is given by

L(θ) =
m∑
k=1

fk log[F0(ck,θ)− F (ck−1,θ)], for θ ∈ Θ, (2)

which can in principle be maximized to obtain the maximum likelihood esti-

mate (MLE) θ̂ = argmaxθL(θ) and standard asymptotic inference can be made

about the estimated distribution function F̂ (x) = F0(x, θ̂) or the density function

f̂(x) = f0(x, θ̂). For our empirical analysis, we explored a few popular classes

of parametric functions, such as the normal, laplace (or double exponential) and

gamma distributions, and obtained the MLE based on maximizing (2) by using

popular numerical optimization methods (e.g., the mle function in the R pack-

age stats4). Although the parametric likelihood-based method works reasonably

well for many practical scenarios and is known to provide (asymptotically) most

efficient estimates when the parametric form is assumed to be correct, we have

no universal method to choose the functional form F0(·). Hence, we develop a

more flexible functional form which can adapt to almost arbitrary shape of the

(unknown) distribution or density function of the latent variable U .

Assume that both c0 and cm are finite. Consider the following mixture of

(scaled) Beta distributions:

F0(x,θ) =
N∑
l=1

θlB

(
x− c0
cm − c0

, l, N − l + 1

)
where θl ≥ 0 ∀l and

N∑
l=1

θl = 1.

(3)

In above B(·, l, N − l+1) denotes the distribution function of a Beta(l, N − l+1)

random variable, which can be evaluated using standard numerical methods (e.g.,

the R function pbeta can be used). It follows that F0(·) as defined in (3) is
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a legitimate distribution function for any θ ∈ SN ≡ {(θ1, . . . , θN) ∈ [0, 1]N :∑N
l=1 θl = 1} andN ∈ {2, 3, . . .}. It follows that the corresponding density function

is given by

f0(x,θ) =
N∑
l=1

θlb

(
x− c0
cm − c0

, l, N − l + 1

)
1

cm − c0
for θ ∈ SN , (4)

where b(u, l, N − l+1) = N
(
N−1
l−1

)
ul−1(1− u)N−lI(u ∈ [0, 1]) denotes the density of

the Beta(l, N − l+1) random variable, which can be efficiently evaluated even for

large N using standard software packages (e.g., R function dbeta can be used).

Assuming that c0 and cm are finite valued, one of the most useful and well known

results is that if U has a continuous density f(x) supported on [c0, cm], then by

choosing θ̃l = f(c0+(l−1)(cm−c0)/(N−1)), one can show by Bernstein-Weierstrass

Theorem (Lorentz, 1986) that f0(x, θ̃) converges uniformly on [c0, cm] to f(x) as

N → ∞. In other words, (4) provides a very flexible framework to estimate the

unknown continuous density of the latent variable U for a reasonably large value

of N . The appropriate value of N can be chosen based on the observed frequency

counts. In particular, for continuous data, Babu et al. (2002) recommends selecting

N ∈ {2, 3, . . . [n/ log n]} based on asymptotic considerations.

We can plug in the flexible functional form of (3) into the likelihood (2) to

estimate θ ∈ SN for a given N ; however, we find such a methodology is not com-

putationally efficient. Instead, following the recent work by Turnbull and Ghosh

(2014), we use an Anderson and Darling (AD) statistic-based criteria to estimate

θ ∈ SN using computationally stable and efficient quadratic programming (QP)

method (e.g., we use the function solve.QP available in the R package quadprog).

In particular, we solve the following QP:

θ̂ = arg min
θ∈SN

m∑
k=1

(F̂ (ck)− F0(ck,θ))
2

(F̂ (ck) + ϵ)(1− F̂ (ck) + ϵ)
, (5)

where ϵ = 3/8n and F̂ denotes empirical distribution estimate of F obtained by

maximizing nonparametric likelihood function in (1). Notice that the function
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F0(x,θ) as defined in (3) is a linear function of θ and hence the AD objective

function in (5) is a positive definite quadratic function of θ which has a unique

minimum in the compact set SN . The details of computing the estimate in (5) by

using the QP method are similar to those available in the Appendix of the Turnbull

and Ghosh (2014) and hence omitted here. Once θ̂ is obtained by solving the

optimization problem in (5), we can obtain the distribution and density estimate

of the latent variable by plugging in the estimate in the functional form given by

(3) or (4) for subsequent statistical inference.

