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Abstract—Time series motif discovery has been a fundamental
task to identify meaningful repeated patterns in time series.
Recently, time series chains were introduced as an expansion
of time series motifs to identify the continuous evolving patterns
in time series data. Informally, a time series chain (TSC) is a
temporally ordered set of time series subsequences, in which
every subsequence is similar to the one that precedes it, but the
last and the first can be arbitrarily dissimilar. TSCs are shown
to be able to reveal latent continuous evolving trends in the
time series, and identify precursors of unusual events in complex
systems. Despite its promising interpretability, unfortunately, we
have observed that existing TSC definitions lack the ability to
accurately cover the evolving part of a time series: the discovered
chains can be easily cut by noise and can include non-evolving
patterns, making them impractical in real-world applications.
Inspired by a recent work that tracks how the nearest neighbor
of a time series subsequence changes over time, we introduce a
new TSC definition which is much more robust to noise in the
data, in the sense that they can better locate the evolving patterns
while excluding the non-evolving ones. We further propose two
new quality metrics to rank the discovered chains. With extensive
empirical evaluations, we demonstrate that the proposed TSC
definition is significantly more robust to noise than the state of the
art, and the top ranked chains discovered can reveal meaningful
regularities in a variety of real world datasets.

Index Terms—time series, motifs, chains, drift, prognostics

I. INTRODUCTION

In the last two decades, the task of finding repetitive patterns
in time series data, known as motif discovery, has received a
lot of attentions in the research community due to its wide
range of applications across many different domains [1]–[4].
Recently, a new primitive called the time series chain (TSC)
is introduced as a new tool to capture the evolving patterns in
the data over time [5], [6]. Informally, a time series chain is
an ordered set of subsequences extracted from a time series,
where adjacent subsequences in the chain are similar, but the
first and the last are arbitrarily dissimilar. Different from other
time series data mining tasks such as motif discovery [1], [3],
[7], discord discovery [8], [9], time series clustering [10]–
[13], etc., time series chains can capture any potential drift
accumulated over time, which widely exists in many complex
systems, natural phenomena and societal changes [5], [6], [14].

To help the reader better understand the capability of time
series chains, consider Google Trend data in Fig. 1 correspond-
ing to the search term “Costco”, an American retail chain over

§equal contribution

Fig. 1. The time series chain found in the 12-year Google search volume for
query ”Costco” indicates the growing importance of the July 4th sales event.

the course of 12 years. The time series chain discovered is
highlighted in the figure. The first pattern in the chain shows
a sharp peak around Christmas, which is normal due to the
increased online shopping needs around the holiday season.
Then as that peak becomes smoother and smoother over the
years, a small bump emerges at around July, which gradually
grows into another major peak in the pattern. The evolving
patterns in the chain clearly reveal people’s growing interest in
Costco’s 4th of July online sales event, which provides useful
marketing insights.

Another typical application of time series chains is prog-
nostics. As noted by previous studies [14], [15], “most equip-
ment failures are preceded by certain signs, conditions, or
indications that such a failure was going to occur.” Time
series chains can identify not only a single precursor, but also
a whole sequence of patterns revealing the continuous and
gradual change of the system, helping analyzers uncover the
reasons at an early stage and prevent catastrophic failures.

So far there are two methods to discovery time series chains.
The concept of chains was first introduced in [5] based on a
bi-directional definition, and later on [6] proposed a geometric
definition to improve robustness. Following [6], for the rest of
the paper we refer to the original time series chain definition
in [5] as TSC17, and the later geometric chain definition in
[6] as TSC20.

Despite the superior interpretability of time series chains,
unfortunately, we have observed that existing chain discovery
methods only work well in relatively ideal situations when
the data is clean and the patterns evolve in small, quasi-
linear steps (as shown in Fig. 2.a). In practice, the continuous
data collection process are often affected by environment
changes, human errors, sensor signal interruption, etc. [16].
As a result, the data is noisy: some patterns can deviate from



Fig. 2. Example chains in the two-dimensional space. (a) A clean chain that
can be discovered by both TSC17 and TSC20. (b) A chain with a single
deviated node (Node 5) that would be missed by TSC17. (c) A chain that
contains more fluctuations but still shows an evolving trend. This chain cannot
be found by either TSC17 or TSC20. (d) A chain (the red nodes) drifting from
a steady state (the blue nodes). TSC20 would attach the blue nodes to the
discovered chain, which is undesirable.

the general trend (e.g. Node 5 in Fig. 2.b), consecutive patterns
can be flipped, the chain can evolve in a zigzag fashion
due to fluctuations in data (Fig. 2.c). It is also possible that
the patterns remain relatively stable before they start to drift
(which is typical in prognostics, as shown in Fig. 2.d). As we
will later demonstrate in Section VI, existing chain discovery
methods are not robust enough to handle such scenarios in
real-world data.

Concretely, we found the following limitations in existing
time series chain definitions:

• The constraints introduced in TSC17 are too strict in that
a small fluctuation can easily ‘cut’ a chain. Fig. 2.b shows
an example that does not satisfy the constraints.

• The direction angle threshold introduced in TSC20 is very
sensitive to noise. When the data contain fluctuations,
the definition can miss an apparent chain (e.g., Fig.
2.c) even with a 50 degree threshold (the recommended
threshold is 40 degrees). However, if we further increase
the threshold, the discovered chains would include a lot
of noisy patterns unrelated to the evolving trend.

• Even with a very small direction angle, chains found by
TSC20 can include patterns unrelated to the evolving
trend. For example, in the case when the data is first
stable (where the patterns are very similar) and then start
to drift (e.g., Fig. 2.d), TSC20 will attach the stable (blue)
patterns to the evolving chain. As a result, it is unable to
tell when the system starts to drift.

