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Chapter 1: Introduction to Hardware Obfuscation

The cost of building a new semiconductor fab was estimated to be $5.0 billion in 2015, with

large recurring maintenance costs [1][2], and sharply increases as technology migrates to

smaller nodes. To reduce the fabrication cost, most of the manufacturing and fabrication is

pushed offshore [1]. However, many of the offshore fabrication facilities are considered to be

untrusted. Manufacturing in untrusted foundries has raised concern over potential attacks

in the manufacturing supply chain, with an intimate knowledge of the fabrication process,

the ability to modify and expand the design prior to production, and an unavoidable access

to the fabricated chips during testing. Accordingly, fabrication in untrusted foundries has

introduced multiple forms of security threats from supply chain including that of overpro-

duction, Trojan insertion, Reverse Engineering (RE), Intellectual Property (IP) theft, and

counterfeiting [2].

To counter these threats, various hardware design-for-trust techniques have been pro-

posed, including watermarking, IC metering, split manufacturing, IC camouflaging, and

logic locking [3–7]. The watermarking and IC metering techniques are passive protection

models that could be used to detect overproduction or illegal copies, however, they cannot

prevent IP theft or overproduction. The Camouflaging techniques use logic gates (or other

physical structures such as dummy vias) with high structural similarity, that are indistin-

guishable from one another to protect against reverse engineering. However, camouflaging

is only effective against post-manufacturing attempt(s) of reverse engineering, while it pro-

vides no limitations against a foundry’s attempt at reverse engineering, as a foundry has

access to all masking layers and is not trapped by structural ambiguity for being able to

logically extract a netlist. The obfuscation (logic locking) [7] on the other hand, introduce

limited programmability by inserting key programmable gates to hide or lock the function-

ality. By using obfuscation, the target chip produces the correct output only when the key
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inputs are correct. The purpose of obfuscation is to protect against RE at an untrusted

foundry. By using obfuscation, even by having all mask information, the attacker cannot

generate the correct functionality of a circuit without the correct key values, and such key

values are not shared with the manufacturer.

logic locking techniques, however did not end the threat against IP piracy (or other

related concerns), as these solutions that were proposed over the last decade were broken

using various carefully crafted attacks. A decade of research in this area, has resulted in a

wide range of defense and attack solutions. Shortly after the introduction of first published

obfuscation schemes, a new and powerful attack based on Boolean Satisfiability (SAT) was

formulated and revealed [9, 10]. In this attack model, the attacker has access to a reverse

engineered but obfuscated netlist, and a functional and unlocked chip. Using this attack

model, the formulated Boolean Satisfiability Attack (SAT Attack) can effectively break all

previously proposed logic encryption techniques, including random insertion (RLL), fault-

analysis (FLL), interference-based logic locking (SLL), and logic barriers [7, 11–17]. The

SAT solver iteratively eliminates sets of incorrect keys and finds the correct key within

a small time, and unlike Brute force attack that requires attack time exponential with

respect to the number of inputs, its execution time grows almost polynomially. Existing

SAT attack, which can be modeled with query-by-disagreement (QBD) or uncertainty-

sampling, minimizes the number of queries (inputs) required to learn (deobfuscate) the

target function (obfuscated logic). Also, SAT attack terminates when no more disagreeing

inputs can be found, at which time the attack guarantees to find the correct key. However,

to defend against powerful SAT attacks, different obfuscation schemes have been proposed,

such as SARLock and Anti-SAT [15,18,19]. However, further research illustrated that some

of these locking schemes are vulnerable to other types of attacks such as Signal Probability

Skew (SPS) and removal attacks [20].

In addition, introducing approximate-based attacks, such as AppSAT [21] or Double-

DIP [22] worsens the problem. Unlike the existing SAT attack, which needs exact learning

model, approximate-based attacks can be modeled using approximate learning problems,
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such as the probably-approximately-correct (PAC) setting [23]. Based on the PAC model, an

attack A, with a probability of λ, will provide an ε-approximation (approximately correct)

of the target function (obfuscated logic). Note that, an ε-approximation of the target

function is a function with only %ε (ε ∈ O( 1
2n )) disagreement with correctly unlocked circuit.

Accordingly, the approximate SAT attacks can find an approximate key which produces a

very small error (%ε) in the behavior of the unlocked circuit in comparison with a correctly

unlocked circuit. The approximate attacks are shown to effectively find an approximate

key for SAT-resilient defenses including SARLock [18], and Anti-SAT [19]. Furthermore,

Bypass attack [24] is also proposed for creating an auxiliary circuit that recovers the flipped

output(s) while approximate key is applied. Then it adds a bypass circuit to correct the

wrong output(s) when input pattern(s) cause incorrect output(s). Consequently, it is able

to eliminate even small error in the behavior of the unlocked circuit by approximate key, and

behave completely the same compared to correctly unlocked chip. In Section 2 we review

many of the obfuscation solutions and attack mechanisms in more details, summarize and

compare the effectiveness of obfuscation solutions against these attacks, and describe the

strength and weaknesses of various obfuscation and attack solutions [25].

In general, the SAT attack benefits from the Directed Acyclic Graph (DAG) based

nature of input netlist and the ability of SAT-attack to logically model the obfuscation into a

satisfiability problem. To counter the SAT attack, recently some design obfuscation schemes

have been proposed to violate these assumptions. For instance, in the approach adopted

in [26], the DAG nature of netlist is altered by introducing cycles into the netlist for the

purpose of trapping a SAT attack. Another example is the approach adopted in [27], where

the obfuscation, in addition to logical properties of the netlist, targets the setup and hold

properties (timing properties) of the circuit as a locking mechanism. Considering that setup

and hold time are not logical properties, they cannot be translated into CNF statements

for formulating a SAT attack. However, in section 3 by proposing the Satisfiability Modulo

Theory (SMT)-based attack, we illustrate that even using these non-logical properties for

obfuscation, does not increase the security of an obfuscated netlist, indicating the need for
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further study and exploration in this domain to generate obfuscation schemes with provable

security.

In addition, to remain hidden, apart from being resistant to different attack models on

obfuscated circuits, the IC should also resist passive, active, or destructive attacks that

could be deployed to read the key values. Hence, neither the activation of such devices nor

the storage of key values in them should expose or leak the key information. Activation of

an obfuscated IC requires storing the activation key in a secure and tamper-proof memory.

[28, 29]. However, there exist a group of applications that could use an alternative key

storage. This alternative solution is to store the key outside the IC, where the IC is activated

every time it is needed. This option requires constant connectivity to the key management

source and a secure communication for key exchange to prevent any leakage of the key.

This solution allows an IC designer to store the chip unlock key outside of an untrusted

chip. So, no secure and tamper-proof memory is needed. Since the key is stored outside

the untrusted chip, a constant connectivity to an obfuscation key-management solution

is an indispensable requirement for this category of devices. This requirement could be

easily met for two prevalent groups of architectures: (1) 2.5D package-stack devices where

a single trusted chip is used for key management and activation of multiple obfuscated ICs

manufactured in untrusted foundries, and (2) IoT devices with constant connectivity to the

cloud/internet.

In 2.5D package-integrated ICs, similar to DARPA SPADE architecture [30], a chip

which is fabricated in a trusted foundry, but in a larger technology node, is packaged with

an untrusted chip fabricated in an untrusted foundry in a smaller technology node. The

resulting solution benefits from the best features of both technologies: The untrusted chip

may be used as an accelerator, providing the resulting hybrid solution with the much-needed

scalability (higher speed and lower power), while the trusted chip provides the means of

trust and security. The untrusted chip is isolated from the outside world and any exchange

of information to/from untrusted chip passes through the trusted chip.

The second group of devices in this category are IoT devices, where constant connectivity
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is their characterizing features. In these solutions the obfuscation key could be stored in

the cloud, and activation of an IoT device could be done remotely. This model allows

custom, monitored, and service oriented activation (Activation As A Service). An additional

advantage is removing the possibility of extracting an unlock key from a non-volatile memory

that otherwise would have to be used for storing the obfuscation unlock key. Examples of

which are IoT devices used for providing various services, military drones activated for a

specific mission, video decryption services for paid pay-per-view transactions, etc., where

a device has to operate in an unsafe environment and is at risk of capture and reverse

engineering. In these applications, the IC fabricated in an untrusted foundry is activated

either every time it is powered up, or for certain time intervals. The key vanishes after

the service is performed, or when the device is powered down. The activation of such

devices is performed using a remote key management service (in the cloud or at a trusted

base-station), and the key exchange to/from these devices should be secured.

In both 2.5D system solutions and IoT devices, the need for implementation of a tamper-

proof memory, for storage of IC activation key, in an untrusted process is removed. Some

reasons why implementing a secure memory in an untrusted foundry may be undesired, or

practically unfeasible include:

Availability: The targeted foundry may not offer the required process for implementing

a secure memory with the desired features. An example could be the requirement for storing

sensitive information in magnetic tunnel junction (MTJ) memories to prevent probing and

attacks that could be deployed against flash-based NVMs. Fabricating such ICs requires a

hybrid process that supports both CMOS and MTJ devices, which may be unsupported by

the targeted foundry.

Verified Security: The secure memory may be available in the targeted technology,

however not be fully tested and verified in terms of its resistance against different attacks.

Cost: Implementing secure memory requires additional fabrication layers and processing

steps, increasing the cost of manufacturing. Increasing the silicon area is a far cheaper

solution than increasing the number of fabrication layers.
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Reusability: In 2.5D system solutions, a trusted chip could be shared by multiple un-

trusted chips, manufactured in different foundries. Moving the secure memory to the trusted

chip removes the need for implementing the secure memory in all utilized processes. The

trusted chip could be designed once with utmost security for protection and integrity of

data. This also reduce the cost of manufacturing untrusted chips by removing the need for

additional processing steps for implementing secure memory.

Ease of Design: Implementing secure memory requires pushing the design through non-

standard physical design flow to implement the tamper-proof layers in silicon and package.

In addition, the non-volatile nature of tamper-proof memory requires read and write at

elevated voltages, increasing the burden on the power-delivery network design. Reuse of a

trusted chip with a tamper proof memory that could manage activation of other obfuscated

ICs, relaxes the design requirement of ICs to standard physical design and fabrication

process.

In section 4, we propose the COMA key-management and communication architecture

for secure activation of obfuscated circuits that are manufactured in untrusted foundries

and meet the constant connectivity requirement, namely ICs that belong to a) 2.5 package-

integrated and b) IoT solutions. We describe two variants of our proposed solutions: The

first variant of COMA is used for secure activation of IPs within 2.5D package-integrated

devices (similar to DARPA SPADE). The second variant of COMA is used for secure acti-

vation of connected IoT devices. The proposed COMA allows us to (1) push the obfuscation

key and obfuscation unlock mechanism off of an untrusted chip, (2) make the key a moving

target by changing it for each unlock attempt, (3) uniquely identify each IC, (4) remove the

need to implementing a secure memory in an untrusted foundry, and (5) utilize two novel

mechanisms for ultra-secure or ultra-fast encrypted communication [31].
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Chapter 2: Threats on Logic Locking: A Decade Later

As illustrated in Fig. 2.1, the defense and attack solutions related to hardware obfus-

cation, based on functionality, capability, effectiveness and time-line are categorized into

four categories: (1) Test-Inspired Attacks that were mostly inspired from test concepts and

attempted to discover the obfuscation key value based on the location of KGs, described

in Section 2.1. (2) SAT Attack, formulation and revelation of which significantly affected

the direction and presumed assumptions of the hardware obfuscation research community,

explained in Section 2.2. (3) Post-SAT Attacks where the focus of hardware security re-

searchers changed to the design of an attack against obfuscation solutions that resist the

SAT attack, explained in 2.3. And (4) SMT Attack as a universal attack platform capable

of instantiating many theory solvers to act as pre- post- or co- processors to the SAT solver,

described in Section 2.4.

