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Abstract. Higher education institutions are faced with the challenge of
low student retention rates and high number of dropouts. 41% of col-
lege students in United States do not finish their undergraduate degree
program in six years, and 60% of them drop out in their first two years
of study. It is crucial for universities and colleges to develop data-driven
artificial intelligence systems to identify students at-risk as early as pos-
sible and provide timely guidance and support for them. However, most
of the current classification approaches on early dropout prediction are
unable to utilize all the information from historical data from previous
cohorts to predict dropouts of current students in a few semesters. In
this paper, we develop an Iterative Logistic Regression (ILR) method
to address the challenge of early prediction. The proposed framework is
able to make full use of historical student record and effectively predict
students at-risk of failing or dropping out in future semesters. Empirical
results evaluated on a real-wold dataset show significant improvement
with respect to the performance metrics in comparison to other exist-
ing methods. The application enabled by this proposed method provide
additional support to students who are at risk of dropping out of college.

Keywords: Iterative Logistic Regression, educational data mining, early
dropout prediction

1 Introduction

According to the National Center for Education Statistics [17], more than 41% of
students who began seeking an undergraduate degree at a four-year institution
in Fall 2009 failed to graduate within six years. In 2008-2009, higher education
institutions spent more than $263 billion on education and related expenses,
delivering the equivalent of $487.5 million semester-credit hours of instruction.
The spent amount has grown up to $536 billion in academic year 2014-2015.
According to recent work by Schneider [20], US taxpayers spent more than $9
billion providing education to first year students who failed to return the fol-
lowing year. Schneider and Yin [21] further estimated the opportunity cost for
college dropouts from just a single cohort of entering students lost is $3.8 billion
in lifetime income, and the government loss is at $730 million in potential tax
revenue.



Prior research work in this area has involved the analysis of student dropout
data and identified the need for early determination and possible intervention
and additional support from the institution [22]. Dynarski [9] provides several
possible practical intervention ideas for secondary school dropouts which can be
implemented at the university level. There is also evidence that summer bridge
programs are helpful in learning and producing environments that can ultimately
improve student performance and retention [5, 16].

There are many different definitions that have been used for the term ‘dropout’
and ‘retention’ based on the count of returning next-year students and graduat-
ing in 6 years. Typically retention is staying at school until completion of a degree
and dropping out is leaving school permanently without a degree. However, a
student might leave the college to work a few years and come back to finish the
degree. This is known as stopout [14]. More than three decades ago, Alexander
Astin identified the dropout as a problematic concept [3]. According to Astin, “a
‘perfect’ classification of dropouts versus non-dropouts could be achieved only
when all of the students had either died without ever finishing college or had fin-
ished college.” Hagedorn [13] discussed this vague and complicated definition of
retention/persistence and concluded there is not a consensus on the correct way
to measure retention — it depends on the context. To accomodate both dropout
and stopout, our study use a stricter definition: a dropout student is defined as
a student who fails to register the next semester or has a GPA of 0.0 in the next
semester. Our goal is to effectively predict and identify students who are at a
high risk of dropping out. We propose an Iterative Logistic Regression (ILR)
to predict student dropouts, which has interpretable coefficients and identifies
at-risk students at an early stage.

Our paper has several main contributions. We propose a robust method with
regularization to model the sequential effect of previous term performance. We
are able to learn from all the semesters from historical data of the past cohorts
of students and effectively generate important features for dropout prediction
in future semesters. Our proposed model has the further advantage of easily
interpreted predictions.

2 Literature review

In recent years, research work has explored key features using classical statistical
methods to identify students at risk of dropping out from their field of study
and leaving college/university. Golding et al.. [12] identified the relationship be-
tween students’ overall academic performance (GPA) and matriculation chances
in the first year based on enrollment information. Druzdzel and Glymour [8] were
among the first researchers to apply machine learning algorithms to study the
student retention problem. Campbell [6] used factor analysis and logistic regres-
sion on a set of student features derived from data extracted from Blackboard [4].
Pittman [19] compared several data mining techniques (logistic regression, deci-
sion tree, Bayesian classifiers and neural network) to predict student retention
and concluded that logistic regression had the best performance. Logistic regres-



sion has also been used in different contexts for early dropout prediction [23, 11].
Kovacic [15] explored the effect of demographic variables and study environ-
ment on the outcome of student enrollment with various tree-based methods
and logistic regression. Nandeshwar et al. [18] analyzed retention records and
concluded that focusing more resources on high-risk groups of students is help-
ful in improving their chances of completing a university degree. Baradwaj and
Pal [4] applied decision tree to classification using features derived from atten-
dance reports, class test scores and assignment submissions. Tanner [24] used
the k-nearest neighbor method to predict student failure in an online course
setting. Although these methods are able to predict student dropout, none of
them are able to make full use of the extra semesters in the data from the pre-
vious student cohort for early dropout prediction. Ameri et al. [2] and Chen
et al. [7] performed survival analysis, particularly cox regression, on the student
performance datasets. Their analysis does not take into account the additional
correlation in the data after the first dropout occurs and hence is not able to
model student stopout. Our proposed method is able to work with the extra
available semesters in the past student record and does not assume one-time
dropout.