2.1 Criteria to select N

Although the methodology described above works for any given value of N , in prac-

tice we need to select N based on the observed frequency counts fk’s as described

in (1).

The criteria for selecting the number of weights N (i.e., the dimension of θ) is

an important issue from both theoretical and computational aspects. In theory,

selecting too many weights can lead to losses in efficiency and over-fitting of the

observed data whereas selecting too few weights can lead to a biased estimate of the

underlying density. Thus, the well-known balance between the bias and variance

is required here. Moreover, from a computational perspective, numerical stability

(e.g., positive definiteness of the matrix involved within the QP) of optimization

method in (5) is required in practice when N is chosen close to m. When N is

chosen to be larger than m, we use the Moore-Penrose generalized inverse of the

matrix to solve the optimization problem. Details of the implementation of our

algorithm and accompanying R code are available upon request from the authors.

Several studies have proposed methods for selection of the optimal number of

weights based on observations from a continuous variable. Babu et al. (2002)

show that estimated density (by mixtures of Betas) will converge uniformly to

true continuous density for 2 ≤ N ≤ n/ log n as the sample size n → ∞. Turnbull
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and Ghosh (2014) investigate several methods for selecting the optimal number of

weights based on observed data. They propose a new criteria called the Condition

Number (CN), and examine the well-known Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) as well. The CN uses information about

the absolute value of the ratio of maximum and minimum eigenvalues to select the

optimal number of weights. They find the CN criterion to be better for smaller

sample sizes, while the AIC and BIC perform better for sample sizes over 100.

However, these criteria may not work well with ordinal data.

Ordinal data present a unique challenge for selecting weights when compared to

continuous data. The information available is much more limited because the latent

density can only be evaluated at a finite number of cut-points of the distribution.

For example, ordinal responses to a household survey will often contain fewer than

30 unique values. For this reason, the number of weights selected may not follow

any criteria previously suggested by Babu et al. (2002) or Turnbull and Ghosh

(2014). Taking into account the above concerns, we propose the use of several

alternative discrepancy metrics between the observed counts fk’s and estimated

counts f̂k(N) = F0(ck, θ̂N)−F0(ck−1, θ̂N) to select optimal N , where θ̂N (now with

additional subscript N) denotes the estimate obtained by (5). We have explored

a general class of Lp-norms given by

Dp(N) =

(
m∑
k=1

|fk − f̂k(N)|p
) 1

p

where p ≥ 1 (6)

Notice that p = ∞ is allowed and in fact it is well knownD∞(N) = max1≤k≤m{|fk−

f̂k(N)|}. For N = 2, 3, . . . , Nmax, we select N that minimizes one of the above Lp-

metric as follows:

N̂p = arg min
2≤N≤Nmax

Dp(N) (7)

where Nmax is set to large integer (e.g., 250 was found adequate in all of our

empirical studies). In nearly all of our numerical studies we have found that

N̂ = N̂∞ corresponding to D∞ metric provides reasonably good fit to empirical
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probabilities (for details, see next section). Other alternatives include obtaining

N that minimizes penalized likelihoods (e.g., popular AIC or BIC based on the

likelihood given in (2)) or by finding N that minimizes the AD criteria itself as

defined in (5). The choice of appropriate discrepancy metric remains a topic of

future research in this context.

We next present several numerical illustrations to compare the performance of

the AD-based estimate of the latent distribution relative to parametric MLE-based

estimates.

3 Empirical Results Based on Simulated Data

We first present a simulation study to empirically explore several metrics (corre-

sponding to p = 1, 2 and ∞) for selecting N , as described in the previous section.