Stage 2
Boolean 

Satisfiability 
(SAT) Attack

Stage 4
Satisfiability
Modulo Theory
(SMT) Attack

Sensitization[12] 

Hill-Climbing[32]

2015

Stage 3
Post-SAT 

Threats

2017-2019 2019

Stage 1
Threats 

before SAT 
attack

2008-2015

Brute Force SAT Attack[10]

Bypass[24]

SPS[20]

Removal[33]

Bit-Flipping[35]

DDIP[22]

AppSAT[21]

FALL[39]

BeSAT[42]

CycSAT[41]

SGS[33]AGR
[33]

SMT Attack
[43]

Figure 2.1: Categorization of attacks against logic locking schemes.
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2.1 Stage 1: Test-Based Attacks

2.1.1 Brute Force Attack

The brute force attack is the most intuitive attack against obfuscated circuits. This attack

exhaustively search for the correct key by testing all key and input values. For instance,

assuming that adversary has access to the reverse-engineered netlist, and considering that

the circuit has four PIs ( i0..4) and two KIs (k0..1), an exhaustive search may result in

applying of 22+4 = 64 test patterns (in the worst case) and checking the output against an

activated (functionally correct) chip to verify correctness. Based on the number of primary

inputs (|PI|) and the number of key bits (|KI|), the number of possible test patterns is

(2|PI|+|KI|). Hence, the search space for a brute force attack is extremely large, making the

attack even for small circuits and small number of keys unfeasible in a reasonable amount of

time. For example, a small circuit with 20 input pins, which is obfuscated with 80 key gates

poses 2100 possible test pattern. An attacker can reduce the number of test patterns using

functional test or random test, in which the exponential impact of |PI|s will be eliminated,

and only 2|KI|× (func test patterns) is required for brute force attack. But even with this

change, the attack time is exponential with respect to the number of key gates. EPIC [7]

used a random KG insertion policy referred to as random logic locking (RLL). Using RLL,

EPIC reasoned that by replacing a small percentage of gates (or insertion of KGs), the

obfuscation can resist brute force attacks.

2.1.2 Sensitization Attack

After introducing EPIC [7], Rajendran et al. [12] proposed a sensitization attack, which

determines individual key values, in a time linear to the |KI|, by applying patterns that

sensitize key values to the output. As its name implies, sensitization of an internal wire

(key bit) L to an output O means that the value of L can be propagated to O and thus

any change on L is observable on O. After determining an input pattern that propagates

the value of the key-bit to the output, the attacker applies the input pattern to a functional
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Table 2.1: Classification of KGs in Sensitization Attack.

Term Description Strategy used by attacker

Runs of KGs Back-to-Back KGs Replacing by a Single KG

Isolated KGs No Path between KGs
Finding Unique Pattern per
KG (Golden Pattern (GP))

Dominating KGs
k1 is on Every Path Muting k0,
between k0 and POs Sensitizing k1

Concurrently Mutable Convergent at a Third Gate Muting k0/k1,
Convergent KGs Both can be Propagated to POs Sensitizing k1/k0

Sequentially Mutable Convergent at a Third Gate Determining k1 by GP,
Convergent KGs One can be Propagated to POs Update the Netlist, Target k0

Non-Mutable Convergent at a Third Gate
Brute Force Attack

Convergent KGs None can be Propagated to POs

IC (An IC activated and programmed with the correct key that could be obtained from

market). The correct key value will be propagated to an output by applying this pattern to

the functional IC. The attacker observe and record this output as the value of the sensitized

key-bit. The propagation of a key-bit to the output is heavily depending on the location of

the KGs, hence, they classify KGs based on their location and discuss corresponding attack

strategies for each case. The summary of strategies and techniques used in the sensitization

attack is reflected in Table 2.1. To prevent sensitization attack they proposed SLL, in which

the KGs are inserted in locations with maximum mutual interference. In SLL the attacker

cannot sensitize the key-bit values to a primary output. Similar to SLL, several prior-art

methods in the literature, including fault-analysis (FLL), LUT-based locking, etc. [11–15],

tried to maximize the complexity of obfuscation using different KGs replacement strategies.

2.1.3 Random-based Hill-Climbing Attack

Plaza et al. [32] developed a new algorithmic attack that uses test patterns and observe

responses. Unlike sensitization attack [12], their proposed approach does not require netlist

access. They propose a randomized local key-searching algorithm to search the key that can

satisfy a subset of correct input/output patterns. The algorithm proposed in [32] is iterative

in nature. At first, it selects random value for key bits and then at each iteration, the key

bits, which are selected randomly, are toggled one by one. The target is to minimize the

9



frequency of differences between the observed and expected responses. Hence, a random

key candidate is gradually improved based on observed test responses. If no solution is

found in one iteration, the algorithm resets the key to a new random key value. However,

the complexity of this attack quickly increases with increasing number of KGs.

2.2 Stage 2: SAT Attack

In 2015, Subramanyan et al. [10] proposed a new and powerful attack using Boolean sat-

isfiability (SAT) solver, called SAT attack, that effectively and quickly broke all previously

proposed logic locking techniques. As an ”oracle-guided” attack, SAT attack requires a

reverse-engineered but locked netlist (CL), and a functionally activated chip (CO). A cir-

cuit view of steps taken in a SAT attack is shown in Fig. 2.2. For this attack, the attacker

first replicate the obfuscated circuit and builds a double circuit which is used for finding

an input (Xd[i]) that for two different key values generates two different outputs. Such

input is referred to as Discriminating Input Pattern(DIP). Each Xd[i] is used to create a

DI validation circuit (DIVC). The validation circuit, as shown in Fig. 2.2 assures that for

a previously found Xd[i], two different keys generate the same output value. Each iteration

of the SAT attack finds a new (Xd[i]), and add a new DI validation circuit. The DIVCs

are ANDed together to form a Set of Correct Key Validation Circuit (SCKVC). In each

iteration, the SAT solver try to find a new Xd[i] and two key values that satisfy the double

circuit (KDC) and the Validation Circuit (SCKVC). The key values and the Xd[i], as illus-

trated in Alg. 1, is found by a SAT query. This means the new key generate two different

values for the new Xd[i], but generate the same value for all previously found Xds for both

key values. This process continues until the SAT solver cannot find a new Xd[i]. At this

point any key that generates the correct output for the set of found Xds is the correct key.

For all prior obfuscation schemes, even those resistant to sensitization attack, the SAT

attack was able to rule out a significant number of key values at each iterations (by finding

each DIP). Hence, In order to thwart SAT attack, the first attempted approach was to

weaken the strength of the DIPs to reduce its pruning power. SARLock [18] and Anti-SAT
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Figure 2.2: SAT Attack Iterative Flow.

Algorithm 1 SAT-based Attack Algorithm [10]

1: function SAT Attack(Circuit CL, Circuit CO)
2: i ← 0; F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2);
3: while SAT (Fi ∧ (Y1 6= Y2)) do
4: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)); Yd[i] ← CO(Xd[i]);
5: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]); i ← i+1 ;

6: K∗ ← sat assignmentK1
(Fi);

[19] were the first prior-art methods that accomplished this. Both SARLock and Anti-

SAT engaged one-point flipping function, demonstrated in Fig. 2.3. Using this obfuscation

scheme, each DIP is able to rule out only one incorrect key. Hence, the SAT attack requires

to apply all 2|KI| to retrieve the correct functionality. However, this method results in

obfuscation circuits that for all but one output work as the original circuit, and the output

corruption upon application of a wrong key is quite low.

2.3 Stage 3: Post-SAT Attacks

As discussed, the proposed SAT-resilient solutions suffered from low output corruption.

This however could have been addressed by combining a SAT-hard solution with a tradi-

tional obfuscation solution, such as RLL or SLL, that exhibits high level of output corrup-

tion. Although SAT-resilient logic locking schemes provided a defense against SAT attack,

researchers found new vulnerabilities associated with this class of obfuscation techniques

resulting in the development of many new attacks on the presumed SAT-hard logic locking

schemes described in this section.

11



Original or 
Locked 
Circuit

IN

K1

One-Point 
Flipping 
Circuit

K2

Anti-SAT

S
A

R
L

o
ck

Y
YO

YO IN k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

3 0 3 3 3 3 7 3 3 3
3 1 7 3 3 3 3 3 3 3
3 2 3 3 7 3 3 3 3 3
3 3 3 3 3 3 3 7 3 3
3 4 3 3 3 3 3 3 3 3
3 5 3 3 3 3 3 3 7 3
3 6 3 3 3 3 3 3 3 7
3 7 3 3 3 7 3 3 3 3

Figure 2.3: Flipping Structure of SARLock and Anti-SAT.

2.3.1 Removal Attack

As shown in Fig 2.3, in bare implementation of one-point flipping circuit, the locking cir-

cuitry is completely decoupled from the original circuit. A removal attack identifies and

removes/bypasses the locking circuitry to retrieve the original circuit and to remove depen-

dence on key values [33]. The removal attack, presented in [33], was used to detect and

remove SARLock [18]. In presence of removal attack, researchers investigated SAT-hard so-

lutions that are hard to detect (preventing removal by pure structural analysis), an example

of which was Anti-SAT [19].

2.3.2 Signal Probability Skew (SPS) Attack

The Signal Probability Skew (SPS) attack [20] leverages the structural traces in Anti-SAT

block to identify and isolate the Anti-SAT block [19]. Signal probability skew (SPS) of a

signal x is defined as s = Pr[x = 1] − 0.5, where Pr[x = 1] indicates the probability that

signal x is 1. The range of s is [−0.5, 0.5]. If the SPS of signal x is closer to zero, an attacker

have lower chance of guessing the signal value by random. For a 2-input gate, the signal

probability skew is the difference between the signal probability of its input wires. The

flipping-circuit in the Anti-SAT is constructed using two complementary circuits, g and g,

in which the number of input vectors that make the function g equal to 1 (p) is either close

to 1 or 2n− 1. These two complementary circuits converge at an AND gate G. Considering

this structure, the absolute difference of the signal probability skew (ADS) of the inputs of

gate G is quite large, noting that the SAT resilience is ensured by this skewed p. Algorithm
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2 shows the SPS attack, which identifies the Anti-SAT block’s output by computing signal

probabilities and searching for the skew(s) of arriving signals to a gate in a given netlist.

Algorithm 2 SPS Attack Algorithm [20]

1: function SPS Attack(Circuit CL)
2: ADSarr ← {};
3: for each gate ∈ CL do
4: ADSarr(gatei) ← Compute ADS(CL, gatei);

5: G ← Find Maximum(ADSarr);
6: Y ← Find value from skew(G); . Correct value of Anti SAT output
7: CLock ← remove TFI(CL, G, Y ); . Transitive FanIn of the gate G
8: return CLock . CLock: CL after removing Anti SAT block

2.3.3 Bypass Attack

Although SARLock and Anti-SAT break the SAT attack, their respective output corrupt-

ibility is very low if they are not mixed with traditional logic locking, such as SLL. Observing

and relying on the very low level of output corruption in such SAT-hard solutions, the by-

pass attack [24] was introduced. The bypass attack instantiates two copies of the obfuscated

netlist using two randomly selected keys, and build a miter circuit that evaluates to 1 only

when the output of two circuits is different. The miter circuit is then fed to a SAT solver

looking for such inputs. The SAT returns with minimum of two inputs for which the outputs

are different. These input patterns are tested using an activated IC (golden IC) validating

the correct output. Then a bypass circuit is constructed using a comparator that is stitched

to the primary output of the netlist which is unlocked using the selected random key, to

retrieve the correct functionality if that input pattern is applied. The Bypass attack works

well when the SAT-hard solution is not mixed with traditional logic locking mechanism

since its overhead increases very quickly as output corruption of logic locking increases.

This observation motivated researchers to look at possibilities of approximate attacks to

retrieve the key values associated to non SAT-hard obfuscation solutions that are mixed

with SAT-hard solutions.
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2.3.4 AppSAT Attack

So far, defences solution to mitigate the SAT attack, are based on the assumption that

the attacker needs an exact attack on logic locking. However, Shamsi et al. [21] proposed

a new attack (AppSAT), which relax this constraint. AppSAT shown in Algorithm 3,

is an approximate attack on logic locking based on the SAT attack and random testing.

The authors use probably-approximate-correct (PAC) model for formulating approximate

learning problem. The exact SAT attack continues to find DIPs until no more DIPs can be

found. However, the AppSAT will be terminated in any early step in which the error falls

below the certain limit. If this condition happens, the key value will be considered as an

approximate key with specified error rate; otherwise, the random sampling that resulted in

a disagreement will be added to a SAT formula as a new constraint. In AppSAT, heuristic

methods for estimating the error is used for large functions, to avoid any computation

complexity.

2.3.5 Double-DIP Attack

Double-DIP [22] is another approximate attack, shown in Algorithm 4. Double-DIP is an

extension of SAT attack in which during each iteration, the discriminating input should

eliminate at least two wrong keys. To illustrate its effectiveness, researchers used double-

DIP to target SARLock+SSL, representing a compound of SAT-hard and high output

corruption obfuscation. When the double-DIP attack terminates, the key of the traditional

logic locking (SSL) is guaranteed to be correct. As a result, the compound logic locking will

be reduced to a single SAT attack resilient technique, that could then be attacked using

bypass attack.