3 Methods

The primary objective of this study is to predict student dropouts in future
semesters. A dropout student is defined as a student who fails to register a
semester or has a zero GPA in the semester. Table 1 is a summary of notations
which we use in this paper. Let n be the number of semesters a student is
typically at a university. We have p; students at the beginning of each semester,
where p; is different in each semester. Let R denote time invariant features
of students (such as demographic information). We use Gy = [g1,92, " , gt
to represent semester GPA from 1 to ¢-th term. We also developed additional
features including Absence denoted by Ay; generated by GPA in t-th semester.
A; = [a1,a9,- - ,a4] represents absence and is indicated by semester GPA g;.
For Student j in ¢-th term,
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We use yy; as labels for a dropout event in ¢-th term for student j. y,; =1
implies that student j is considered a dropout.

Logistic regression is a technique that has been widely used by researchers in
the field of education data mining. Observing student performance in previous
semesters usually has an impact on his future performance, we focus on using
this fact to improve logistic regression.

Logistic regression Let m be the number of semesters that we have GPA
for in the test set. ;; denotes all features including static and time-dependent



Table 1. Glossary of Symbols

Notation  Description

s number of students by semester ¢

m number of available semesters of new students available

n number of semesters of new student we predict up to

Tt all predictor variables for the set of students existing for prediction in semester ¢
L5 vector of predictor variables for Student j existing for prediction in semester ¢
G, matrix containing GPA record up to semester ¢
gtj GPA record for semester ¢ for student j

Ay matrix containing feature of absence up to semester ¢
agj record of absence for semester ¢ for student j

R matrix containing static features such as demographic feature

wy the weight vector for semester ¢

A L, regularization parameter for over-fitting

Yt set of labels for students by semester ¢

Ytj the label for student j in semester ¢

Dt predicted probability for dropout for semester ¢

features for student j in the ¢-th semester. dy; is the length of the feature vector
Ltj.

y:; are class labels representing the event of dropout for student j in t-
th semester (1 for dropout and 0 otherwise). Logistic regression computes the
probability that student j dropouts in a semester by:

Pyl wi) = o (yjw; ©4;)
1

14 exp (—yywlay)

(2)

where w; = [wi1, Wia, - ,wia,] is the coefficient vector to be solved for .
We impose the Ly constraint [25] to enforce sparsity. This estimator is known

as lasso and its Li-regularized log-likelihood is given by:

St A
Hwt) = EIOg(l + exp(yewi ;) + 5 lwrl 3)
j=

A is a parameter that we need to tune. The L penalty is used for both variable
selection and shrinkage. A sufficiently large A will cause some coefficients equal
to 0 and hence not be included in the model. By setting appropriate A value,
we are able to eliminate misleading or unnecessary features and make the model
easier to interpret. w; can be solved by the Proximal Newton method proposed
by Friedman et al. [10].

Iterative Logistic Regression The key idea behind the iterative logistic re-
gression is to incorporate the predicted outputs that denote the probability of



Algorithm 1: Algorithm for Iterative Logistic Regression (ILR).

Data: m, n, training data x,, testing =,
Result: testing data '[(m + 1) : n]
parameter : A\, Ay

1 Extract G, A, R from x,;

2 Extract G,, A,,, R' from x,,;
3 ¢ =[A,[l:m],G,[1:m], R];

4 ' =[AL[1:m],G,[1:m], R
5 fort=(m+1) ton do

6 Y = Alt];

7 Learn w¢ by Eq.(2) and (3) ;
8 Estimate p: into Eq.(2);

9 x = [x,pe] ;
10 Substitute w; into Eq.(2) to estimate p};
11 = [z, pi];
12 end

dropout in earlier semesters for future semesters in a cascaded manner. Given
m semesters of historical data as a first step we use the LR model with lasso
penalty to obtain dropout prediction for the (m + 1)-th semester. Besides the
time-invariant features, we use this probabilistic value as an additional variable
to include for training a new regularized LR model for identifying dropouts in
the (m + 2)-th semester. Generalizing this further, the estimated probability py
of dropout in a future semester k (m < k < n) can be computed by the following
equation:

k—1 m
plyjplem) = o (D wi( D dyslem) +> (A+G)+R))  (4)
t=m+1 t=1

By Equation 3, p(yx|®.,) is the probability of dropout and m represents the
available terms for testing data. A; and G are the feature of absence and GPA of
semester ¢. (i.e. if G; =0, A; = 1. ) R contains the non time-dependent feature
including high school GPA, gender, race, school/department while admitted. We
can then substitute wy, iteratively to estimate the probability of dropout in the
next few years.