Next, we use the preferred metric to select optimal N and compare the perfor-

mance of the proposed AD method to maximum likelihood estimates (MLE) for

given class of parametric families. Finally, we present several illustrations to show

how the proposed method works for real data sets.

3.1 Selection of N using Lp metrics

In order to explore the sensitivity of the criteria for selecting N we generate data

from a latent parametric family (e.g., Normal, Gamma or Double exponential

distributions), we use a set of cut-points to generate ordinal values and then use

our proposed method to estimate the underlying true density by plotting the Lp-

norm against N as described in (6). For example, when the underlying distribution

is chosen Normal, we first generate Ui
iid∼ N(0, 1) for i = 1, . . . , n, use a set of

equally spaced cut-points −5 = c0 < c1 < · · · < cm−1 < cm = 5 and then set

Xi =
∑m

k=1 I(Ui > ck−1) to generate i.i.d. ordinal variates. The ordinal data

(X1, X2, . . . , Xn) are then used to estimate the parameter vector θN using the AD
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method described in (5) for a given N . The resulting Dp(N) value is plotted for

N = 2, 3, . . . , Nmax. Figures 1 and 2 presents the plot for n = 500 and n = 20, 000,

respectively, and in each case the red vertical line shows the selected value of N

using three Lp criteria for each of the three underlying distributions. Clearly, in

each of the cases the value of Dp(N) stabilizes for sufficiently large values of N .

As a matter of practical convenience, (in order to save on computing time), we use

the following ad-hoc stopping rule for N > m/2: set a small value δ > 0 and stop

if |Dp(N)−Dp(N − 1)| < δDp(N − 1) or if N = Nmax. In our simulation studies,

we fix δ = 0.001 and Nmax = n/2 for all scenarios.

In Figures 1 and 2, we clearly see that in all scenarios (that we have explored),

the selected N̂p do not vary much with p. AsD∞ is the strongest norm and provides

visually pleasing estimates, for rest of our empirical studies we set N̂ = N̂∞.

3.2 Comparing AD based estimate with MLE

Next, we compare the performance of the estimates obtained by the proposed AD

method with MLE. Specifically, we generate data from a chosen latent parametric

distribution, use a set of equally spaced cut-points to generate a sample of n ordinal

values and then compute three Dp metrics to compare the fits obtained by AD and

MLE by repeating the data generation 500 times. Note that the MLE is obtained

by maximizing (2) and then f̂k = F0(ck, θ̂)− F0(ck−1, θ̂), where θ̂ = argmaxL(θ).

In comparison, when using the AD method we do not use the known parametric

form to compute f̂k, but rather use the form given in (3), after estimating θ using

(5), and then select N using the criteria described in the previous section. As it

is well known that MLE provides biased estimates under misspecified models, we

do not present results for such unfavorable scenarios. However, our proposed class

of mixture of scaled Beta densities are robust against any underlying continuous

density.

In Figures 3 and 4, we present boxplots of the Dp metrics obtained from 500
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simulations of MLE and AD for two different sample sizes and three different

underlying distributions. The AD method performs remarkably well compared to

MLE considering the fact the former does not uses the known parametric form of

the latent distribution. At n = 20, 000 the AD method does as well as MLE, even

as the latter has well-known large sample consistency properties. Additionally,

we also present the 500 estimated densities in Figures 5 and 6 corresponding to

n = 500 and 20, 000. The red curve represents the true underlying latent density in

each case. It is evident when sample size is not large, the AD-based method density

estimates have larger variances compared to MLE, but it should be noted that AD

method here does not make use of known form the true density. However, when

sample size is sufficiently large, we find that AD based method produces density

estimates which are almost as good as MLE based density estimates.