2.3.6 Bit-Flipping Attack

The Bit-flipping attack [35] is yet another attack against compound logic locking schemes

in which a SAT-hard solution such as SARLock is combined with a traditional logic locking

to guarantee both high error rates and resilience to the SAT-based attack. In Bit-flipping
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Algorithm 3 AppSAT Attack Algorithm [21]

1: function AppSAT Attack(Circuit CL, Circuit CO)
2: i ← 0; F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2);
3: while SAT (Fi ∧ (Y1 6= Y2)) do
4: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)); Yd[i] ← CO(Xd[i]);
5: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]); i ← i+1 ;
6: every n rounds do
7: for each (x ∈ Random Patterns) do
8: if CL(X, K1, Y) 6= CO(X) then
9: FailedPatterns ← FailedPatterns + 1;

10: Fi+1 ← Fi+1 ∧ (CL(X, K1, Y) = CO(X)); i ← i+1 ;

11: if error ¡ ErrorThreshold then
12: return K1 as an approximate key

13: K∗ ← sat assignmentK1
(Fi);

Algorithm 4 Double-DIP Attack Algorithm [22]

1: function DoubleDIP Attack(Circuit CL, Circuit CO)
2: i ← 0; F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2) ∧ CL(X, K3, Y1) ∧ CL(X, K4, Y2) ;
3: while SAT (Fi ∧ (Y1 6= Y2)) ∧ (K1 6= K3)) ∧ (K2 6= K4)) do
4: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)) ∧ (K1 6= K3)) ∧ (K2 6= K4));
5: Yd[i] ← CO(Xd[i]);

6: Fi+1 ← Fi

∧4
j=1 CL(Xd[i], Kj , Yd[i]); i ← i+1 ;

7: K∗ ← sat assignmentK1(Fi);

attack, the keys are first separated into two groups (k1 and k2) by counting DIPs for two

keys with hamming distance equal to one. The attack is motivated from the observation

that in traditional logic locking, wrong key causes substantial wrong input-output pattern.

However, the error rate of bit-flipping function is usually very small. As shown in Algorithm

5, after separation of keys, this attack fixes SAT-resilient keys, k2, as a random number,

and uses a SAT solver to find the correct key values for k1. After finding k1, the bypass

attack is applied to retrieve the original circuit.

2.3.7 AppSAT Guided Removal Attack

AppSAT Guided Removal (AGR) attack targets compound logic locking, particularly Anti-

SAT + traditional logic locking [33]. This attack integrates AppSAT with a simple structural

analysis of the locked netlist (a post-processing steps). Unlike AppSAT, the AGR attack

recovers the correct key. In this attack, first the AppSAT is used to find the key of the
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Algorithm 5 Bit-flipping Attack Algorithm [35]

1: function BitFlipping Attack(Circuit CL, Circuit CO)
2: for each j ¡ Fixed-iteration do
3: KA ← a random key;
4: for each bit b ∈ KA do
5: KB ← KA while bit b flipped;
6: i ← 0; F0 ← CL(X, KA, YA) ∧ CL(X, KB , YB);
7: while SAT (Fi ∧ (YA 6= YB)) do
8: Xd[i] ← sat assignment (Fi∧(YA 6=YB));
9: Fi+1 ← Fi ∧ (X 6= Xd[i]); i ← i+1 ;

10: if i ¿ Threshold then
11: b is in K1,
12: break;

j ← j + 1;

13: K2 ← all key bits / K1; . Seperation is Done. Then, fix K2 as a random number.
14: K1 ← SAT ATTACK (CL, CO); . Find Traditional Keys using SAT.
15: C∗L ← update netlist(CL — K1)
16: return (BYPASS ATTACK(C∗L);

traditional obfuscation scheme (used as a part of compound lock). Then, AGR targets

the remaining key bits belong to the SAT-resilient logic locking, such as Anti-SAT block,

through a simple structural analysis. As shown in Algorithm 6, in the post-processing steps,

AGR finds the gate (G) at which most of the Anti-SAT key bits converge. AGR finds G by

tracing the transitive fanout of the Anti-SAT key inputs, where all the Anti-SAT key bits

converge. The ratio of key bits converging at each of the inputs of the gate G, are close to

0.5, which is shown as the selected property in line 7 of Algorithm 6. AGR identifies the

candidates for gate G by checking this property for all gates in the circuit, and then sort

these candidate based on the number of key inputs that converge at a gate and pick the

gate G from all candidates, which has the most number of key inputs converge to that gate.

Then the attacker re-synthesize the design with the constant value for the output of G gate

and retrieving the correct functionality.

2.3.8 Sensitization Guided SAT Attack

While the one-point flipping circuit in Anti-SAT and SARLock are completely decoupled

from the original netlist, Li et al. [36] proposed the AND-tree Insertion (ATI), as a SAT-

resilient logic locking, which embeds AND trees inside the original netlist. It not only
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Algorithm 6 AGR Attack Algorithm [33]

1: function AGR Attack(Circuit CL, Circuit CO)
2: #Cand ← num gates(CL)
3: while (#Cand ¿ 1 and !Timeout) do
4: AppSAT Attack(); . 4 times
5: Candidates ← {};
6: for each gate ∈ CL do
7: if gatei has the selected property then
8: Candidates ← Candidates + 1;

9: G ← Find Max key count(Candidates);
10: CLock ← remove TFI(CL, G); . remove Transitive FanIn of the gate G
11: return CLock; . CLock: CL after removing Anti SAT block

makes all aforementioned attack less effective, it also decreases the implementation overhead.

Additionally, the input of AND-tree are camouflaged by inserting INV/BUF camouflaged

gates, which can be replaced with the XOR/XNOR gates in order to lock the AND-tree.

However, this defense was broken by a new attack that was coined as Sensitization Guided

SAT (SGS) attack [33]. The SGS attack is carried out in two stages: (1) sensitization that

exploits bias in input patterns which allows an attacker to apply only a subset of DIPs, i.e.,

those that bring unique values to the AND-tree inputs. (2) SAT attack using the patterns

discovered in the first stage.

2.3.9 Functional Analysis Attack

Aiming to provide a defense that resists all previously formulated attacks led to the intro-

duction of Stripped-Functionality Logic Locking (SFLL) [37]. In SFLL the original circuit

is modified for at-least one input pattern (cube) using a cube stripping unit, demonstrated

in Fig. 2.4. As shown, Yfs is the output of the stripped circuit, in which the output corre-

sponding to at-least one input pattern is flipped. The restore unit not only generates the

flip signal for one input pattern per each wrong key, it also restores the stripped output,

(e.g. IN = 4 in Fig. 2.4) to recover the correct functionality on Y . Note that applying

removal attack on restore unit recovers Yfs, which is not the correct functionality. In addi-

tion, SFLL-HD is able to protect
(
k
h

)
input patterns that are of Hamming Distance (HD) h

from the k-bit secret key, and accordingly uses Hamming Distance checker as a restore unit
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(e.g. h = 0 in Fig. 2.4 is also called TTLock [38]).

Although SFLL was resilient against all previously formulated attacks, it was exploited

using a newly formulated attack, called Functional Analysis on Logic Locking (FALL) attack

[39]. In this attack model, the adversary is assumed to be a malicious foundry that knows the

locking algorithm and its parameters, e.g. h in SFLL-HD. A FALL attack is carried out in

three main stages and relies on structural and functional analyses to determine potential key

values of a locked circuit. First, FALL attack tries to find all nodes which are the results of

comparing an input value with a key input. It is done by a comparator identification. Such

nodes (nodesRU ), which contains these particular comparators, are very likely to be part of

the functionality restoration unit. The set of all inputs that appear in these comparators,

should be in the fan-in cone of the cube stripping unit. Then, it finds a set of all gates

whose fan-in-cone is identical to the members of nodesRU . This set of gates must contain

the output of the cube stripping unit. Second, the attacker applies functional analysis on

the candidate nodes suggested by and collected from the first stage to identify suspected

key values. Broadly speaking, the attacker uses functional properties of the cube stripping

function used in SFLL, to determines the values of the keys. Based on the author’s view,

this function has three specific properties. So, they have proposed three attacks algorithms

on SFLL, which exploit unateness and Hamming distance properties of the cube stripping

functions. The input of these algorithm is circuit node c, that computed from the first

stage, and the algorithm checks if c behaves as a Hamming distance calculator in the cube

stripping unit of SFLL-HD. If the attack is successful, the return value is the protected

cube. Third, they have proposed a SAT-based key confirmation algorithm using a list of

suspected key values and I/O oracle access, that verifies whether one of the suspected key

values computed from the second stage, is correct.

2.3.10 CycSAT Attack

Considering the strength of all previously formulated attacks, some of the researchers started

seeking solutions that fundamentally violated the assumptions of these attacks with respect
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Figure 2.4: SFLL-HD while h = 0.

to the nature of locked circuits. One of such attempts was the introduction of cyclic logic

locking [40][26], was first proposed in [40]. In this obfuscation technique each deliberately

established cycle is designed to have more than one way to open. The requirement for

having more than one way to open each cycle assures that even if the original netlist has

no cycle by itself, the cycles remains irreducible by means of structural analysis. The cyclic

obfuscation resulted in an obfuscation with high level of output corruption, while it was

able to break the SAT attack either by 1) trapping it in an infinite loop, or 2) forcing it to

exit with a wrong key depending on weather the introduced cycles make the circuit stateful

or oscillating.

The promise of secure cyclic obfuscation was shortly after broken by CycSAT attack

[41]. In CycSAT, the key combinations that result in formation of cycles are found in a

pre-processing step. These conditions are then translated into problem augmenting CNF

formulas, denoted as cycle avoidance clauses, satisfaction of which guarantee no cycle in the

netlist. The cycle avoidance clauses are then added to the original SAT circuit CNF and

the SAT attack is executed. The validity of this attack, however, was challenged in [26], as

researchers illustrated that the pre-processing time for CycSAT attack is linearly dependent

on the number of cycles in the netlist. Hence, by building an exponential relation between

the number of feedback, and the number of cycles in the design, the pre-processing step of

CycSAT will face exponential runtime.
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2.3.11 Behavioral SAT (BeSAT) Attack

Inability to analyze all cycles in the prepossessing step of CycSAT results in missing cycles

in the pre-processing step of CycSAT, leading to building a statefull or oscillating circuit,

trapping the SAT stage of the CycSAT attack. BeSAT [42] remedies this shortcoming by

augmenting the CycSAT attack with a run-time behavioral analysis. As shown in Algorithm

7, by performing behavioral analysis at each SAT iteration, BeSAT detects repeated DIPs

when the SAT is trapped in an infinite loop. Also, when SAT cannot find any new DIP, a

ternary-based SAT is used to verify the returned key as a correct one, preventing the SAT

from exiting with an invalid key.

Algorithm 7 BeSAT Attack on Cyclic Locked Circuits [42]

1: function BeSAT Attack(Circuit CL, Circuit CO)
2: W = (w0, w1, ...wm) ← FindFeedback(CL);
3: for each (wi ∈W ) do
4: F (wi, w

′
i) ← no structural path(wi);

5: i ← 0; NC(K)=∧mi=0F (wi, w
′
i)

6: C∗L(X, K, Y) ← CL(X, K, Y) ∧ NC(K); F0 ← C∗L(X, K1, Y1) ∧ C∗L(X, K2, Y2);
7: while SAT (Fi ∧ (Y1 6= Y2)) do
8: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)); Yd[i] ← CO(Xd[i]);
9: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]);

10: if (Xd[i] in DIP) and (CL(Xd[i], K1) 6= Yd[i])) then
11: Fi+1 ← Fi+1 ∧ (K1 6= K̂1) ∧ (K2 6= K̂1);
12: else if (Xd[i] in DIP) and (CL(Xd[i], K2) 6= Yd[i]) then
13: Fi+1 ← Fi+1 ∧ (K1 6= K̂2) ∧ (K2 6= K̂2);

14: i ← i+1 ;

15: while SATK1(Fi) do . Correct Key: K̂c

16: if Ternary SAT(Fi, Kc) then
17: Fi ← Fi ∧ (K1 6= K̂c)
18: else
19: K∗ ← K̂c; break;

2.4 Stage 4: SMT Attack

As discussed previously, many of the attacks proposed at post-SAT attack stage were for-

mulated by adding a pre-processing step to the original SAT attack, and/or extending the

SAT attack to co-process and check additional features in each iteration. In other terms, to
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break many of the post-SAT era obfuscation techniques, attackers relied on compound at-

tacks by combining SAT solvers by pre-processors (e.g. in CycSAT) and co-processors (e.g.

in BeSAT) to extend its modeling reach. Motivated by this trend, the need for having pre-

co- and post- processors along with a SAT solver in an attack was realized and addressed

in [43] and a new and extremely powerful attack, coined as Satisfiability Module Theory

(SMT) attack was introduced. The strength of SMT attack, as the superset of SAT attack,

comes from its ability to combine SAT and Theory solvers. The SMT attack could be in-

voked with any number and combination of theory solvers, and a SAT solver, which allow

the attacker to express constraints that are difficult or even impossible to express using

CNF, including timing, delay, power, arithmetic, graph and many other first-order theories

in general. To showcase the modeling capability of SMT attack, the authors used the SMT

attack 1) to break a new breed of obfuscation that relied on locking the delay information

in netlist (by generating setup and hold violations), 2) to formulate an accelerated attack

(to reduce the attack time) with means of approximate exit (if trapped with SAT hard

solutions).