4 Experimental Protocol

4.1 Dataset

We performed experiments on a dataset from George Mason University (GMU),
a large public univeristy in the Unitied States, starting from Fall 2009 to Spring
2016. Since the record of transfer students have less data, we focus on first-
time-entry students. The following information from the student grade database



are obtained: id, cohort, age, the major they applied, high school GPA, ACT
scores, Scholastic Assessment Test (SAT) scores, graduating term, SAT math
score, duration, enrollment years and semester GPA.

For evaluation, we only use students who are in cohorts within the Fall 2009
to Spring 2013 ranges. This ensures we have full six semesters for validation. We
have a total of 13643 records.

4.2 Experimental Protocol

Fig. 1 shows our evaluation protocol. Assume we are at the end of Spring 2013
and would like to identify dropouts for the students first enrolled in Fall 2012,
then there are only data available from Fall 2012 and Spring 2013 for this cohort.
We use student enrolled first enrolled from Fall 2009 to Spring 2012 as training
set, and the students enrolled from Fall 2012 to Fall 2013 as testing set. There are
7932 students in training set and 5690 students in the testing set. We compare
our proposed method with six baseline methods: random guess (RD), Naive
Bayes (NB), Random Forest (RF), Decision Tree (DT), k-Nearest-Neighbour
(KNN) and Logistic Regression (LR).

Fig. 1. Demonstration for using historical student records from Fall 2009 to Fall 2011
to predict Fall 2012 students dropout in the end of Spring 2013. ‘Sem’ is short for

semester
Cohort training features [ training labels ]

'
1
'
Fall 2009 - Sem3 | Sem4 | Sem5 | Semsl “es :
'
1
Spring 2010 ! .
P _ | | | | ! Training data
S
1
1

Fall 2012 - Sem3 | Sem4 | Sem5 | SemGl Test data

1
Test features | [ Test labels (unknown) 1
1
‘Known’ ! ‘Unknown’

4.3 Data Pre-processing

Fig. 2 shows the student dropout rate from cohort Fall 2009-2013. The results
shows that students enrolled in different years have similar distribution irrespec-
tive of their starting semester since they first enrolled. Under this assumption,
we are allowed to use the data from the past cohorts of students to predict cur-
rent students dropouts in the future semesters. We simply align the data by the
term they first enrolled in the system. Table 2 and 3 are the sample student
data before and after alignment and cleaning. Student A first enrolled in Fall
2015 and obtained a GPA of 3.0 and student B first enrolled in Spring 2016 and



obtained a GPA of 3.5. Then student A and student B have a GPA of 3.0 and 3.5
for their first semester, respectively. There are approximately 15-40% of missing
data for the high school GPA; ACT scores and SAT score features. The missing
values for high school GPA and SAT scores are imputed by the respective mean
value. We also take the natural logarithm of SAT scores to avoid scaling issue
on regression model.

0.25

o seml
0.2
o sem2
0.15
Hsem3
01 Hsemd
0.05 Hsem5
0

o sem6
Fallo9 Falll0 Fallll Fall12 Falll3

Fig. 2. Barchart on first 6 semesters of student dropout rate for cohort Fall 2009-2013
shows very similar distribution across different cohorts. ‘Sem’ is short for semester.

Table 2. Sample student data before aligning and cleaning.

id  Cohort Falll5 Springl6 Falll6 Springl7

1 Falll5 3.0 NA 2 ?
2 Springl6 - 2 3.2 ?
3 Falll6 - - 4 ?

Table 3. Sample student data after aligning and cleaning. G(t), A(t) denotes GPA
and Attendance for semester ¢. (1 means dropout and 0 means retain).

id  G(1) G2 G@B) G@) A1) A@Q) A@B) A@)