Thus, from all of the simulated data scenarios we find that the AD method

provides a reasonably good estimate of the latent distribution even compared to

MLE (which make use of known parametric form of the latent distribution) and

the AD method is almost automatic (in terms of selecting N) and adaptive to any

shape (e.g., symmetric, skewed, etc.) of the underlying latent density. Moreover,

we find that the AD method is computationally stable being based on QP methods,

as compared to nonlinear optimization that is required for the MLE method. Next,

we illustrate the AD method for a few real data cases where the MLE method is not

readily applicable as the shape of the underlying density appears to be multimodal

and there is no obvious way to guess a suitable parametric family.

4 Estimation of latent distributions for ARMS

data

We demonstrate the application of the AD method using the household section

of the Agricultural Resource Management Survey (ARMS) dataset. ARMS is the

Page 14



U.S. Department of Agriculture’s primary source of information on the financial

condition, production practices, and resource usage of the nation’s farm house-

holds1. The household section of this dataset is widely to study the behavior of

U.S. farm families with regard to decisions about off-farm employment, as well as

the household’s off-farm income, expenditures, debt, and investment. The entire

household section is value coded for ordinal responses to the survey questions.

Many of the variables in ARMS household section have distributions that do not

readily fit to a parametric family. This makes estimation of the underlying latent

density a challenge using standard parametric techniques.

The ARMS data contain cut-points, with each upper and lower cut-point rep-

resenting an interval on the dollars scale. Each interval is assigned to a specific

value code. The range of value codes is between 1 and 34 (a few variables can take

negative value codes and thus have a range of -34 to 34). An important detail is

that the dollar value intervals get wider as the value codes increase.

The 34th cut-point presents an issue because it is unbounded from above. To

address this issue, we replace the last cut-point by assigning a value equal to the

sum of the 33rd cut-point and the standard deviation of the cut-points. We do the

same with distributions unbounded from below. Before applying the AD method

we take either a natural logarithm or rth power (r ∈ (0, 1]) transformation of the

cut-points for numerical stability. The rth power transformation is advantageous

because it has a finite continuous limit at zero. We make use of this fact when

estimating the latent distribution for data sets with a large proportion of zeros.

1For more information on the uses of ARMS see: http://www.ers.usda.

gov/data-products/arms-farm-financial-and-crop-production-practices/

uses-and-publications.aspx
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4.1 Empirical results

We fit three different variables from the ARMS household section. These variables

are: (i) R1113 previous year total farm sales, (ii) R1105 household food expenses,

and (iii) R1114 previous year net operating income. The first two variables have

a [0,∞) support, while the last variable has a (-∞,∞) support. We also note that

the first two variables have a substantial number of zeroes in the data, between 8

and 10 percent. We explore the use of r = 1/5, 1/7, 1/9 and 1/11 power transfor-

mations along with the log-transformation on the cut-points before applying the

AD method. From our empirical studies (not shown here) we find that r = 1/9

provides best fit in terms of minimizing the D∞ metric. All the results displayed

in this section are based on first transforming the cut-points to the r = 1/9 power

and then applying the AD method to select N using the D∞ metric.

As shown in Figures 7-9, the estimated latent distributions of these variables

are clearly not belong to any well-known parametric family. In each of these figures

we present the AD based estimated density with 95% confidence bands obtained by

100 bootstrap samples of the data. These examples clearly depicts the versatility

and adaptivity of the proposed class of models and the AD method of estimation.

In Figures 10-12 we present (a) the estimated CDF of the underlying true

distribution, (b) estimated probabilities (f̂k(N̂)’s as defined in Section 2.l) against

the empirical frequencies (fk’s), (c) estimated cumulative probabilities against the

empirical cumulative probabilities and (d) the estimated weights. Again all of these

plots clearly shows the adaptivity of the proposed class of scaled Beta mixtures by

zeroing out the estimated weights in portions where the underlying latent density

has very low mass (e.g., compare the magnitude and number of estimated weights

in Figures 10 and 11).