Algorithm 8 SMT Attack on DLL (Lazy Approach) [43]

1: function SMTLazy Attack(Circuit CL, Circuit CO)
2: C∗L ← toBOOLEAN(CL); . Replace TDK with Buffer
3: i ← 0; F ← C∗L(X, K1, Y1) ∧ C∗L(X, K2, Y2);
4: G∗L ← toGRAPH(CL); . Wires = Edges, Gates = Vertices
5: FT ← GenTCE(G∗L) . Theory Learned Clauses
6: FSMT ← F ∧ FT ; . SMT Clauses
7: while SMT (FSMT ) do . Xd[i], K1, K2, CC
8: Yd[i] ← CO(Xd[i]); F ← F ∧ C∗L(Xd[i], K1, Yd[i]) ∧ C∗L(Xd[i], K2, Yd[i]);
9: FSMT ← F ∧ CC; i ← i+1 ;

10: K∗ ← smt assignmentK1(FSMT );

1: function GenTCE(Graph G∗L)
2: Inputs ← find start points(G∗L); Outputs ← find end points(G∗L); TCE(K) ← [];
3: for each ((Sp, Ep) ∈ (Inputs, outputs) do
4: Upper(Sp,Ep)(K) ← !(distance leq(Sp, Ep, tcd)); . Hold Violation
5: Lower(Sp,Ep)(K) ← distance leq(Sp, Ep, tp); . Setup Violation
6: Range(Sp,Ep)(K) ← Lower(Sp,Ep)(K) ∧ Upper(Sp,Ep)(K);
7: TCE(K) ← TCE(K) ∪ Range(Sp,Ep)(K);

8: return TCE(K)
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In pursuit of obfuscation schemes that could not be attacked by SAT motivated at-

tackers, some researchers tried to extend the locking mechanism to aspects of a circuit’s

function that cannot be translated to CNF. For example, Xie et al. proposed a timing obfus-

cation scheme, denoted as delay logic locking (DLL), in [27]. The Goal of DLL obfuscation

scheme is introducing setup and hold violation if the correct key is not applied. In this

case, the obfuscation attempts to change both logical and behavioral (timing) properties.

A functionally-correct but timing-incorrect key will result in timing violations, leading to

circuit malfunctions. Considering that timing is not translatable to CNF, the SAT solver

remains oblivious to the keys used for timing obfuscation. Authors in [43], however, il-

lustrated that the SMT attack could easily deploy a graph theory solver, provide timing

constraints to the theory solver (in terms of required min and max delay to meet the hold

and setup time), and use the theory solver in parallel with the internal SAT solver to break

both logic and delay obfuscation. They additionally show that the theory solver could

be initiated as a pre-processor (Eager SMT approach) or as a co-processor (Lazy SMT ap-

proach) to break the same problem, showcasing the strength of SMT attack. The lazy mode

of this attack is illustrated in Algorithm 8. Although at about the same time Chakraborty

proposed TimingSAT to attack the DLL [44], similar to many prior SAT-based attack, it

was by deploying a pre-processor for analysis of graph timing, and generating helper clauses

for the subsequent call to the SAT attack.

The ability of SMT solver to instantiate and integrate different theory solver makes

it a suitable attack platform for modeling and formulating very strong attacks. As an

example of the strength of SMT attack, the authors in [43] formulated and presented an

accelerated SMT attack with ability of detecting the presence of SAT-hard obfuscation and

switching to an accelerated approximate attack. As shown in Algorithm 9, this was done by

invoking a BitVector theory solver to constrain the SMT solver for finding keys that result

in highest output corruption first. This could be done by constraining the required HD

between the output of double circuit when two different keys for the same discriminating

input is being tested. The required HD starts from a large value, and every time that the
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SMT solver return UNSAT, the constraint is relaxed until HD of 1 is reached. This leads

to the guaranteed discovery of keys for traditional logic locking first. After N tries (Rep

in Algorithm 9) for HD of 1, the SMT attack exits, notes that there exist a SAT-hard

obfuscation, which now could be addressed by the Bypass attack. More details on SMT

attack will be discussed in section 3.

Algorithm 9 Accelerated SMT Attack on Compound Locking [43]

1: function AccSMT Attack(Circuit CL, Circuit CO)
2: i ← 0; HDh ← sizeof (output); HDl ← HDh - 1;
3: TimeOut ← 20; Rep ← 20; HDR ← 1; Rcnt ← 0;
4: C∗L ← toBOOLEAN(CL); . Everything is Boolean.
5: F ← C∗L(X, K1, Y1) ∧ C∗L(X, K2, Y2);
6: BV∗L ← toBITVECTOR(CL); . Define BITVECTOR on output.
7: BVs∗L(X, K1, K2) ← ONEs(BV∗L(X, K1) ⊕ BV∗L(X, K2));
8: FT ← (BVs∗L(X, K1, K2) > HDl) ∧ (BVs∗L(X, K1, K2) 6 HDh);
9: FSMT ← F ∧ FT ; . SMT Clauses

10: while HDl > 1 do
11: while SMT (FSMT — TimeOut) do . Xd[i], K1, K2, CC
12: Yd[i] ← CO(Xd[i]);
13: F ← F ∧ C∗L(Xd[i], K1, Yd[i]) ∧ C∗L(Xd[i], K2, Yd[i]); FSMT ← F ∧ CC;
14: if HDl 6 HDR then
15: if Rcnt == Rep then
16: break;

17: Rcnt++;
HDl--;

18: K∗ ← smt assignmentK1(FSMT );

2.5 Discussion & Opportunities

Table 2.2 compares the effectiveness of the attacks discussed in this section against most

notable obfuscation schemes. As illustrated the combination of FALL, Bypass and SMT at-

tack can break all existing solutions, pointing us to a need for a new direction for generating

non-bypassable SMT hard obfuscation solutions.

The dilemma is that SAT-hard solutions have extremely low output corruption, and are

prone to Bypass, FALL, Removal and SPS attack. On the other hand, the traditional logic

locking schemes have high output corruption, but could be easily broken with SAT/SMT

attack. The compound logic locking solutions that combine the SAT-hard solutions for
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Table 2.2: Comparison of proposed attacks/defenses.

Attacks
Defenses . . RLL FLL SLL Anti-SAT SARLock Compound SFLL Cyclic SRCLock DLL

[7] [13] [12] [19] [18] [18] [37] [40] [26] [27]

Brute Force 7 7 7 7 7 7 7 7 7 7
Sensitization[12] 3 3 7 7 7 7 7 7 7 7
Hill-Climbing[32] 3 3 7 7 7 7 7 7 7 7
SAT[10] 3 3 3 7 7 7 7 7 7 7
SPS+Removal[33][20] 7 7 7 3 3 7 7 7 7 7
Bypass[24] 7 7 7 3 3 7 7 7 7 7
AppSAT[21] 3 3 3 7 7 P 7 7 7 7
Double-DIP[22] 3 3 3 7 7 P 7 7 7 7
Bit-Flipping[35] 3 3 3 3 3 3 7 7 7 7
AGR[33] 3 3 3 3 3 3 7 7 7 7
FALL[39] 7 7 7 7 7 7 3 7 7 7
CycSAT[41] 3 3 3 7 7 7 7 3 7 7
BeSAT[42] 3 3 3 7 7 7 7 3 7 7
TimingSAT[44] 3 3 3 7 7 7 7 7 7 3
SMT[43] 3 3 3 7 7 P 7 3 3 3

3: Attack Success, 7: Fail to Attack, P: Only removes the key to the traditional locking in Compound Defense.

resistance against SAT and SMT attack, and traditional logic locking for resistance against

Bypass, FALL, Removal and SPS attack are also prone to approximate SAT and SMT

attacks. What is really desired, is a SMT-hard logic locking scheme with high degree of

output corruption. As a step in this direction, few very recent research papers have focused

on increasing the execution time of each SAT/SMT iteration rather than the total execution

time [45, 46]. The Full-Lock in [45] is argued that the strength of SAT/SMT solvers come

from their Conflict-Driven Clause Learning (CDCL) ability, which is resulted by recursively

calling Davis-Putnam-Logemann-Loveland (DPLL) algorithm. Hence, the Full-Lock creates

an obfuscation method that results in very deep recursive call trees. They argue that the

SAT/SMT attack execution time can be expresses by formula 2.1, in which N denotes the

number of iterations (DIPs) of the SAT/SMT attack, TDPLL(Φ) is the execution time of

recursive calls for DPLL algorithm on CNF Φ, and t is the execution time of the remaining

book keeping code executed at each iteration.

TAttack =
N∑
i=1

T (i) =
N∑
i=1

(t + TDPLL(Φ)) =
N∑
i=1

M∑
j=1

(TAvg
DPLL) 'MN × TAvg

DPLL (2.1)

Authors argue that M in formula 2.1 denotes the number of recursive DPLL calls.

Accordingly, the execution time of SAT attack could also become unfeasible by building

an exponential relation between the percentage gate inserted (area overhead) and M. The
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strong aspect of this alternative solution is that (1) the problems posed at each iteration

of SAT/SMT attack is a SAT-hard problem, (2) the output corruption of this methods

is significantly higher than obfuscating solution relying on increasing the N , (3) it is not

susceptible to SPS, removal, bypass, approximate attack, to name a few. The hardness of

SAT/SMT attack in the solution posed by Full-Lock cannot be assessed/formulated similar

to that of SFLL. Moving towards this new direction for generating SAT-hard problems with

high level of output corruption can be generalized more, where an obfuscation solution in

this direction can engineer the number of recursive calls, pushing the number of recursive

call to be an exponential function of added gates counts (area overhead).
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Chapter 3: SMT Attack: Next Generation Attack on

Obfuscated Circuits

In this section, we present Satisfiability Modulo Theory (SMT)-based attack on obfuscated

circuits, that expands the capabilities of previously proposed SAT attack by assigning theory

solvers to monitor the behavioral and non-functional properties of the obfuscated circuit. To

illustrate the capabilities of SMT attack, we use an SMT solver and invoke a graph-theory

solver to break the logic and timing obfuscation scheme introduced in [27].

3.1 Boolean Logic Obfuscation

Logic locking and netlist obfuscation schemes introduce limited programmability into a

netlist by means of inserting additional key programmable gates at design time. After

fabrication, the functionality of the IC is programmed by loading the correct key-values.

The key-inputs could be stored in and driven by an on-chip tamper-proof memory [28].

The purpose of inserting key-gates is protecting the IC design from untrusted foundries.

Since the functionality of a design is locked with a secret key, the attacker cannot learn

the functionality of the obfuscated netlist after reverse engineering. Logic locking and

obfuscation schemes vary in terms of the usage of different key-gates types and key-gates

insertion policies [47,48]. For combinational circuits, logic locking can be classified based on

key-gates types to different categories. XOR/XNOR based logic locking [7,12], MUX based

logic locking, and LUT based logic locking [14,15] are the most common mechanisms. Also,

there are different algorithms for inserting the key-gates in the circuit. Some of these policies

include random insertion (RLL), fault-analysis (FLL) insertion, and interference-based logic

locking (SLL) algorithms, SARLock, Anti-SAT , etc. [7, 12,13,18,19].
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Figure 3.1: 10-Year History of Logic Obfuscation.

Fig. 3.1 captures the evolving history of obfuscation defense schemes and attack formu-

lations since the year 2008 to the current date. After introduction of SAT attack, in 2015

in [9,10], as illustrated in this figure, researchers proposed various mechanisms for building

SAT hard obfuscation solutions. However, many of such obfuscation schemes were later

broken using newer attacks like as SPS, removal, bypass, and AppSAT [20–22,24,33], mak-

ing the current defense schemes unreliable. After 2017, a new breed of obfuscation schemes

instead of building logical obfuscation schemes has been introduced, relied on breaking the

SAT assumptions for building SAT hard solutions without having the vulnerabilities of the

previous SAT-Hard solution. For example, Cyclic obfuscation [40] and its improved defense,

the SRCLock[26], by introducing cycles into netlist break the SAT model as the netlist can

no longer be represented by a Directed Acyclic Graph (DAG). Alternatively, the Delay Logic

Locking (DLL) [27] extends the reach of obfuscation beyond logic and locks the circuit us-

ing its delay and timing properties, attempting to build SAT hard solutions. In this work,

we introduce the SMT attack that could break such locking and obfuscation mechanisms

by means of parallel invocation of SAT and theory solvers to model the non-logical and

behavioral aspects of a circuit operation.
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3.2 Behavioral logical obfuscation

As previously discussed, the logic-based obfuscation schemes that rely on extending the

Boolean behavior of a circuit can be broken by at least one of the state-of-the-art attacks,

including SAT, SPS, removal, bypass, and AppSAT [9, 10, 20–22, 24, 33]. Hence, recent re-

searches have been focused on obfuscation schemes that fundamentally violate the assump-

tions of these attacks with respect to the nature of obfuscated circuit, or use non-logical

properties of a netlist to obfuscate its behavior [26,27,40].