To address these limitations, in this work we propose a novel
time series chain definition TSC22, which exploits an idea
to track how the nearest neighbor of a pattern changes over
time to improve the robustness of chain discovery. Similar
to TSC17, TSC22 is a bi-directional definition but with
much more relaxed constraints, and it does not rely on any
angle constraint as in TSC20. Furthermore, we propose a new
quality metric to rank the chains discovered by our method.
With extensive empirical evaluations, we demonstrate that the
proposed method is much more robust to noise than the state
of the art, and the top ranked chains discovered can reveal
meaningful regularities in a variety of real world datasets.

The rest of the paper is organized as follows. In Section II
we briefly review the background and related work. Section III
goes over basic time series notations and existing time series

chain definitions. Section IV shows the theoretical limitations
of the existing definitions. In Section V we introduce our new
time series chain definition as well as the ranking criteria.
Section VI demonstrates the effectiveness of our proposed
method through extensive evaluations on both real-world and
synthetic data. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

The review is brief as the time series chain is a relatively
new topic. The most closely related works are the ones by
Zhu et al. [5] and Imamura et al. [6]. Zhu et al. [5] first
introduce the concept of time series chains. The work enforces
every adjacent pair of subsequences in the chain to be the
left and right nearest neighbors of each other, and reports the
longest chain as the top chain in the time series. Although
the concept is simple and intuitive, the bi-directional nearest
neighbor requirement is shown to be too strict in many real-
world applications, as the chain can easily break by data
fluctuations and noise [6]. Imamura et al. [6] relax the bi-
direction condition by only enforcing the single-directional left
nearest neighbor requirement, and added a pre-defined angle
constraint to guarantee the directionality of the discovered
chains. The concept is shown to be more robust than [5] in
some conditions, but a new angle parameter is introduced,
and we have observed that in some real-world scenarios,
no meaningful chains can be found no matter how we set
this parameter. We will elaborate more on the theoretical
limitations of these two chain definitions in Section IV.

Other works on time series chains have different problem
settings. Wang et al. [17] explores methods to speed up chain
discovery in streaming data using the existing time series chain
definition [5]. Zhang et al. [18] propose a method to detect
joint time series chains across two time series, while we focus
on improving the chain definition in a single time series.

III. DEFINITIONS

In this section, we first review necessary time series nota-
tions, then consider the formal definition of time series chains.

A. Time Series Notations

We start with fundamental definitions related to time series.

Definition 1. A time series T = [t1, t2, . . . , tn] is an ordered
list of data points, where ti is a finite real number and n is
the length of time series T .

Definition 2. A time series subsequence ST
i =

[ti, ti+1, . . . , ti+l−1] is a contiguous set of points in
time series T starting from position i with length l. Typically
l ≪ n, and 1 ≤ i ≤ n− l + 1.

For simplicity, if we only consider only one time series, we
use Si interchangably with ST

i . Subsequences can be extracted
from time series T by sliding a window of fixed length l across
the time series. Given a query subsequence, we can compute
its distance to every subsequence in a time series T . This is
called a distance profile [3]:



Definition 3. A distance profile DQ,T is a vector containing
the distances between a query subsequence Q and every
subsequence of the same length in time series T . Formally,
DQ,T = [d(Q,S1), d(Q,S2), . . . , d(Q,Sn−l+1)], where d(., .)
denotes a distance function. In the special case where Q is a
subsequence of time series T starting at position i, we denote
the distance profile as Di.

Following the original Matrix Profile works [1], [3], here
we use the z-normalized Euclidean distance instead of the
Euclidean distance to achieve scale and offset invariance [19].
Note that comparing a subsequence to itself or those that
largely overlap with it is not meaningful. As such, we avoid
comparing subsequences if they overlap with each other by
more than l/2 where l is the subsequence length.

We can further divide the distance profile into a left distance
profile and a right distance profile [5].

Definition 4. A left distance profile DLi of time series T is
a vector containing the Euclidean distances between a given
subsequence Si ∈ T and every subsequence to the left of Si.
Formally, DLi = [d(Si, S1), d(Si, S2), . . . , d(Si, Si−l/2)].

Definition 5. A right distance profile DRi is a vector where
DRi = [d(Si, Si+l/2), . . . , d(Si, Sn−l+1)].

We can easily find the left nearest neighbor (LNN) and
the right nearest neighbor (RNN) of a subsequence by
examining the minimum values in the left and right distance
profiles respectively. We use two vectors, the left matrix profile
and the right matrix profile to store the distances between
all subsequences and their corresponding left/right nearest
neighbors, as well as the location of these nearest neighbors.

Definition 6. A left matrix profile MPL is a two dimensional
vector of size 2× (n− l+ 1) where MPL(1, i) = min(DLi)
and MPL(2, i) = argmin(DLi)

Here MPL(1, i) stores the distances between Si and the
subsequence most similar to it before i (i.e., its LNN), and
MPL(2, i) stores the location of the LNN .

Definition 7. A right matrix profile MPR is a two dimen-
sional vector of size 2 × (n − l + 1) where MPR(1, i) =
min(DRi) and MPR(2, i) = argmin(DRi).

B. Existing Time Series Chain Definitions

Existing time series chain definitions [6] [5] are both
developed upon the backward time sereis chain, which can
be easily obtained given the left matrix profile.

Definition 8. A backward chain TSCBWD of time series T is
a finite ordered set of time series subsequences: TSCBWD =
[SC1

, SC2
, SC3

, . . . , SCm
], where C1 > C2 > . . . > Cm are

indices in time series T , such that for any 1 ≤ i < m, we
have LNN(SCi) = SCi+1.

For clarity, we denote a subsequence in a time series chain
as a node. We call the first node in the backward chain the
start node and the last node the end node. Here in TSCBWD,
SC1

is start node and SCm
is the end node. For example, if

Fig. 3. TSC17 looks for bi-directional connections between susbsequences.
A left pointing arrow links a subsequence to its left nearest neighbor (LNN ),
while a right pointing arrow links a subsequence to its right nearest neighbor
(RNN ). Here the chain breaks at 1, as LNN(1) = 20 but RNN(20) =
23 ̸= 1.

the subsequence length is 1, in a backward chain [10, 5, 2, 1],
the start node would be 10 and the end node would be 1.