The AD method does well at finding the sharp peak in the distribution of

household food expenditures in Figure 8. It also does well with the multiple modes

in both previous year total farm sales and previous year total net operating income,
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seen in Figures 7 and 9. For previous year total farm sales the mass of zeroes are

against the lower bound of the support. Still, the AD method is able to find the

peak of the zeros, as shown in Figure 7. For each distribution, our default stopping

criteria choose a value of between 80 and 110 weights.

5 Conclusion

We presented a method for estimating the latent density of ordinal data. This

method uses a mixture of weighted Beta distributions, known as Bernstein Poly-

nomials, combined with information on the latent distribution provided by the

cut-points to estimate the latent density. We present three criteria for evaluating

the fit of the latent density based on measuring the distance between the empir-

ical distribution and the estimated distribution, evaluated at the cut-points. A

simulation study and empirical data examples demonstrate the effectiveness of our

method compared to popular maximum likelihood approaches. We also provide

a stopping criteria for choosing the optimal number of weights. An R function is

available by request. It is also available in the online supplementary material.

One limitation of our approach is the loss of efficiency by not constricting the

shape of the latent density to unimodal, when this fact is known. As shown in

Turnbull and Ghosh (2014), this can give the AD method more power in finding

the correct density. However, the trade-off is that our approach can also estimate

multimodal and other odd-shaped densities. Future work could look at a more

rigorous criteria for determining the optimal number of weights.
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Figure 1: Plot of Dp(N) vs. N for p = 1, 2,∞ when n = 500. First row cor-

responds normal, second corresponds to Laplace and third row corresponds to

Gamma distribution
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Figure 2: Plot of Dp(N) vs. N for p = 1, 2,∞ when n = 20, 000. First row

corresponds normal, second corresponds to Laplace and third row corresponds to

Gamma distribution
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Figure 3: Boxplots of Dp(N) comparing AD and MLE for p = 1, 2,∞ when n =

500. First row corresponds normal, second corresponds to Laplace and third row

corresponds to Gamma distribution.
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Figure 4: Boxplots of Dp(N) comparing AD and MLE for p = 1, 2,∞ when n =

20, 000. First row corresponds normal, second corresponds to Laplace and third

row corresponds to Gamma distribution
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Figure 5: Estimates of latent densities by using the MLE when n = 500 (in

column 1) and n = 20, 000 (in column 2). First row corresponds normal, second

corresponds to Laplace and third row corresponds to Gamma distribution.
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Figure 6: Estimates of latent densities by using the AD when n = 500 (in column 1)

and n = 20, 000 (in column 2). First row corresponds normal, second corresponds

to Laplace and third row corresponds to Gamma distribution.

Page 27



 

1 2 3 4 5 6

0
.0

0
.1

0
.2

0
.3

0
.4

root.mid.points

d
e
n
s
it
y

Figure 7: Estimated latent density for Previous Year Total Farm Sales using the

AD method. The N̂ = 150 was obtained using the D∞ criteria and r = 1/9 power

transformation was used for cut-points.
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Figure 8: Estimated latent density for Household Food Expenditures using the

AD method. The N̂ = 104 was obtained using the D∞ criteria and r = 1/9 power

transformation was used for cut-points.
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Figure 9: Estimated latent density for Previous Year Net Operating Income using

the AD method. The N̂ = 150 was obtained using the D∞ criteria and r = 1/9

power transformation was used for cut-points.
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Figure 10: Estimated CDF, empirical and cumulative probabilities, and estimated

weights for Previous Year Total Farm Sales using the AD method. The N̂ = 150

was obtained using the D∞ criteria and r = 1/9 power transformation was used

for cut-points.
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Figure 11: Estimated CDF, empirical and cumulative probabilities, and estimated

weights for Household Food Expenditures using the AD method. The N̂ = 104

was obtained using the D∞ criteria and r = 1/9 power transformation was used

for cut-points.
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Figure 12: Estimated CDF, empirical and cumulative probabilities, and estimated

weights for Previous Year Net Operating Income using the AD method. The

N̂ = 150 was obtained using the D∞ criteria and r = 1/9 power transformation

was used for cut-points.
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