For lack of EDA tool support and limited knowledge in designing cyclic Boolean logic,

most of all netlists designed and fabricated today are acyclic. One of the first attempts

to break the state of the art attacks, including SAT attack, was proposed in [40] which

suggested using cycles in combinational circuits, and illustrated that use of cycles results

in either a SAT solver being trapped, or it generates incorrect key even after timely termi-

nation. This obfuscation scheme, however was shortly after broken by CycSAT attack in

[41]. In the CycSAT attack, the netlist is first pre-processed based upon which a set of con-

straining clauses are generated. The CycSAT attack then uses these constraining clauses,

in the original SAT attack, allowing the SAT solver to effectively open the cycles without

being trapped, or incorrectly terminated. However, the limitation of [40] was addressed

in SRCLock [26] to prevent a pre-processor from extracting all needed constraints from a

cyclically locked circuit. SRCLock focuses on building an exponential relation between the

number of inserted feedbacks and number of generated cycles by means of creating super

cycles.

The second obfuscation of interest to this work is the logic and timing obfuscation scheme

in [27]. In this obfuscation scheme, the delay properties of a circuit are obfuscated with

the ultimate goal of introducing setup and hold violation if the correct key is not applied.

In this case, the obfuscation, in addition to the logical behavior of the netlist, attempts

to change its behavioral (timing) properties. Considering that timing is not translatable

to CNF, the SAT solver remains oblivious to the keys used for timing obfuscation. Hence

using a SAT attack to deobfuscated this circuit, result in a discovery of all keys used for
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logic obfuscation, but random assignment to all keys used for timing obfuscation and the

circuit remains locked.

In this work, we construct an attack based on Satisfiability Modulo Theory solvers, and

illustrate that the capability of this attack goes far beyond that of SAT attacks. More

precisely, with specific formulation, we illustrate that SMT attack on obfuscated circuits

could be significantly faster and more efficient compared to SAT attacks on Boolean logic

obfuscation. Additionally, it could be used to attack behavioral logic obfuscation schemes,

which is not possible by a pure SAT-based attack. To illustrate the second point, we attack

and break the timing-logic obfuscation scheme in [27], based on which we generalize and

illustrate how other similar SMT attacks could be formulated.

3.3 Attack Model

The SMT attack is an oracle-guided attack. We assume that the attacker has the reverse

engineered but obfuscated netlist and a functional IC (oracle) that is unlocked. The attacker

can query the oracle with any stimuli i, and observe its output o. The purpose of the attack

is to find the key inputs, that make the obfuscated netlist logically equivalent to that of the

unlocked netlist.

As it can be seen in Fig. 3.2, IP owner obfuscates the Original Netlist of IP. Assuming

that design integration, verification, fabrication, and packaging have been accomplished in

untrusted regime, attacker is able to obtain the obfuscated (locked) netlist from (1) the

IC design, or by reverse engineering the (2) synthesis/implementation (layout), (3) mask,

or (4) a manufactured IC. In addition, the attacker is able to buy the correctly unlocked

(activated) IC in the open market. Consequently, the attacker can apply arbitrary input to

activated IC and observe its corresponding output.
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Figure 3.2: ASIC Design Flow Integrated with Obfuscation/Activation.

3.4 Limitation of SAT Attack

A SAT attack works perfectly fine if the logic obfuscation is of Boolean nature. This is

because any Boolean logic could be easily transformed into its Conjunctive Normal Form

(CNF) and be converted into a satisfiability assignment problem. But in case of Behavioral

logic obfuscation, the locking mechanism is designed to control aspects of circuit operations

that could not be translated to CNF as required by a SAT solver. The delay-locking (DLL)

scheme proposed in [27], cyclic-based obfuscation presented in [40], and SRCLock [26] are

good instances of such locking mechanism. For the purpose of locking, DLL uses a tunable

delay key-gate (TDK) which is illustrated in Fig. 3.3. TDK consists of a conventional key-

gate (XOR/XNOR) with a tunable delay buffer (TDB). The capacitive load of the buffer is

controlled by a transmission gate, where activating the transmission gate increases the wire

load capacitance of the internal wire, resulting in larger TDK propagation delay. Hence, the

functionality and propagation delay of a TDK, both, depends on the value of its key-inputs.

In DLL, the TDK cells are used to control the setup and hold time violations such that

only one sequence of activation keys guarantees that circuit operates with no violation.

To apply the DLL, a design is first altered such that most timing paths are balanced to

be sensitive with respect to small changes in the path delay, such that a small variation in

delay causes setup or hold violations. This is achieved by means of carefully engineering the

clock skew, cell sizing, and Vth swapping. Then the TDK cells are inserted in the common

portions of setup and hold critical paths, such that attempting to only fix setup causes

hold violation, and attempting to fix hold causes setup violation with the exception of one

sequence of correctly configured TDK keys that assures all timing paths meet both setup
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and hold check timing constraints. Considering that the delay is not a logical behavior,

the TDK cell behavior could not be completely captured by CNF, hence the delay locking

is not directly attackable by a SAT attack. In [27] it was illustrated that even a mixed

integer linear programming (MILP) based attack has up to 39% timing violation ratio

(TVR). However, as we will illustrate in this section, by employing an SMT attack and by

instantiating an integrated graph theory solver along with its SAT engine, we could find

the keys to this obfuscation problem in few minutes.

3.5 SMT Solver

In this section, we first review the usage and capabilities of an SMT solver, and then we

illustrate how the SMT solver could be used to form an SMT attack on obfuscated circuits

regardless of obfuscation’s reliance on logical or non-logical properties of a circuit.

3.5.1 SMT Usage and Capabilities

A Satisfiability Modulo Theory (SMT) is used to solve a decision problem while honoring

constraints that could be expressed using first-order theories such as equality, reasoning,

arithmetic, graph-based deduction, etc. Hence, it could be considered as a solver for a broad

set of problems that could be categorized as Constraint Satisfaction Problems (CSP), which

is a superset of Boolean Satisfiability Problems (BSP) that are solvable by SAT solvers.

Additionally, the ability to express theories such as inequality (e.g. 3x+ y < z) provides a

much richer Application Programming Interface (API) to the end user to define a problem
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compared to that of a SAT solver.

In general, there are two different approaches for solving an SMT problem. The first ap-

proach is based on translating the problem into a Boolean SAT instances denoted by Eager

approach; In this approach the existing Boolean SAT solvers are used as is. However, the

SMT solver has to work a lot harder for solving some problems that are otherwise very obvi-

ous (e.g. for checking the equivalence of two 32-bit values). However, by deploying a theory

solver, this could be achieved in no time. For this reason, many SMT solvers follow an-

other approach which referred to as the Lazy Approach. The Lazy approach integrates the

Boolean satisfiability solvers, which are based on the Davis-Putnam-Logemann-Loveland

(DPLL) in modern SAT, and theory solvers that decide the satisfiability of formulas over

specific theories. Each theory solver provides two capabilities: (1) theory propagation

among various theory solvers for checking possible conflicts on partial assignments, and

(2) clause learning result of which is shared by the SAT solver to speed-up pruning the

decision tree. Additionally, since several applications of SMT deal with formulas involving

two or more theories at ones, modern SMT solvers provide the capability of combining the-

ory solvers using Nelson-Oppen [49] or Shostak [50] method to support a more expressive

language. In combining theory solvers, if two theories Γ1 and Γ2 are both defined axiomat-

ically, their combination can simply be defined as the theory axiomatized by union of the

axioms of the two theories, Γ1 and Γ2. For example, Consider Γ1 and Γ2 are two different

theories, it is possible to define Γ1 ⊕ Γ2 as a combined theory of Γ1 and Γ2, where Γ1 ⊕ Γ2

is the set of all models that satisfy Γ1 ∪ Γ2. This is adequate if the signatures of the two

theories are disjoint. Otherwise, if Γ1 and Γ2 have symbols in common, one has to consider

whether a shared function symbol is meant to stand for the same function in each theory or

not. In the latter case a proper signature renaming must be applied to the theories before

taking the union of their axioms. in [51] they have described general conditions for the

combination of theories that may have symbols in common. The ability to combine the-

ory solvers proves extremely useful when dealing with applications such as model checking

and predicate abstraction-based model check in which we need to check the satisfiability of
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formulas over several data types.

Theories are defined as classes of models with the same signature. More precisely, a Σ-

theory Γ is a pair of (Σ, A) where Σ is a signature and A is a class of Σ-models. In general a

theory solver for a theory Γ is a procedure which takes as input a collection of Γ-literals µ and

decides whether µ is Γ-satisfiable. A theory (Γ-solver) to be effectively used within an SMT

solver should have the following properties [52]: (1) Model Generation: theory solver should

be able to produce a Γ-model of the problem description µ. (2) Conflict Set Generation:

when the theory solver reaches inconsistency, it should be able to produce a subset η of

µ which has caused the inconsistency. The subset η is referred to as theory conflict. (3)

Incrementality : The Γ-solver should be able to save and keep its status across invocation

calls to avoid recomputation. (4) Backtrackability : it is important for theory solver to

has the ability to undo the step if it is needed. Equality with Uninterpreted Functions

(EUF), linear real arithmetic (LRA), linear integer arithmetic (LIA), Mixed Integer and

Real Arithmetic, Difference Logic, Bit Vectors, Arrays, etc. are the examples of theories

commonly used in SMT.

In this work, we use an SMT solver and formulate some attacks against specific obfus-

cated circuits, illustrating the power of adapting various theory solvers for extending the

capabilities of attack by constraining and monitoring non-logical properties of a netlist.

For this purpose, and to illustrate that SMT attack is a super-set to the SAT attack, we

first illustrate that the original SAT attack against obfuscated circuits could be effectively

formulated using an SMT solver, resulting in similar performance. Then we illustrate how

the SMT solver could be used to attack logic obfuscation problems out of the reach of pure

SAT attacks, and for that purpose we break the logic and timing obfuscation in [27] which

is not possible by a pure SAT attack. We illustrate that this attack could be achieved using

both Eager and Lazy approach of SMT attack. Then we illustrate how the SMT attack

could become significantly more efficient than a SAT attack by adopting the capabilities

of theory solvers like BitVector, and formulate an accelerated SMT attack, that requires
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substantially smaller iterations and runtime compared to a SAT attack against specific ob-

fuscation schemes. In addition, we formulate the accelerated SMT attack to be capable of

approximate attacks.

3.6 SMT Attack

When building an SMT attack on obfuscated circuits, as illustrated in Fig. 3.4, the SMT

attack could be invoked with any number and combination of theory solvers, and a SAT

solver. In order to use the SMT solver to formulate an attack, few preliminary steps should

be taken. The first step is to make a minor modification to an extracted netlist after reverse

engineering, providing the capability of testing various behaviors of the obfuscated circuit

to the SAT or SMT solver. The transformation is simply replacing the obfuscated cells with

their equivalent Key Programmable Gates (KPG). A KPG performs the same function as

the obfuscated cell, however, it allows building a key controlled representation of the logical

behavior of the obfuscated cell for the purpose of logical-model building. Fig. 3.5 captures

the KPG translation gates for each type of the gates that have previously used in recent

literature for the purpose of obfuscation. For example, when attacking a camouflaged cell

that could be either an AND gate or an XOR gate, it is replaced with its KPG which

is simply a MUX with each of its input tied to one of the camouflaged cell possibilities.

The function performing the KPG replacement in the algorithms described in this work is

ReplaceKPG(Nobf) that replaces all obfuscated cells in an obfuscated module with their

KPGs equivalent based on translation table in Fig. 3.5.

When using an SMT solver, before invoking a theory solver, the input model or input

behavior should be translated to a model µ which is understood by that theory solver. As

illustrated in Fig. 3.4, the translation step may be different for each theory solver used.