Analogously, we can obtain the forward time series chain
from the right matrix profile.

Definition 9. A forward chain TSCFWD of time series T is
a finite ordered set of time series subsequences: TSCFWD =
[SC1

, SC2
, SC3

, . . . , SCm
] where C1 < C2 < . . . < Cm are

indices in time series T , such that for any 1 ≤ i < m, we
have RNN(SCi

) = SCi+1
.

Existing works [5] [6] define chains by placing different
constraints on the the backward chain. In [5], a time series
chain is defined based on the intersection of a backward chain
and a forward chain. We call this a bi-directional time series
chain:

Definition 10. A bi-directional time series chain (TSC17)
of a time series T is a finite ordered set of time series
subsequences: TSC = [SC1

, SC2
, SC3

, . . . , SCm
] where C1 >

C2 > . . . > Cm, such that for any 1 ≤ i < m, we have
LNN(SCi

) = SCi+1 and RNN(SCi+1
) = SCi

.

Here we denote the size of the set m as the length of
the chain. To help the reader understand how TSC17 works,
consider the time series in Fig. 3:

40, 20, 1, 23, 2, 58, 3, 36, 3.3, 34, 4, 43, 5

Assume that the subsequence length is 1, and we use the
absolute difference between the numbers to measure their
distance. Following the backward chain 5 → 4 → 3.3 →
3 → 2 → 1 → 20 → 40, we check whether the LNN and the
RNN of each node can form a loop:

LNN(5) = 4 and RNN(4) = 5;

LNN(4) = 3.3 and RNN(3.3) = 4;

LNN(3.3) = 3 and RNN(3) = 3.3;

LNN(3) = 2 and RNN(2) = 3;

LNN(2) = 1 and RNN(1) = 2.

Since LNN(1) = 20, but RNN(20) = 23 ̸= 1, the chain
breaks at 1. As shown in Fig. 3, the extracted chain (going
backward) is:

5 ↔ 4 ↔ 3.3 ↔ 3 ↔ 2 ↔ 1

We can see that the numbers in the chain are gradually
decreasing. A diligent reader might wonder why we cannot
use the backward chain directly, but instead need to place
extra constraints on it.

A closer look at Fig. 3 provides a good answer to this
question. If we simply follow the backward chain 5 →
4 → 3.3 → 3 → 2 → 1 → 20 → 40 without any



Fig. 4. TSC20 places an angle constraint on the backward chain.

Fig. 5. A flip of the subsequences can easily break a bi-directional chain
(TSC17).

extra constraint, then the chain will lose its ”directionality”:
the noisy big numbers (20, 40) simply do not conform to
the slowly decreasing trend. The bi-directional constraint on
TSC17 removes these noisy signals from the chain.

In [6], a time series chain is defined by placing an angle
constraint on the backward chain. We call this a geometric
time series chain:
Definition 11. A geometric time series chain (TSC20) of
a time series T is a finite ordered set of time series sub-
sequences: TSC = [SC1

, SC2
, SC3

, . . . , SCm
] (C1 > C2 >

. . . > Cm), such that for any 1 ≤ i < m, we have
LNN(SCi) = SCi+1 , and for any 2 ≤ i < m, we have the i-
th angle θi ≤ θ, where θi = cos−1⟨ SCi

−SC1

∥SCi
−SC1

∥ ,
SCi+1

−SC1

∥SCi+1
−SC1

∥ ⟩,
and θ is a predefined threshold.

Fig. 4 illustrates how the TSC20 definition works in the
2-dimensional space. The direction angle θi measures the
direction change from Si to Si+1 based on the anchor node
S1. A small angle threshold between every two consecutive
subsequences in the chain ensures that the subsequences
evolve in similar directions.

IV. LIMITATIONS OF TSC17 AND TSC20

Although both TSC17 and TSC20 are intuitive, we find
them both vulnerable to noise and fluctuations in the data.

A. The weakness of TSC17

Let us revisit the example in Fig. 3. Suppose we flip the
numbers 3 and 3.3, as shown in Fig. 5.top. Now the time
series becomes:

40, 20, 1, 23, 2, 58, 3.3, 36, 3, 34, 4, 43, 5

Consider growing a chain backward from node 5, as shown in
Fig. 5.bottom. We can see that LNN(5) = 4, LNN(4) = 5,
so we can add 4 to the chain. Continuing with the process,
LNN(4) = 3.3, but RNN(3.3) = 3 ̸= 4, so 3.3 cannot be

Fig. 6. (top) A chain that evolves in a zig-zag pattern due to noise in the
data. (bottom) TSC20 fails to find the chain as the first angle is too large.

added and the chain breaks. However, from Fig. 5.bottom we
can see that even after flipping, the sequence 5 → 4 → 3.3 →
2 → 1 can still make a reasonable chain with a gradually
decreasing trend. The bi-directional constraint is simply too
tight to make the chain valid.

B. The weakness of TSC20

The geometric chain definition used in TSC20 [6] removes
the bi-directionl constraint of TSC17 and uses only the back-
ward chain. While this allows the chains to grow longer, as
shown in Fig. 3, unrelated noise patterns can be included in
the chain. To solve this, TSC20 added an angle constraint
on top of the backward chain. However, we found that the
angle constraint can bring in new problems, causing TSC20
to miss obvious chains in some situations, while in some others
attaching unwanted patterns to the discovered chain.

1) Failure to detect obvious chains: Consider the 2-
dimensional example in Fig. 6.top. Assume that the subse-
quences show up in the following order in time:

S9, S8, S7, S6, S5, S4, S3, S2, S1

Although the subsequences evolve in a zig-zag pattern, we
can clearly see the trend: they are moving slowly from left to
right. However, TSC20 fails to detect the chain.