1 3.0 0 2 0 0 1 0 ?
2 2 3.2 1.8 - 0 0 ? ?
3 4 4 - - 0 0

4.4 Metrics

Our goal is to evaluate the performance of various models on the task of pre-
dicting if a student is likely to enroll in the next semester; and hence predict



whether the student will drop out or not. The outputs of logistic regression are
in the form of probability. Since we are dealing with the prediction of a binary
outcome, we apply True Positive (TP), False Negative (FN) and False Positive
(FP) to measure the counts. We use 0.5 as the decision boundary. We also use
AUC, PRAUC and F1 to accommodate the imbalance issue. AUC is expressed
as Area Under the Receiver Operating Characteristic (ROC) where the curve
is created by plotting the true positive rate (TPR) against the False Positive
rate (FPR) under various threshold values. PRAUC (Precision-Recall Curve)
is the curve created by plotting Precision against Recall. This curve is more
sensitive on positive class in general. Since we are more interested in positive
prediction being correct (precision) without missing students at risk (recall), we
pick PRAUC as our evaluation metrics.
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Fig. 3. Boxplots of F1 score, AUC and PRAUC on the next-4-semester dropout pre-
diction after 2, 3, 4 semesters with different methods. The table shows ILR has a higher
mean and lower variance across all metrics.

5 Experimental Results and Discussion

Fig. 4 shows the F1 and PRAUC for ILR approach and comparative baselines. In
the cases of predicting next term, ILR has similar performance to standard LR.
After adding the first estimated probability feature ps, the F1 score improves by
34% and the PRAUC improves by 20% using only two semesters worth of data.

After normalization, the coefficient of ps is 9.25, which is more influential
than the binary absence feature As (-2.1). Most other methods show poor re-
sults given data for just two semesters and ILR perform the best. ILR shows
almost identical performance in F1 score when predicting 4th and 5th semesters
dropouts with training sets of two and three semesters. Figure 4.4 is a boxplot
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Table 4. F1 and PRAUC generated by prediction for cohort Fall 2013 students after
2, 3, 4 semesters with different methods. Table results shows out of 12 experiments,
ILR wins 9 and 10 times for F1 and PRAUC respectively.

F1 Score

Given Predict RD DT RF NB KNN LR ILR
3 0.213 0.517 0.525 0.544 0.511 0.474 0.473

9 4 0.226 0.449 0.47 0.51 0.465 0.405 0.813
5 0.29 0.437  0.423 0.473 0.432 0.386 0.778

6 0.296 0.42  0.442 0.44 0413 0.374 0.744

4 0.241 0.83 0.822 0.813 0.813 0.815 0.814

3 5 0.276 0.728 0.726 0.733 0.72 0.714 0.778
6 0.295 0.692 0.698 0.697 0.691 0.677 0.747

7 0.551 0.363  0.372 0.379 0.375 0.341 0.485

5 0.283 0.791 0.785 0.781 0.788 0.785 0.785

4 6 0.306 0.763  0.757 0.747  0.755 0.75 0.869
7 0.556 0.415  0.405 0.422 0.401 0.386 0.452

8 0.572 0.411 0.418 0.428 0.41 0.392 0.98

Wins 0 1 2 3 0 0 9

PRAUC

Given Predict RD DT RF NB KNN LR ILR
3 0.135 0.289 0.262 0.312 0.261 0.525 0.524

9 4 0.155 0.316 0.276 0.328 0.256 0.521 0.726
5 0.2 0.32 0.319 0.366 0.295 0.528 0.749

6 0.218 0.344 0.324 0.378 0.295 0.539 0.741

4 0.153 0.114 0.108 0.568 0.114 0.84 0.839

3 5 0.189 0.198 0.193 0.556 0.188 0.747 0.802
6 0.209 0.232 0.212 0.554 0.214 0.733 0.886
7 0.633 0.604 0.598 0.705 0.589 0.77 0.807

5 0.197 0.13 0.146 0.25 0.146 0.82 0.82

4 6 0.225 0.164 0.172 0.28 0.183 0.802 0.888
7 0.633 0.572 0.58 0.596 0.583 0.786 0.81

8 0.66 0.589 0.583 0.615 0.587 0.801 0.989

Wins 0 0 0 0 0 3 10

of F1, AUC and PRAUC. ILR perform the best in all three evaluation metrics
with a higher mean and a smaller variance. From Fig. 2, we notice that the

dropout rates are all below 25%. This is a highly imbalanced dataset. Precision

and recall do not consider true negatives and thus won’t be affected by the rela-

tive imbalance. Hence, both F1 Score and PRAUC are good at imbalance data
on True Positive (TP), False Negative (FN) and False Positive (FP). PRAUC is
more sensitive to False Positive than AUC. A low PRAUC prediction tends to

identify a lot of students who are not going to dropout as target group.