As an example, to break the Delay Logic Locking in [27], we use a graph theory solver and

translate the obfuscated netlist to a graph model that is understood by the graph-theory

solver. The required translation step (µ ← Netlist) is simply the inversion of the netlist

under attack to its graph representation, where each gate is a node in the graph, and each
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Figure 3.5: Translation Table to Key Programmable Gates (KPG).

net an edge. We have additionally included the functionality to compute the logical effort

in our graph translation routine, that annotate each edge with the logical effort needed to

drive that edge as a measure of its delay. We could alternatively use a second theory solver

to capture the static timing of the netlist and exchange information with the graph theory

solver for more accurate results. The final step before invoking the SMT/SAT attack is the

translation of the netlist under attack into its CNF form as described in [10].

After building model µ for each Theory and SAT solver, the SMT attack is formulated

based on the flow of information exchange between theory and SAT solver. In General,

the formulation of the SAT portion of SMT solver is similar to that of pure SAT attack

as described in [10]. However, in addition to the SAT solver, each theory solvers is then
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tuned by declaration of theory constraint. At this stage, invoking the SMT solver returns

a satisfiable assignment and a list of learned theory and conflict clauses for theory solver

and SAT solver respectively. The SMT attack is then achieved by composing the correct

control flow for invocation of theory and SAT solver(s), and by managing the intermediate

sequence of CNF-based information exchange. The general flow of information in an SMT

formulated problem, including that of SMT attack, is illustrated in Fig. 3.4.

3.6.1 Attack Mode 1: SMT reduced to SAT Attack

As was mentioned previously, the SAT attack finds a functionally correct key for an ob-

fuscated circuit by checking a small subset of all input patterns, hence removing the need

for brute-force testing of all input patterns. Considering that SMT solver is a superset of

SAT solver and contains a SAT solver, any attack formulated for SAT could be similarly

formulated for an SMT solver.

Alg. 10 illustrates the SAT attack that could be similarly implemented in a SMT solver.

The formulation of attack remains similar to that of original attack proposed in [9, 10].

Algorithm 10 SMT Reduced to SAT Attack in [9, 10]

1: function SAT Attack(Obfuscated Netlist Nobf , Functional Circuit Corg)
2: KPC ← ReplaceKPG(Nobf );
3: C(X, K, Y) ← Circuit Translation to CNF(KPC );
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 6= Y2);
5: SCKVC = TRUE ;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE ; . Learned Clauses
8: SMTLC ← SATC ;
9: while (((XDI , K1, K2, CC) ← SMT.Solve(SMTLC))= TRUE ) do

10: Yf ← Corg(XDI);
11: DIVC = C(XDI , K1, Yf ) ∧ C(XDI , K2, Yf );
12: SCKVC = SCKVC ∧ DIVC ;
13: LC = LC ∧ CC
14: SMTLC = KDC ∧ SCKVC ∧ LC ;

15: Key ← SMT.Solve(SMTLC);

The SAT attack in Alg. 10 follows the steps illustrated in Fig. 3.6. In this algorithm, the

obfuscated gates are first replaced with key programmable gates (KPG) to create the Key

Programmable Circuit (KPC). Then the CNF representation of the circuit is generated.
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Figure 3.6: From Obfuscated Circuit to SAT Circuit.

Two KPCs are then used to generate a Key Differentiating Circuit (KDC). The KDC

receives an input and two different keys and determines whether they generate the same

output or not. The KDC is then used as the first SMT satisfiability problem represented

by SMTLC for the first invocation of SMT solver. Calling the SMT solve function on the

posed formula then return an assignment for keys K1, K2, and the discriminating input XDI

such that the formulated SMTLC is satisfied. In addition, the SMT solver returns a list of

learned Conflict Clauses (CC). In line 10, the correct output (Yf ) for the discriminating

input XDI is found. In the next step, the SMT formula needs to be updated to use the

discriminating input and learned clauses to further constrain the satisfiability problem. This

is done in multiple steps. In line 11, the discriminating input found in the current iteration

is used to create a Discriminating Input Validation Circuit (DIVC) which is illustrated in

Fig. 3.6(d). The DIVC circuits formed at each iteration are ANDed together to create a

circuit that checks the correctness of a key for all previously found discriminating inputs.

This circuit is referred to as Set of Correct Key Validation Circuit (SKCVC). In line 13, the

currently found Conflict Clauses are added to the set of previously found Learned Clauses

(LC). Note that this step is done implicitly for SMT is a stateful solver. Finally, in line 14

the SMT satisfiability problem is constrained by ANDing together the KDC, SCKVC and

LC clauses. The SAT attack formulated using SMT solver continues until the SMT solver

returns UNSAT. A final call to the SMT solver returns the correct key. Note that this SMT

attack is a one-to-one translation of the original SAT attack in [9, 10]. In section 3.7.1,

we illustrate that the formulation of SAT attack using SMT solver results in very similar

performance to that of pure SAT attack. However, the SMT attack could further benefit
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from the usage of SMT solvers to extend its capabilities to attack obfuscation schemes that

could not be logically modeled.

3.6.2 Attack Mode 2: Eager SMT Attack

Theory solvers could be used to extend the capabilities and performance of SMT solver

compared to that of a SAT solver. This, as illustrated in Fig. 3.7 could be done by (1)

using the theory solver to extract all required clauses that complete the CNF description

with respect to the obfuscation scheme and then to perform a SAT attack, referred to as the

SMT Eager approach. This could be thought (2) by invoking the theory and SAT solver in

parallel to simultaneously model and solve the problem, referred to as Lazy approach.

In this section, we illustrate how the Eager approach of SMT attack could be used to

attack the obfuscation schemes that could not be broken or understood by a pure SAT

attack. For this purpose, we formulated an SMT attack on the delay-locking (DLL) scheme

proposed in [27]. Notice that the proposed approach could be used in formulating attacks

on other obfuscation techniques that rely on non-logical properties of circuit obfuscation

such as timing, power, delay, etc. by using the appropriate theory solvers.

Fig. 3.8 illustrates the translation steps for converting a DLL[27] obfuscated circuit

(using translation table in Fig. 3.5) to its key programmable circuit and captures its graph

representation. As illustrated in Fig. 3.8(b), K1 effectively has no impact on the logical
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Figure 3.8: Conversion Flow in SMT using Graph Theory Solver.

behavior of the circuit and only changes its delay properties. Hence, subjecting this obfus-

cated circuit to a SAT attack results in a random assignment to K1. Therefore, by having

k TDK cells, which have 2k keys in total, a SAT solver returns one logically correct key

sequence among 2k different set of such logically correct keys that control the TDK cells,

however, only one of such keys doesn’t result in setup and hold violations. Hence, a correct

attack should consider the delay and timing properties of the netlist in addition to its logical

correctness.

The shortcoming of SAT attack to capture the delay and timing properties of the netlist,

when attacking DLL obfuscation, is remedied in an SMT attack by means of using a graph

theory solver. To illustrate this, we formulate an Eager and a Lazy SMT attack on DLL

obfuscation. In the Eager approach, we use the theory solver as a mean of pre-processing

the netlist by which we deduct the complete set of Valid-Path Constraint Clauses (VPCC)

between all primary inputs and outputs of the obfuscated netlist. This VPCC is a CNF
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presentation of all valid assignment of the keys, such that no setup or hold violation is

created. Note that among many such possibilities, only one possibility has both the correct

timing and the correct logical behavior.

To build the VPCC clauses, we should compute the setup and hold constraints on every

timing path. The setup and hold timing checks for a timing path is expressed using the

following inequalities:

tcs−lr + tclk−q + tp + tsetup + U ≤ tcs−cr + Tclk (3.1)

tcs−lr + tclk−q + tcd ≥ thold + tcs−cr + U (3.2)

In this equation which uses the notation in Fig. 3.9, the tcs−lr is the clock source to

launch register delay, tcs−cr is the clock source to capture register delay, U is the clock

jitter/uncertainty, tclk−q is the clock to q delay of the launch register, tsetup is the capture-

register setup time, thold is the hold time requirement for the capture register, tp is the

propagation delay through the longest path in the timing path, and finally the tcd is the

propagation delay through the shortest pah in the logic. Considering that the DLL logic

is only inserted on Data sections a of timing path (according to the tormentingly in Fig.

3.9), it can only affect the tp and tcd. Note that it is also possible to enhance the DLL

obfuscation beyond that described in [27] and use the TDK cells for building clock skew

in the clock network, however, a similar attack still could be formulated. For now, let’s

consider that DLL, as described in [27], only affects the Data section of timing path. The

equations 3.1 and 3.2 could be re-written as:
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tp ≤ Tclk + (tcs−cr − tcs−lr)− tclk−q − tsetup − U = Upper (3.3)

tcd ≥ thold + (tcs−cr − tcs−lr)− tclk−q + U = Lower (3.4)

Before performing any reverse engineering, we know the TCLK from the functional chip

purchased on market. Note that a functional chip (the oracle) is needed to perform the SAT

or SMT attack as explained in section 3.3. Now let’s consider a netlist obtained after reverse

engineering. The end-point and start-point registers for each timing path are known. Hence,

by means of spice simulation, the register could be characterized and the tclk−q, tsetup and

thold are extracted. Note that there are limited type of registers used in a physical design,

and at this step only a handful of registers need to be characterized. Extracting a measure

for uncertainty could be also achieved by means of spice simulation.

At this point, considering that a TDK cell can change the delay of a timing path, the

delay of each timing path (Dj) could be divided into a constant delay (Cj) and a variable

delay (Vj(K)), where the variable delay is a function of the number of TDK cells in that

timing path, and the key assumed for each TDK. Hence, Delay of Timing path j from start

point s to endpoint p (Ds→p
j ) that passes through N TDK cells each with delay Ds→p

TDK(i),

depending on the value of key Ki is obtained from:

Ds→p
j = Cs→p

j + V s→p
j (k) (3.5)

Ds→p
j = Cs→p

j +

N∑
i=1

Ki ×Ds→p
TDK(i) (3.6)

For a given timing path, and by using the equation 3.6, we could rewrite the delay

constraints in equations 3.3 and 3.4 as:

∀j| Ds→p
jmax

= Cs→p
jmax

+
N∑
i=1

Ki ×Ds→p
TDK(i) ≤ Upper (3.7)
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∀j| Ds→p
jmin

= Cs→p
jmin

+
N∑
i=1

Ki ×Ds→p
TDK(i) ≥ Lower (3.8)

These inequalities capture the lower and upper bound delay constrain for every pair of

input-output pins in a design, and collectively capture the model µ of the graph theory

solver. Based on this formulation, the number of added inequalities is M × N, in which M

is the number of primary inputs, and N is the number of primary outputs. However, one

inequality bounds all timing paths between the selected input-output pin pair, removing the

need to express the inequality for every timing path in the design as needed in MILP-based

attack that was suggested in [27].

After writing these inequalities for each input-output pair, a call to the SMT solve func-

tion returns all key combinations for which all paths constraints/inequalities are satisfied.

In the other word, by assuming any of the returned key combinations, the circuit will not

violate its setup and hold timing checks. However, note that only one (or few) of these key

values is logically correct. The correct key value then could be extracted by invoking a SAT

solver, and by providing the set of key combinations (in CNF format) as a constraint to

the logical circuit satisfiability problem. This process is illustrated in Alg. 11. As it can be

seen in Alg. 11, function GenTLC is responsible for generating all inequalities. Line 7-8 of

GenTLC function generates inequality (7) and (8) for each input (Sp) to each output (Ep).

This algorithm is similar to Alg. 10, with the additional step of using a theory solver

for pre-processing the netlist in line 8, extraction of all key combination resulting in correct

timing behavior in line 9, and providing these constraints to the SAT solver in the next

step in line 10. Note that the solve function in the Eager approach is called in two places;

first for generating the timing valid key combination clauses (inside GenTLC function), and

then iteratively inside the SAT attack while loop.

For some obfuscation methods, the pre-processing step of Eager approach may become

extremely time consuming or computationally impossible. An example of such obfuscation

problem is the SRCLock [26]. The authors have shown that the obfuscation is SAT hard,

since without pre-processing the cycles, the SAT solver will be trapped or produce an
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Algorithm 11 Eager SMT Attack on DLL [27]

1: function SMT Eager Att(Obfuscated Netlist Nobf , Functional Circuit Corg)
2: KPC ← ReplaceKPG(Nobf );
3: C(X,K,Y) ← Circuit Translation to CNF(KPC );
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 6= Y2);
5: SCKVC = TRUE ;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE ; . Learned Clauses
8: G(X,K) ← Graph Translation(Nobf );
9: TLC ← GenTLC (G(X,K)); . Theory Learned Clauses

10: SMTLC ← SATC ∧ TLC ; . SMT Clauses
11: while (((XDI ,K1,K2,CC) ← SMT.Solve(SMTLC))= TRUE ) do
12: Yf ← Corg(XDI);
13: DIVC = C(XDI ,K1,Yf ) ∧ C(XDI ,K2,Yf );
14: SCKVC = SCKVC ∧ DIVC ;
15: LC = LC ∧ CC
16: SMTLC = KDC ∧ SCKVC ∧ LC ;

17: Key ← SMT.Solve(SMTLC);

Pre-Processing step by using a graph theory solver for SMT attack (Eager )

1: function GenTLC(Graph G)
2: Inputs ← G.find start points();
3: Outputs ← G.find end points();
4: TLC ← []
5: for each (Sp in Inputs) do
6: for each (Ep in Outputs) do
7: Upper(Sp,Ep)(K) ← !(distance leq(Sp, Ep, tcd));
8: Lower(Sp,Ep)(K) ← distance leq(Sp, Ep, tp);
9: TLC ← SMT.solve(Upper(Sp,Ep)(K) ∧ Lower(Sp,Ep)(K) ∧ TLC);

10: return TLC
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incorrect key. Additionally, they have suggested two mechanisms by which the number of

cycles in a netlist could exponentially grow with respect to the number of inserted feedbacks.