Following the TSC20 definition, in Fig. 6.top we first
find the backward chain starting from S1 (the arrows point
every subsequence to their LNN in the 2-dimensional space),
then we check the angles formed between consecutive subse-
quences based on the anchor subsequence S1. As shown in
Fig. 6.bottom, the first angle θ1 = 90 degrees, which is much
larger than the suggested threshold 40 degrees in [6], and the
chain breaks instantly. We can check on all the sub-backward-
chains by resetting the anchor to the next subsequence, but
unfortunately no sub-chain meets the constraint.

Note that Fig. 6 only shows how fluctuations can fail TSC20
in the 2-dimensional space. In fact, as we will demonstrate
later in Section VI, such an evolving pattern is very common
in the high-dimensional space, as the noise/fluctuations can
drift the subsequences in different directions.

2) Attaching unwanted patterns to the chain: Another prob-
lem of TSC20 is that it can sometimes attach unrelated patterns
to the chain, deteriorating the chain’s quality. Fig. 7.top shows



Fig. 7. (top) The subsequences diverge from a steady state. (middle)
The backward chain includes both the evolving/red subsequences and the
steady/blue subsequences. (bottom) TSC20 cannot remove the nodes in the
steady state from the evolving chain as their corresponding angles are very
small.

an example of this. Here the subsequences are first in a steady
state (shown in blue), then they start to drift all the way to
the right (shown in red). Ideally, we want the chain discovery
algorithm to find all the evolving (red) subsequences, but not
those in the steady state (blue), so that the end node of the
chain (the first red node on the left) can tell us exactly when
the system starts to drift (i.e., the change point). This is critical
in the prognostics use case, as the time information can help
us identify the root cause of the drift. However, as we trace the
backward chain shown in Fig. 7.middle, we find that all the
consecutive nodes along this chain meet the angle constraint of
TSC20. The red nodes are evolving in a quasi-linear trend, so
the direction angle is close to zero. The angles corresponding
to the consecutive blue nodes (shown in Fig. 7.bottom) are also
very small, as these nodes are very close to each other while
far away from the anchor. As a result, the angle constraint of
TSC20 cannot exclude the blue nodes from the chain, failing
to detect the change point.

We defer further discussions on how this problem affects the
quality of the discovered chain in high-dimensional real-world
time series to Section VI.

V. OUR PROPOSED METHOD

To address the aforementioned limitations in existing time
series chain definitions, we propose a new time series chain
discovery method named TSC22. As noted in [6], a chain
discovery method should consist of two parts: An algorithm
to find all the chains in the data, and a quality metric used to
rank the chains found. In this section, we will first introduce an
important concept called the Incremental Nearest Neighbors,
on top of which we build our chain definitions, then discuss
the details of our chain discovery algorithm, and how we rank
the discovered chains.

A. Incremental Nearest Neighbors

Our chain discovery method leverages an idea from [20] to
trace how the nearest neighbor of a time series subsequence
changes over time. We use the running 1-dimensional example
in the previous sections to show how this works in Fig. 8. As
we scan from the right all the way to subsequence 2, we store
its nearest neighbor subsequence so far (or, its Incremental

Fig. 8. We can obtain an Incremental Nearest Neighbor Set (INNS)
corresponding to a subsequence by recording its nearest neighbor so far while
scanning backwards through the time series.

Nearest Neighbor) based on absolute value difference: 5, 4, 3.
We call the set {3, 4, 5} an Incremental Nearest Neighbor Set
(INNS), as this set shows how the location of the nearest
neighbor of a subsequence changes incrementally when we
trace back from the end of the time series.

Definition 12. The Incremental Nearest Neighbor Set (INNS)
of a subsequence Si is a set of subsequences Sj (i < j ≤
n− l+1): {Sj |d(Si, Sj) < d(Si, Sk)∀k : j < k ≤ n− l+1}.

Note that the right nearest neighbor of a subsequence is
always in the INNS of that subsequence.

B. Finding All The Chains with Incremental Nearest Neigh-
bors

Based on the Incremental Nearest Neighbors, we introduce
a key component in our chain definition, the critical nodes:
Definition 13. A time series subsequences Si of a time series
T is a Critical Node (CN) if Si ∈ INNS(LNN(Si)).

Note that the critical nodes here can be found based on a
more relaxed constraint compared to Definition 10 (TSC17):
a critical node is not necessarily the RNN of its LNN , but
just need to belong to the incremental nearest neighbor set of
its LNN . Since the RNN always belongs to the incremental
nearest neighbor set, a node in a TSC17 chain is also a critical
node in our definition.

We can find all the critical nodes in a time series T ; we
call this a critical node set and denote it as CNT . With this,
we can formally define TSC22, a relaxed-bi-directional time
series chain:

Definition 14. A relaxed-bi-directional time series chain
(TSC22) of a time series T is a finite ordered set of
time series subsequences: TSC = [SC1

, SC2
, SC3

, . . . , SCm
]

(C1 > C2 > . . . > Cm), such that:
1) for any 1 ⩽ i < m, we have LNN(SCi) = SCi+1, and
2) SC1

∈ CNT , and
3) for any 1 < i ⩽ m, we have SCj

∈ INNS(i), where
j = argmin

i<j≤m
SCj

∈ CNT .

From condition (1), we can see that similar to TSC17 and
TSC20, our new chain definition TSC22 is also built on top of
a backward chain. We call it a “relaxed” bi-directional chain
as our restrictions on the forward direction of the chain is not
as strict as that of TSC17: they rely on the incremental nearest
neighbor set instead of a single right nearest neighbor.

Fig. 9 shows a one-dimensional time series as an example.
Based on (1) and (2), we can see that TSC22 is a backward



Fig. 9. Critical nodes corresponding to the backward chain starting at 5, and
the generated chain based on TSC22.

chain which starts from a critical node. Let us try to develop
a chain from node “5”. As shown in Fig. 9, we can see that
LNN(5) = 4 and 5 ∈ INNS(4) = {5}. So 5 is a critical
node, and it is a valid starting node of TSC22. Now we move
on to check the next nodes in the backward chain: LNN(4) =
3.3 and 4 ∈ INNS(3.3) = {3, 4, 5}, so 4 is a critical node;
LNN(3.3) = 2 but 3.3 ̸∈ INNS(2) = {3, 4, 5}, so 3.3 is not
a critical node, etc. Continuing with the process, we can find
that the critical nodes on this backward chain are 5, 4 and 2.