We also report the counts of student across terms. Fig. 4 is a stack barplot
in predicting dropouts given two semesters of test sets. False negative (black),
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Fig. 4. Stacked barchart Given 2 terms dropout prediction of True Positive (TP), False
Positive (FP) and False Negative (FN). For TP, the higher the better, FP and FN the
lower the better.

false positive (dark grey) and true positive (light grey) correspond to the num-
ber of students we missed dropping out, successfully caught, and false alarms,
respectively. The plots show that ILR has significantly greater area in correctly
prediction of dropout (light grey) and less misses (black) while not producing
many false alarm (dark grey). Therefore, we conclude that ILR performs signif-
icantly better in predicting future dropout.

5.1 Interpretation of coefficient

Since our model is essentially a logistic regression model, the coefficient of our
model has direct interpretation. Standardized coefficients are usually useful for
comparing the relative influence of different predictors within an logistic regres-
sion model [1]. To compute standardized coefficients, we divide raw values of the
coefficients w; by the standard deviation of their corresponding attributes. Ta-
ble 5 shows the raw and standardized regression coefficient of ILR for predicting
dropout in semester 6 after 2nd and 4th semesters. The former is an early identi-
fication and the latter is a late identification. We are interested in understanding
how relevant our latent probability p; compare to other given predictors such as
GPA and absence in previous semesters. In the table, the coefficient of ps and
ps are 17.0 and 4.87, and the magnitudes are much greater than the all other
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Table 5. Raw and standardized coefficients of ILR for predicting dropout for 6th
Semester with 2 (Early) and 4 (Late) semesters of data. wi*®" is raw coefficient of ILR,
where w¥°"™ is standardized coefficient, which is not affected by scale of attributes.

Attributes with ‘*’ are generated by ILR.

Early prediction Late prediction
Variables witew ylerm Variables wtaw — ,Norm
(Intercept) -1.236 . (Intercept) - -
Ao -0.248 -0.980 A2 0.46 1.34
G, -0.109 -0.107 As 0.34 0.94
Go -0.034 -0.015 Ay ) )
log(SAT _Total 1600) . . G -0.042 -0.0412
HSGPA -0.121 -0.14 G2 . )
log(ENTRY_AGE) -0.0022 -0.0011 Gs -0.102 -0.0766
log(SAT Math) ) . Gy -0.0188 -0.144
P3* ) .. Gs -0.677 -0.308
Pak 4.789 17.0 log(SAT _Total 1600) .
Ps* HSGPA .

log(ENTRY_AGE)
log(SAT_Math) .
Ps* 3.96 4.87

attributes. This shows ILR generates dominant features from historical students
records and successfully improved prediction greatly. That is why we have good
performance of ILR in terms of F1 score, AUC and PRAUC.

5.2 Analysis on correlation

To analyze the effect of adding the previous latent probability p;—; is added
as a regressor, which we present in Fig. 5, the correlation plot. Stronger corre-
lated variables are shown in dark color. Our model applies lasso on top of the
features to remove highly correlated or irrelevant features to get a robust and
interpretable model. From the plot, SAT_MATH and SAT_1600 are strongly
correlated and have not been selected twice in the coefficient table. From the
top row of both plots, the colored grids of p; against ys shows that p; are highly
correlated with ys. We also observe that later semester has greater correlation
with the label yg. The correlation plot agrees with our coefficient analysis and
shows our features are relevant in the prediction.

6 Conclusion and Future Work

Predicting students at-risk is important for both, the institution and students.
The event is rare and the timing is important. We propose an ILR model, learning
from both the students’ current semester-wise information as well as historical
data from other students in the past with relatively small set of features. The
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Fig. 5. Left Figure is the correlation between the regressors when predicting dropout
in the 6-th semester given 2 semesters of data. Right Figure is the correlation plot
for predicting dropout in the 6-th semester given 4 semesters of data (late). Darker
color indicates higher correlation. p; are generated by ILR given ¢ terms. A; and G:
are known features of Absence and GPA for semester t. Result shows that the latent
features p: have higher weights than given features both for early and late prediction.

coefficients of ILR can be normalized by dividing by standard deviation of the
predictor variables to generate the variable importance for further interpretation.
Our method has a few advantages compared to other methods.

First, it is an early prediction method which only requires a small amount of
previous data from current students. Furthermore, because it uses the probability
as a feature in the semester-wise trained model, we are able to take account of the
previous “state” student performance and predict dropout for the next semester.
The regularization of ILR features as well.

The proposed method will allow educational institutions to target student
dropouts in a timely fashion and execute necessary actions accordingly. The
model can be extended into coursework context with more available temporal
information such as assignments, quiz and exams. This might lead to helpful
interventions that help students and improve the overall educational quality and
graduation rates.
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