For attacking cyclic logic, as suggested by CycSAT attack [41] we need to pre-process the

netlist and extract the No Cycle Conditions to prevent the SAT solver from being trapped.

However, in SRCLock[26] the number of cycles grow exponentially, and therefore the runtime

of pre-processing step also grows exponentially, preventing us to ever reach the SAT attack.

For such problems, the Eager approach that relies on reduction of the problem to a SAT

problem does not work. However, the Lazy approach of the SMT attack provides a solution.

3.6.3 Attack Mode 3: Lazy SMT Attack

Using the Lazy approach of SMT attack relaxes the requirement of Eager approach to

complete the pre-processing step before invoking the SAT attack.

In the Lazy approach the SAT solver and theory solver(s) simultaneously check different

models of a unified satisfiability problem, exchange clauses, and check each other’s literal

assignment. This could significantly prune the decision tree of a SAT solver search space for

finding a satisfying assignment and remove the need for a complete and unbounded execution

of theory solver as it only has to check the validity of constraints for SAT assigned literals.

In order to illustrate the Lazy approach of SMT attack, in this section, we formulate an

SMT attack to again break the DLL [27] obfuscation. The Lazy approach of SMT attack

on DLL [27] is illustrated in Alg. 12. The big difference in the Lazy and Eager approach is

that after model generation for theory solver, the SMT solve function is not called. This is

illustrated in line 9 of this algorithm, where the constraining expressions are only defined

for the theory solver by making a call to GenTCE function. The returned constraining

expressions are then duplicated for Key K1 and K2. The SMT solve function is then called

to find an assignment for a discriminating input XDI , and two different keys K1 and K2

such that generated outputs are different at least in one bit, however both keys generate

a valid timing scenario. Since the SAT model (SATC) and Theory models (TCE(K1,K2))

share literals and are subjected to a unified set of constraints, the decision tree and search
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Algorithm 12 Overall SMT Attack (Lazy Approach)

1: function SMT Lazy Att(Obfuscated Netlist Nobf , Functional Circuit Corg)
2: KPC ← ReplaceKPG(Nobf );
3: C(X,K,Y) ← Circuit Translation to CNF(KPC );
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 6= Y2);
5: SCKVC = TRUE ;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE ; . Learned Clauses
8: G(X,K) ← Graph Translation(Nobf );
9: TCE(K) ← GenTCE (G(X, K)); . Theory Constraint Expressions (Not Solved)

10: TCE(K1,K2) ← TCE(K1) ∪ TCE(K2) ;
11: while (((XDI ,K1,K2,CC) ← SMT.Solve(SATC, TCE(K1,K2)))= TRUE ) do
12: Yf ← Corg(XDI);
13: DIVC = C(XDI ,K1,Yf ) ∧ C(XDI ,K2,Yf );
14: SCKVC = SCKVC ∧ DIVC ;
15: LC = LC ∧ CC
16: SMTLC = KDC ∧ SCKVC ∧ LC ;

17: Key ← SMT.Solve(SMTLC ,TCE(K));

Initialization of constraints for SMT attack (Lazy Approach)

1: function GenTCE(Graph G)
2: Inputs ← G.find start points();
3: Outputs ← G.find end points();
4: TCE(K) ← []
5: for each (Sp in Inputs) do
6: for each (Ep in Outputs) do
7: Upper(Sp,Ep)(K) ← !(distance leq(Sp, Ep, tcd));
8: Lower(Sp,Ep)(K) ← distance leq(Sp, Ep, tp);
9: Range(Sp,Ep)(K) ← Lower(Sp,Ep)(K) ∧ Upper(Sp,Ep)(K);

10: TCE(K) ← TCE(K) ∪ Range(Sp,Ep)(K);

11: return TCE(K)
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space for the SMT solvers is significantly reduced.

3.6.4 Attack Mode 4: Accelerated Lazy SMT Attack (AccSMT)

In this section, we argue that re-formulating the Lazy SMT which benefits from capabilities

of BitVector theory solver allows us to build a more efficient attack.

Our modification to the SAT attack is inspired by the observation that higher output

corruption, reduces the SAT hardness of an obfuscation scheme. A discriminating input

XDI , is an input capable of sensitizing the logic paths of the netlist under study, such that

(1) some of the differences in the values of internal nodes in the result of application of two

different keys K1 and K2 are propagated to at least one output. (2) none of the previously

found DIPs (that were used in building a DIVC) were able to propagate the generated

inconsistency to a primary output. This mechanism is continued until the number of sensi-

tized paths, reaches a point where any inconsistency that from application of two different

keys is propagated to the primary outputs using the constructed set of DIVC circuits. At

this point, the set of previously found XDIs form a complete set of discriminating inputs,

such that if a key generates the correct output for all inputs in this set, it will generate the

correct output for all other inputs.

Different DIPs have different pruning power. A DIPs strength could be assessed based

on the number of inconsistencies that it could sensitize to the primary outputs conditioned

that previous DIPs were incapable of doing so. Hence, depending on the pruning power of

DIPs, the size of the complete set of DIPs could be different. A minimal complete set of

DIPs is the smallest set of DIPs that could de-obfuscate the circuit. In our Lazy approach

for SMT attack, we propose a mechanism to reduce the size of the complete set of DIPs

pushing it towards the minimal set. Since in each SAT or SMT iteration one DIP is found,

having a smaller number of DIPs result in smaller number of iterations.

In SAT attack, it requires only a single bit difference in the output for generation of

a DIP. In SMT attack, we could make a stronger requirement for the generation of DIPs.

This could be achieved by forcing the SMT solver to find DIPs with the largest possible
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Hamming distance of primary outputs of the KPC circuits when for the same input, two

different keys are applied. Such a DIP has a much higher pruning capability, and is able to

sensitize a larger number of key-related inconsistencies to the output. The discovery of such

powerful DIPs reduces the number of required DIPs that is needed to form a complete set

of DIPs that could de-obfuscate the circuit. This is because when the hamming-distance is

larger either the KPC circuits differ in (1) key-bit(s) that are located close to the inputs,

or (2) large number of assumed key-bits (in the middle of timing paths or close to primary

outputs) are different in two KPC circuits, or (3) the combination of two scenarios. In both

cases, the added DIP and the resulting learned clauses eliminate the cause of obtaining such

large hamming distance, resulting in the elimination of a large number of inputs as possible

future DIPs while eliminating a larger set of keys as potential correct keys. Hence, when

such a DIP is added to a DIVC, it poses a much stricter restriction on the requirements for

finding the next DIP and reducing the attack time by almost an order of magnitude.

Using BitVector Theory Solver:

Assessing DIPs based on hamming distance of the primary output is easily implementable

in SMT solver by using a BitVector theory solver. The bitVector theory solver allows

us to perform integer-oriented arithmetic operations such as addition, subtraction, and

multiplication. The Hamming Distance (HD) of output Y1 and Y2 is obtained using:

HD(C(XDI ,K1), C(XDI ,K2)) = HD(Y1, Y2) =

N∑
i=1

Y1(i)⊕ Y2(i) (3.9)

The HD is then used to write the constraining expressions that are posed on the BitVec-

tor theory solver using the formulation:

ThLower ≤ HD(Y1, Y2) ≤ ThUpper = Size(Output) (3.10)

The upper threshold ThUpper is kept constant equal to the size of output pins, but the

lower threshold ThLower is defined as a variable, allowing us to sweep the hamming distance

47



constraint posed on BitVector theory solver from a maximum value of the number of output

bits to a minimum value of 1. The lower bound could be reduced every time the SMT solver

returns UNSAT, indicating there is no other DIP that satisfies the HD requirement poset

on theory solver. The process terminates when the SMT cannot even find a DIP that causes

HD of 1. Adaption of this constraint forces the SMT solver to find DIPs with higher pruning

power, reducing the size of a complete set of DIPs.

Using TimeOut:

For an SMT or a SAT attack, the execution time is determined based on the formula,∑N
i=1 t(i), where t(i) is the execution time of the ith iteration of an SMT attack. Hence,

by just reducing the number of SAT iterations N , we cannot guarantee a shorter execution

time, because finding a DIP with tighter constraint may pose a more difficult problem to the

SMT solver and increase t(i). For this purpose, we can limit the time allowance for finding

a DIP in each iteration. The timeout limit TO prevents the SMT solver from spending a

long time for finding a DIP with large HD, when finding such DIP has become excessively

difficult. By adapting the timeout feature, during an SMT attack, the HD requirement is

reduced when either (1) the SMT solver returns UNSAT, indicating there exist no such

input, or when (2) we encounter time-out interrupt. In this case, the HD constraints posed

on BitVector theory solver is reduced by one and the SMT solver is called. Note that the

time interrupt is supported by MonoSAT [54] used in this work, and many other freely

available SMT solvers. Also, note that use of time interrupt pushes the final solution away

from a minimal complete set of DIPs. However, our experiments illustrate that this usually

results in considerably smaller execution time.

Enabling Approximate Attacks:

Our objective is to enable the SMT attack to be carried against a netlist similar to that

of Fig. 3.10, which is obfuscated by both SAT Hard (SH) and high Corruption (HC)

obfuscation schemes, to find all keys for the HC obfuscation, and to detect the trap of SH
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obfuscation and exit while generating an approximate key.

The SAT hard obfuscation mechanisms suggested in recent literature, such as SARLock,

Anti-SAT, and SFLL [18,19,37], have a very small output corruption, and the SAT hardness

is maximized when there is only a single input for a given key that results in an incorrect

output. The pruning power of DIPs found in each iteration of the SAT solver for SH

obfuscation solutions is very small, and each DIP eliminates a single key value. Hence,

the number of SAT or SMT iterations increases exponentially with respect to the key size.

This is used as a mechanism to trap the SAT solver. To increase the corruption, the SH

obfuscation is combined with a HC obfuscation. The purpose of approximate attacks is to

find the correct key for the HC obfuscation without being trapped by SH obfuscation.

The accelerated SMT attack could significantly improve the performance of approximate

attacks. Since HC obfuscation schemes result in high output corruption, finding DIPs that

lead to larger HD at the output biases the SMT attack to find the HC related obfuscation

keys in the earlier iterations. The remaining problem is the design of a termination strategy

for the accelerated and approximate SMT attack to detect the trap of SH obfuscation, exit

and report the approximate key. For this purpose, we use a constraint on the number

of allowed repetitions R when HD is very small (e.g. 1). If the remaining and un-found

keys are only the SH keys, the SMT keeps finding weak DIPS (HD of 1) and iterations are

completed very quickly. By setting the repetition limit R to an appropriately large value,

we can detect the trap and terminate the attack.

The unique feature of accelerated approximate attack is that if we remove the timeout

(TO) requirement, then the approximate attack guarantees that the HD of the approxi-

mately unlocked circuit and that of the functional circuit is at most HDLow bits different,
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with HDLow being the hamming distance requirement in which the R repetition is taken

place. This could be proven as follows: Suppose that there exists an undiscovered discrim-

inating input and two keys that cause larger than HDLow bit difference (HDLow+D) in

the primary outputs. Hence, the SMT solver when constrained by bitVector theory solver

expression for finding HD = HDLow+D should return SAT. This contradicts the SMT pre-

vious execution control state where the SMT attack for that HD has returned UNSAT,

otherwise the HD constraint was not reduced.

Accelerated SMT attack formulation:

Alg. 13 demonstrates the reformulated Lazy approach of SMT attack on obfuscated circuits.

In this algorithm, the HDHigh, and HDLow are the high and low threshold requirement

for hamming distance on primary outputs, TO is the timeout limit per iteration, R is the

repetition allowance before exiting and generating an approximate key, and RHD is the

hamming distance after which the repetition condition is checked.