Condition (3) requires that for every node SCi
in the

chain (except for the starting node), the closest critical node
in the chain that appears after SCi

must be an element in
INNS(SCi

). By checking on every node in the backward
chain 5 → 4 → 3.3 → 2 → 1 → 20 → 40, we can see that
subsequences 5, 4, 3.3, 2, and 1 do meet this condition, but
subsequence 20 does not, as 1 ̸∈ INNC(20) = {23, 34, 5}, so
the chain breaks at this location. As such, the chain generated
is 5 → 4 → 3.3 → 2 → 1. Essentially, condition (3) ensures
the “directionality” of the generated chain. As shown in Fig.
9, it makes sure that subsequence 2 is closer to subsequence
1 compared to all the subsequences on the right side of 2, in
both the original time series and the generated chain; and 4 is
closer to 2 and 3.3 compared to all the subsequences on the
right side of subsequence 4, in both the original time series
and the generated chain.

By comparing Fig. 9 with Fig. 5, we can see that TSC22
allows us to extract a meaningful chain, even when part of the
patterns in the chain are flipped due to noise. A diligent reader
may notice that our definition is also able to discover the zig-
zag chain in Fig. 6. This shows that TSC22 is more robust
than both TSC17 and TSC20 in the face of noisy data. We
will demonstrate this claim with more extensive experimental
results in Section VI.

The detailed algorithm to find all the chains in a time series
based on our TSC22 definition can be found in Algorithm 1.
We first compute the LNN and INNS corresponding to all
the subsequences by leveraging the STUMP algorithm [20],
which takes essentially the same time as computing a Matrix
Profile [3]. Then we find all the critical nodes in the time
series, and discover chains starting from each critical node in
reverse time order. We use a vector to mark whether a critical
node has been visited before, so that we can avoid repeated
computations. Once we finish the exploration, we store all the
sub-chains corresponding to each discovered chain in the our
results. The time and space complexity of our algorithm is
identical to that of TSC20 [6], and the time used to compute
the chains given the Matrix Profile is negligible compared to

Algorithm 1 Find All TSC22 Chains in A Time Series
1: Input: Time Series T
2: Output: All Chain Set CTSC22

3: /*Compute LNN and INNS with STUMP [20]*/
4: LNN, INNS =ComputeLNNandINNS(T )
5: /* Find All Critical Nodes in T */
6: Scritical =FindAllCriticalNode(LNN , INNS)
7: /*Vector to mark whether an index has been visited.*/
8: VISITED.fill(len(LNN ), False);
9: /*Visit critical points in reverse time order.*/

10: for S in Scritical.reverse() do
11: /*if S is visited before, then the chain grown from it

must be the sub-chain of a chain that we have already
discovered. Skip.*/

12: if VISITED(S) then
13: continue
14: end if
15: Chain=[S], S′=S, VISITED[Index[S]]=True;
16: while LNN(S′) is not null do
17: /* check if S is in INNS(LNN[S′])/
18: if S not in LNN[S′] then
19: break
20: else
21: Chain.add(LNN[S′]), S’=LNN[S′];
22: VISITED[Index[S′]]=True;
23: if S′ in Scritical then S=S′;
24: end if
25: end if
26: end while
27: /* update all sub-chains of Chain to their corresponding

index in the all-chain set */
28: CTSC22 = CTSC22.update(AllSubChains(Chain))
29: end for
30: return CTSC22

the time required to compute the Matrix Profile.

C. Ranking

Now that we have all the TSC22 chains discovered, we
need a mechanism to measure their quality, so that we can
effectively rank them. TSC17 ranks the discovered chains by
their length, which is not always effective, especially when a
large amount of noise is present in the time series. As noted
in [6], sometimes TSC17 can discover a long chain even in
steady data which does not display any evolving trend, so there
is no way we can tell whether there is any meaningful chain
in the data merely from the length of the top chain. Ideally, a
high quality chain should have the following properties:

• High Divergence The first and the last nodes in the chain
should be sufficiently dissimilar.

• Gradual Change The consecutive nodes in the chain
should be very similar to each other.

• Purity The chain should not include unrelated patterns.
• Long Length We would like the chain to be long, so that

it has a good coverage of the drifting patterns.



Note that these quality perspectives do not always agree with
each other. One chain can evolve very quickly, leading to high
divergence but low graduality and short length, while another
long chain can consist of patterns that are almost identical to
each other but do not show any evolving trend. To resolve this,
we develop two quality metrics that take all the properties into
account, and design a two-stage ranking algorithm based on
these quality metrics to make sure that a high quality chain
can stand out.

Effective Length Inspired by TSC20 [6], we compute an
“effective length” metric Leff , which measures both diver-
gence and graduality at the same time:

Leff = ⌊d(SC1
, SCm

)/ max
1≤i≤m−1

d(SCi
, SCi+1

)⌉, (1)

where ⌊.⌉ denotes rounding to the nearest integer. The numer-
ator is the distance between the first node and the last node
in the chain, and the denominator is the maximum distance
between all pairs of consecutive nodes in the chain. One can
imagine that if a chain evolves in a linear trace with a uniform
pace, Leff will become the length of the chain. The metric
essentially tells us the approximate number of steps we need to
take to reach the end node from the start node if we are moving
in a linear trace, with a distance per step that is equal to
the maximum consecutive distances between the nodes in the
chain. A chain with high divergence as well as good graduality
should show a high Leff value; if the chain includes noise,
we should have Leff ≈ 1.

As Leff is an integer, there will be ties. We first rank the
chains by their Leff scores, then for those with the highest
Leff score, we do a fine-grain ranking based on the squared
sum of correlations.

Correlation Length We call our metric the Correlation
Length, which is computed as follows:

Lcorr =

m−1∑
i=1

|Corr(SCi
, SCi+1

)|Corr(SCi
, SCi+1

). (2)

where Corr(.) is the Pearson Correlation Coefficient of the z-
normalized subsequences, and the values are in range [−1, 1].
When two subsequences are very similar to each other, their
Pearson Correlation Coefficient is close to 1; when the pair
includes noise, the Pearson Correlation Coefficient is normally
smaller than 0.5. Here we multiply the Pearson Correlation
Coefficient with its absolute value just to enlarge the difference
between similar pairs and dissimilar pairs. We call this metric
the correlation “length” because if consecutive nodes in a
chain are very similar to each other, Lcorr will be very close
to the actual length of the chain. As a result, longer chains
with highly similar subsequences will be preferred at the fine-
grain ranking stage. Compare to the ranking method of TSC17,
which only considers the length of a chain, and that of TSC20
which considers only the divergence and graduality, our rank-
ing method has a better coverage over all quality perspectives
of a chain. As we will demonstrate in the next section, the
new ranking approach, together with the more robust chain
definition, allows TSC22 to effectively find meaningful chains

in a variety of real-world and synthetic datasets, even when a
large amount of noise is present in the data.

VI. EMPIRICAL EVALUATION

In this section, we demonstrate that the proposed method
is more robust than the current state-of-the-art time series
chain discovery methods, TSC17 (ICDM’17) [5] and TSC20
(KDD’20) [6] on both real-world and synthetic data. To ensure
fair comparison, we use the original source code of both
TSC17 and TSC20 in Matlab, and we use the default direction
angle for TSC20. To make the results easily reproducible, we
built a supporting webpage [21] that contains all the data and
code used in this section.

We will first analyze the performance of the three chain
discovery methods qualitatively with several case studies on
real-world data, then we will do a quantitative comparison
on a large-scale synthetic dataset, where we can compute the
performance metrics based on absolute ground truth.

To begin with, let us consider a time series that records a
penguin’s diving activity.

A. Case Study: Robustness Analysis on Penguin Activity Data

Fig. 10. Chains detected in a clean penguin activity time series as the penguin
dives into the water. TSC22 is able to find a high-quality chain that covers
the whole diving range; TSC20 misses a few nodes at the end and TSC17
misses nodes on both sides.

1) Clean Data: Here we use the penguin activity time
series in [5], which shows the x-axis acceleration of the bird
as it moves. The subsequence length is 25. Fig. 10 shows a
22.5s snippet of the data (recorded at 40Hz) as the penguin
dives into the water. The bird reaches the water at around 2
seconds (the 80th data point), and then the depth value starts
to increase. As shown in Fig. 10, TSC22 finds a high-quality
chain that clearly shows an evolving trend: at the beginning
the first peak in the pattern is slightly lower than the second
peak, then over time the first peak grows higher and the second
peak becomes weaker. This chain indicates how the penguin
adjusts its flapping to balance between the buoyancy and the
increasing water pressure [5]. The chain found by TSC22
covers the full diving range, while the TSC20 chain misses
a few nodes at the end and the TSC17 chain misses a few
more on both sides. Though the chains found by TSC20 and
TSC17 can still show the evolving trend of the patterns, they
fail to indicate the start/end time of the evolving procedure.



Since we are reporting the top-1 chain found by all three
methods, the reader may wonder whether it is the constraints
of TSC17 and TSC20 that prevents them from finding the
TSC22 chain in Fig. 10, or it is their ranking mechanisms that
prefer other chains over the TSC22 chain. By close inspection,
we can see that the TSC22 chain does not satisfy the definition
of either TSC17 or TSC20. Similar as in Fig. 5, most of the
consecutive nodes on the chain do not satisfy the bi-directional
nearest neighbor constraint of TSC17 because of the natural
fluctuations in the data (e.g., the penguin may have changed
its moving direction to avoid other animals). And as we trace
the TSC22 chain backwards, we find that the directional angle
formed by the first three nodes on this chain (recall Fig. 6) is
114 degrees, which is much higher than the angle threshold
of TSC20 (40 degrees), so the chain breaks instantly. This
example verifies the weaknesses of TSC17 and TSC20 in
high-dimensional, real-world data with natural fluctuations and
demonstrates the robustness of TSC22 in such data.

Fig. 11. Chains detected in the penguin activity time series with a small
amount of injected background noise. The patterns still show a very clear
evolving trend. TSC22 is able to find a chain that covers the whole diving
period, while those found by TSC20 and TSC17 are much shorter. A random
noisy subsequence is included in the TSC20 chain, which is very undesirable.

2) Data with Random Background Noise: To further stress-
test the robustness of of the three methods in concern, in Fig.
11 we added a small amount (±0.08 magnitude) of random
noise to the penguin data, which simulates the additional
background noise from the sensor. We can see that TSC22
is still able to find a high-quality chain that ranges across
the whole diving procedure in this case, and the patterns
discovered still show a very clear evolving trend even with
the additional noise. However, TSC20 and TSC17 both fail to
capture this chain, and their top chains can now only cover
half of the evolving range. Further note that TSC20 attaches
a random noisy pattern to the top chain: this indicates the
weakened filtering power of its direction angle constraint as
the backward chain grows longer.

B. Case Study: Change Point Detection with Tilt Table Data

In this section, we use the tilt table data in [5] to compare
how the three methods in consideration perform when a system
transitions from a steady status to a drifting status. Fig. 12
shows the the arterial blood pressure (ABP) signal of a patient
lying on a tilt table. Here we use a subsequence length of 180,
roughly the length of a cardiac cycle. The table is flat at the

beginning, and then starts to tilt. We would expect chains to be
detected after the the tilt and no chain should appear before the
tilt. We also expect a detected chain not to cross the tilt/non-
tilt boundary, as the repeated patterns before the tilt would
deteriorate the purity and interpretability of the chain.

Fig. 12. The ABP time series of a patient in a tilt table experiment. The
table is first flat, then it starts to tilt. The top chains detected by TSC22 and
TSC17 only include the evolving patterns after the tilt, while TSC20 detects
a chain that spans across the boundary, failing to locate the change point.

Note that this kind of data is very typical in many other
domains, especially in prognostics, where a system operates
at a stable status at the beginning, and then start to deteriorate.
It is essential to correctely locate the change point (i.e., the
beginning of the drift), so people can use that information to
identify implicit mechanisms that could have led to the drift,
preventing systematic failures at an early stage.

In Fig. 12, we can see that both TSC22 and TSC17
successfully discover chains that cover only the right section
of the data after the tilt, while TSC20 detected a chain that
spans across the tilting section and the steady section. It is
not hard to understand why TSC20 fails to produce a pure
chain in this case (recall Fig. 7): the direction angle formed
between any pair of subsequences before the tilt based on the
anchor point would be close to zero, as these subsequences
are almost identical. The single-directional nature of TSC20
simply cannot stop the backward chain from growing when
it reaches the stable section of the data. In contrast, the bi-
directional restrictions in both TSC22 and TSC17 effectively
prevent their chains from growing into the steady section.
The example further demonstrates the usefulness of TSC22: it
can precisely locate when the system starts to drift, allowing
analyzers to easily find the implicit cause of the drift by
investigating the events happening around that time.

C. Case Study: Finding Chains across Multiple Exercise
Stages in Human Gait Force Data

We next evaluate the chain discovery methods on a human
gait force time series. As shown in Fig. 13, the time series
represents the posterior-anterior direction force detected by the
sensor on a split-belt treadmill, which operates at four different
running speeds: 0.6, 0.7, 0.8, and 0.9 m/s. Here we use a
subsequence length of 100 as it is close to a cycle in the data.
We can see from Fig. 13 that the chain detected by TSC22
spans over all different speed zones. The sharpening dips in
the chain patters indicate that as the speed increases, the force



Fig. 13. A human gait force time series collcted on a threadmill with
increasing speeds. The chain detected by TSC22 can capture evolving patterns
across all four different speed zones, while TSC20 can only cover two and
TSC17 only one.

changes more quickly, and the participant’s foot spend less
time on the threadmill floor. The shortening period between the
dip and the peak also indicate that the running paces become
faster. However, despite the fact that the patterns are evolving
across the whole time series, TSC20 and TSC17 can only
detect chains on a small portion of the data, failing to cover
the complete range.

Why do TSC20 and TSC17 fail in this case? Note that as
the speed is increasing at a piecewise-constant fashion, the
patterns within the same speed zone are relatively similar
to each other, evolving at a much smaller pace. As the
participant’s movements naturally include fluctuations, a lot of
patterns get flipped (recall Fig. 5) within a speed zone, and the
overall evolving trace is similar to the zig-zag chains shown
in Fig. 2.c and Fig. 6 instead of the one in Fig. 2.a. Note that
the effect of the fluctuations is even more severe now as we
are facing high-dimensional data. As a sanity check, we find
that none of the nodes on the TSC22 chain in Fig. 13 meet
the bi-directional nearest neighbor constraint of TSC20, and
the direction angle formed by the last three nodes on the chain
(i.e., the first three nodes in the backward chain) is 86 degrees,
much larger than the angle limit of 40 degrees in TSC20.
This example further demonstrates the superior robustness of
TSC22 on real-world time series data that naturally come with
many fluctuations and noise.
D. Quantitative Robustness Analysis

In the previous sections, we have demonstrated qualitatively
that TSC22 outperforms TSC20 and TSC17 in various real-
world scenarios. However, the lack of absolute ground truth
labels (i.e., the exact location of each pattern of the chain in
the time series) and the potential ambiguity in these labels [22]
make it hard to perform any reasonable quantitative analysis
based on real-world data. In order to compute quantifiable
performance metrics such as precision, recall, etc., we created
a large scale synthetic dataset in which we manually embed the
chain patterns, and test whether the three methods in concern
can accurately locate these patterns. In this section, we will
briefly describe the dataset, formally define the performance
metrics, and compare the three methods in concern both with
and without the ranking mechanism.

Fig. 14. An Example of our Generated Time Series

Fig. 14 shows an example time series we created. Here the
first node in the ground truth chain (shown in Fig. 14.top)
is randomly sampled from a dataset in the the UCR time
series classification archive 1, and the last node is a random-
walk pattern. The chain consists of 10 nodes, evolving linearly
from the first node to the last. We embeded the chain nodes
into a random-noise time series at randomly locations while
keeping their order. To increase the difficulty of the task, we
added random noise on top of the data to distort the patterns,
and embedded 10 additional patterns that are similar to the
first node (sampled from the same dataset) but irrelevant to
the evolving trend (shown in Fig. 14.bottom) into the time
series. Two random noise sections are added to the beginning
and the end of the generated time series to simulate the real-
world scenario where chains do not span across the whole
time series. We used seventeen datasets in the the UCR time
series archive to construct the synthetic time series, covering
all the sensor, ECG and simulated shape data with instance
length ranging from 50 to 500, and omitted the datasets
containing high-frequency patterns from which the generated
chains would be harder to interpret visually. For each dataset
we generated five different time series and measured the
average performance of each chain discovery method on these
time series.

Inspired by [5], we use the F1-score to measure the quality
of the detected chains. We define a hit if a node (i.e.,
subsequence) in the detected chain overlaps with the ground
truth by more than 50%. We compute the precision, recall and
the F1-score as follows:

recall =
number of hits

length of the ground truth chain
,

precision =
number of hits

length of the detected chain
,

F1-score =
2precision · recall
precision + recall

.

As all TSC methods consist of two steps: chain detection
and ranking, we ran experiments to compare the performance
of these methods both with and without the ranking step.

1) Overall Performance with Ranking: Table I shows the
performance of the top-1 chain detected by all three methods.
TSC22 outperforms both baselines on 14 out of 17 datasets
in terms of the F1-score, and the average (0.736) is much

1https://www.timeseriesclassification.com/dataset.php

https://www.timeseriesclassification.com/dataset.php


TABLE I
F1-SCORE PERFORMANCE VS. BASELINES (WITH RANKING)

TSC17 TSC20 Ours (TSC22)
Pattern Source recall precision F1-score recall precision F1-score recall precision F1-score
Cl. Con. 0.220 0.258 0.237 0.520 0.865 0.638 0.580 0.730 0.641
BME 0.000 0.000 0.000 0.540 0.685 0.602 0.560 0.778 0.647
TwoPatterns 0.000 0.000 0.000 0.280 0.431 0.335 0.640 0.800 0.710
ECG5000 0.340 0.342 0.337 0.800 0.788 0.791 0.820 0.975 0.889
CBF 0.160 0.200 0.178 0.260 0.353 0.292 0.780 0.964 0.856
TwoLeadECG 0.340 0.378 0.358 0.780 0.919 0.838 0.660 0.796 0.718
ECG200 0.000 0.000 0.000 0.560 0.825 0.666 0.520 0.870 0.642
ECGFiveDays 0.500 0.578 0.536 0.700 0.829 0.748 0.800 1.000 0.886
FreezerSmallTrain 0.320 0.356 0.337 0.720 0.866 0.779 0.820 0.978 0.889
RegularSmallTrain 0.320 0.292 0.302 0.640 0.840 0.721 0.720 0.980 0.822
Trace 0.240 0.292 0.263 0.560 0.905 0.683 0.700 0.920 0.781
Wafer 0.340 0.400 0.367 0.600 0.785 0.660 0.600 0.775 0.673
Plane 0.700 0.780 0.736 0.900 0.920 0.909 0.860 1.000 0.921
SonyAI 0.000 0.000 0.000 0.360 0.535 0.429 0.700 0.971 0.810
SonyAI2 0.000 0.000 0.000 0.140 0.224 0.170 0.360 0.511 0.418
Lightning7 0.000 0.000 0.000 0.300 0.481 0.366 0.480 0.814 0.592
UME 0.160 0.200 0.178 0.540 0.814 0.643 0.520 0.752 0.610
Average 0.214 0.240 0.225 0.541 0.710 0.604 0.654 0.860 0.736
# of F1 Win 0 3 14
p-value (F1-score) 2.7× 10−4 0.0075

TABLE II
F1-SCORE PERFORMANCE VS. BASELINES (WITHOUT RANKING)

TSC17 TSC20 Ours (TSC22)
Pattern Source recall precision f1-score recall precision f1-score recall precision f1-score
Ch. Con. 0.433 0.882 0.564 0.487 0.648 0.548 0.523 0.920 0.646
BME 0.371 0.836 0.504 0.504 0.719 0.582 0.524 0.933 0.658
TwoPatterns 0.462 0.941 0.597 0.386 0.495 0.421 0.632 0.907 0.725
ECG5000 0.162 0.583 0.251 0.748 0.853 0.787 0.783 1.000 0.875
CBF 0.183 0.611 0.278 0.353 0.556 0.419 0.685 0.947 0.782
TwoLeadECG 0.161 0.547 0.246 0.834 0.894 0.850 0.683 0.967 0.789
ECG200 0.183 0.650 0.283 0.511 0.808 0.617 0.409 0.900 0.550
ECGFiveDays 0.180 0.650 0.279 0.586 0.660 0.609 0.738 0.992 0.841
FreezerSmallTrain 0.229 0.781 0.350 0.710 0.790 0.734 0.787 1.000 0.873
RegularSmallTrain 0.256 0.844 0.388 0.647 0.782 0.686 0.782 0.954 0.844
Trace 0.225 0.783 0.346 0.691 0.837 0.744 0.677 0.967 0.772
Wafer 0.317 0.728 0.421 0.516 0.675 0.571 0.607 0.900 0.705
Plane 0.161 0.547 0.246 0.832 0.892 0.859 0.884 1.000 0.932
SonyAI 0.158 0.556 0.244 0.341 0.500 0.391 0.544 0.933 0.675
SonyAI2 0.160 0.563 0.247 0.333 0.568 0.407 0.479 0.847 0.603
Lightning7 0.216 0.800 0.337 0.336 0.610 0.428 0.502 0.916 0.636
UME 0.480 0.933 0.623 0.531 0.745 0.616 0.517 0.943 0.657
Average 0.2551 0.7198 0.3649 0.5498 0.7077 0.6041 0.6327 0.9427 0.7390
# of F1 Win 0 2 15
p-value (F1-score) 2.7× 10−4 0.001

better than that of TSC17 (0.225) and TSC20 (0.604). The
Wilcoxon signed-rank test p-value between TSC22 and TSC17
is 2.7× 10−4 and that between TSC22 and TSC20 is 0.0075.
The fact that both p-values are less than 0.05 indicate that
TSC22 outperforms the baselines with statistical significance.

2) Performance without Ranking: To fairly compare all
three TSC methods on the definitions without the effect of
ranking, we evaluated the performance on the discovered
chains by fixing the start node of the chain. In each time
series we “grew” chains from the last 5 nodes in the ground
truth chain independently, and reported the maximum F1-score
obtained among these 5 different chains. From Table II, we
can see that TSC22 outperforms both baselines on 15 out of 17
datasets in term of F1-score. As the p-values of the Wilcoxon
tests are less than 0.05, we conclude that the TSC22 definition
significantly outperforms the existing TSC definitions.

VII. CONCLUSION

In this work, we propose a novel time series chain definition
TSC22, which exploits an idea to track how the nearest
neighbor of a pattern changes over time to improve the
robustness of the chain against noise. In addition, two new
quality metrics are proposed to effectively rank the detect
chains. Extensive experiments on both real-world and synthetic
data show that our new definition is much more robust than the
state-of-the-art TSC definitions. The case studies conducted
on real-world time series also show that the top ranked chain
discovered by our method can reveal meaningful regularities
in a variety of applications under different noisy conditions.
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