The BitVector theory solver input model is defined in lines 14 and 15, and converted to

theory constraint expressions in lines 16 and 17. The TCE poses an upper and lower bound

on the hamming weight difference of the outputs of two instances of the same circuits with

the same input, but two different keys. The SMT attack sweeps the hamming distance in

the first while loop, while the second while loop formulate the modulo satisfiability theory

attack. The SMT solver receives the SMTLC model, the BitVector theory solver constraint

TCE and the timeout allowance TO and check whether there is a valid assignment for

SMTLC conditioned that TCE is valid withing TO time allowance. If it exists, the while

loop is satisfied. Additionally, it returns the discriminating input XDI , the two keys found

(K1,K2) and a list of learned conflict clauses CC. Then the XDI , similar to the original SAT

attack is used to construct additional DIVC and update the satisfiability model SMTLC .

At the end of each iteration, the algorithm checks whether the hamming distance is reduced

to the limit, where the repetition condition for SH problems is checked. In this case, if the

repetition count reaches the specified threshold value R, the SMT attack is terminated.
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Algorithm 13 Accelerated SMT Attack

1: function AccSMT Attack(Obfuscated Netlist Nobf , Functional Circuit Corg)
2: HDHigh = Number of output bits; . Upper hamming distance limit;
3: HDLow = HDHigh - 1; . Lower hamming distance limit;
4: TO = 50s; . Timeout constraint;
5: R = 20; . Repetition limit;
6: RHD = 1; . Repetition condition;
7: Rcount = 0; . Repetition count variable;
8: KPC ← Replace KPG(Nobf );
9: C(X,K,Y) ← Circuit Translation to CNF(KPC );

10: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 6= Y2);
11: SCKVC = TRUE ;
12: SATC = KDC ∧ SCKVC ;
13: LC = TRUE ; . Learned Clauses
14: BV(X,K) ← Circuit Output to BitVector(Nobf );
15: BVS(X, K1, K2) = SUM of 1s(BV(X,K1) ⊕ BV(X,K2))
16: TCE ← BVS(X,K1,K2) ≥ HDLow; . Theory constraint expression;
17: TCE ← TCE ∪ (BVS(X, K1, K2) ≤ HDHigh);
18: while HDLow ≥ 1 do
19: while (((XDI ,K1,K2,CC) ← SMT.Solve(SMTLC , TCE, TO)) = T ) do
20: Yf ← Corg(XDI);
21: DIVC = C(XDI ,K1,Yf ) ∧ C(XDI ,K2,Yf );
22: SCKVC = SCKVC ∧ DIVC ;
23: LC = LC ∧ CC
24: SMTLC = KDC ∧ SCKVC ∧ LC ;
25: if (HDLow ≤ HDR) then
26: if (Rcount == R) then
27: Break;

28: Rcount ++;

29: HDLow--;

30: Key ← SMT.Solve(SMTLC);
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Table 3.1: ISCAS-85 Benchmarks and their Characteristics.

Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552

# of Inputs 36 41 60 41 33 233 50 178 207
# of Outputs 7 32 26 32 25 140 22 123 108
# of Gates 120 162 320 506 603 872 1179 1726 2636

additionally if for HD of 1, the SMT solver can no longer find a satisfying assignment, the

SMT attack is terminated. A final call to SMT solver with the constructed satisfiability

module theory model generates the key.

3.7 Experimental Results

For evaluating different modes of SMT Attack, we used a farm of desktops with 4-core Intel

Core-i5 CPU, running at 1.8GHz, with 8 GB RAM. The operating system on desktops

was Ubuntu Server 16.04.3 LTS. For a fair comparison, and to reduce the impact of the

operating system background processes, we dedicated one desktop to each SMT solver at a

time. For benchmarking, we used most of ISCAS-85 benchmarks, characteristics of which

is listed in Table 4.7. Since MiniSAT has been used in the SMT Solver as its built-in SAT

solver, we use the default values of resource limits in MiniSAT as resource limits of the SMT

attack (68 years for the CPU time limit and ≈ 2147 TB for the memory usage limit). As the

baseline for comparing SMT attack performance against a pure SAT attack, we employed

the Lingeling-based SAT attack by [10]. In addition, for each attack we ran the solvers Five

times on SMT and SAT solvers [56] and reported the average runtime.

3.7.1 Evaluation of SMT reduced to SAT Attack

As explained in section 3.6.1, and explained by Alg. 10 the SMT solver could be used for

a SAT attack using the same formulation as the original SAT attack as proposed in [9,10].

In this section, we evaluate the performance of SMT attack when used in this mode. The

purpose of this sections is to illustrate that attack formulate using the SMT solver is a

superset of SAT attacks, and with the same formulation provides similar performance. For
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Table 3.2: Execution Time of SAT vs SMT (Attack Mode 1).

Circuit c2670 c3540 c5315 c7552

SAT SMT SAT SMT SAT SMT SAT SMT

#iter time #iter time #iter time #iter time #iter time #iter time #iter time #iter time

1% 3 0.102 5 0.474 10 0.513 8 1.31 9 0.405 10 0.441 11 0.577 19 0.806
5% 45 1.514 57 3.589 19 1.502 25 1.249 32 1.354 24 2.433 67 5.271 42 4.261
10% 312 14.08 342 15.752 36 1.782 36 2.973 59 3.798 57 4.881 97 15.82 94 15.67
25% 781 114.5 692 108.6 77 9.796 65 8.462 95 19.63 107 22.48 215 225.6 228 270.8
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Figure 3.11: Comparing the Performance of SMT-attack with that of original SAT-attack.

this comparison, we employed two obfuscation methods: (1) random XOR/XNOR inser-

tion (RLL) [7], and (2) obfuscation using nets with unbalanced probabilities (IOLTS’14 )

[57]. ISCAS-85 benchmarks are obfuscated using these schemes with obfuscation overhead

ranging from 1% to 25%.

Table 3.2 compares the execution time of SMT attack and the SAT attack proposed in

[9,10] when RLL obfuscation is deployed. As captured in this table, the execution time of the

SMT attack when reduced to SAT Attack is approximately equivalent, in terms of number

of iteration and execution time, with that of an original SAT attack across all benchmarks

and all ranges of obfuscation overhead. Fig. 3.11 illustrates the same comparison when the

IOLTS’14 obfuscation method is deployed. As illustrated, the SMT reduced to SAT, in

terms of performance, behaves similar to the SAT attack.

3.7.2 Evaluation of Eager SMT Attack

We used the Delay Logic Locking scheme [27] in our case study to show the extended

capabilities of the SMT attack in solving obfuscation problems that cannot be modeled in a
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Table 3.3: Execution Time of SMT Attack in the Eager Mode (Attack Mode 2).

Circuit c1908 c2670 c3540 c5315 c7552

1% 0.077 + 1.663 0.068 + 170.0 0.053 + 4.054 1.291 + 114.6 0.580 + 138.6
2% 0.016 + 1.919 0.221 + 175.6 0.200 + 5.001 1.535 + 144.6 1.808 + 185.5
3% 0.054 + 2.161 0.337 + 212.7 1.359 + 6.328 3.057 + 160.4 2.247 + 245.9
5% 0.075 + 2.810 0.495 + 248.4 1.553 + 8.325 3.891 + 256.9 7.812 + 353.3
10% 0.499 + 3.812 38.78 + 407.1 1.524 + 14.35 16.19 + 550.3 33.92 + 782.7
25% 8.951 + 21.71 112.4 + 972.5 9.459 + 92.42 60.30 + 1567 2920 + 5244

SMT execution time = x + y, x : The execution time of the SAT engine of the SMT Solver,

y : The execution time of the theory engine of the SMT Solver

SAT attack. The Eager approach of SMT attack is evaluated in this section, and the Lazy

approach is evaluated in the following section. Additionally, to increase the obfuscation

difficulty and demonstrate the strength of the SMT attack, in addition to obfuscation using

DLL, we obfuscated the circuit with additional MUX and XOR gates using gate insertion

policy in IOLTS’14 [57], such that 50% of the keys are used for DLL, and 50% for IOLTS’14

obfuscation. Finally, we used some of the keys for both logic and delay obfuscation to create

dependencies such that the solvers could not divide and conquer the attack.

The Eager attack against DLL was formulated in Alg. 11. As the algorithm suggests, the

Eager approach attacks the obfuscation in two separate phases. In the first phase, the theory

solver models and constrains the problem and calls the SMT solver to extract all valid key

combinations. The key combinations are converted into CNF statement, which is passed

to the SAT solver. In the second phase, the SAT solver attacks the circuit satisfiability

problems augmented with these additional CNF clauses on valid key combinations, and

make a new round of calls to the SMT solvers. As illustrated in Fig. 3.7(a), the invocation

of theory and SAT solver, and the overall SMT attack is serialized. Accordingly, in order to

reflect our experimental results for evaluating of Eager approach, we separate the execution

time of theory solver and that of the SAT solver.

Table 3.3 captures the results of Eager SMT attack for different ISCAS-85 benchmarks

with different obfuscation overhead. The theory execution time indicates the time required

by graph theory to find the all possible and valid key combinations (where only one of them

is valid). Similarly, SAT execution time demonstrates the time taken by SAT solver to find
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a valid key, given the additional theory solver generated constraining clauses. As illustrated

in this table, the SMT attack, in all cases is concluded and reported the correct key. The

result of the pure SAT attack is not reported, as it always produces the wrong key for being

oblivious to the DLL key values. Hence, the SMT solver in this respect extends the attack

capability by means of including various theory solvers.

Note that the execution time of the SAT solver (the x value in each column of reported

data in Table 3.3) depends on the (1) size of the circuit, and (2) the percentage of obfuscated

cells. Hence the circuit c7552, for being larger than c1908 has a longer SAT attack time

across all percentage obfuscation points. In addition, the increase in the SAT attack time

is only slightly super-linear (close to polynomial) with respect to increase in the degree of

obfuscation. On the other hand, the execution time of the theory solver (the y value in each

column of reported data in Table 3.3) depends on (1) the number of input, (2) the number

of outputs, and (3) the degree of obfuscation. Hence, a circuit with larger number of IOs has

a longer execution time for its theory solver, but the execution time is bounded by O(NM),

with M and N being the number of inputs and outputs respectively. This indicate that the

run-time of theory solver (unlike the MILP-based attack that was suggested in [27]) does

not exponentially increase with respect to number of timing paths in a netlist, as it only

depends on the number of IOs and not the total number of timing paths. In addition, as

illustrated, by increasing the degree of obfuscation, similar to SAT attack, the execution

time of theory solver grows slowly with a close to polynomial paste.

3.7.3 Evaluation of Lazy SMT Attack

The Lazy approach of SMT attack, as illustrated in Fig. 3.7(b), uses the SMT solve function

to simultaneously solve the theory and circuit SAT problem. In this approach, the theory

model is defined but is not solved. In many applications, the Lazy approach outperforms the

Eager solution. In addition, there are situations, where the Eager solution faces exponential

runtime if solved separately. As an instance, SRCLock [26] focus on posing exponential

runtime on pre-processor needed for detection of cycles, Hence, the Eager approach is not
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Table 3.4: Execution Time of SMT Attack in the Lazy Mode (Attack Mode 3).

Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552

1% 0.033 0.177 0.263 0.567 0.466 20.44 0.983 11.53 13.07
2% 0.049 0.262 0.325 0.676 0.596 21.86 3.443 11.76 17.83
3% 0.065 0.329 0.350 0.877 0.723 23.39 2.436 15.27 19.04
5% 0.049 0.340 0.517 1.085 1.456 28.87 2.587 38.87 45.96
10% 0.204 0.503 1.195 5.622 3.334 83.06 6.712 94.80 319.6
25% 0.599 1.481 2.036 297.2 95.67 2706 126.3 552.8 8045

Table 3.5: Comparing the AccSMT (Attack Mode 4) with the Original SAT Attack.

Circuit c2670 c3540 c5315 c7552

SAT AccSMT SAT AccSMT SAT AccSMT SAT AccSMT

#iter time #iter time #iter time #iter time #iter time #iter time #iter time #iter time

1% 3 0.102 2 0.316 10 0.513 3 0.185 9 0.405 2 0.163 11 0.577 3 0.374
5% 45 1.514 11 3.589 19 1.502 6 0.761 32 1.354 6 0.408 67 5.271 17 2.607
10% 312 14.08 26 5.817 36 1.782 11 1.236 59 3.798 12 1.753 97 15.82 19 4.721
25% 781 114.5 107 24.05 77 9.796 16 1.606 95 19.63 27 7.916 215 225.6 24 23.52

even applicable. However, the parallel invocation of the theory and SAT solver, and the

resulting literal exchange, and the additional constraints posed on the solver could result in

significant reduction in the time needed to explore the problem’s decision tree, and removes

the need to complete the pre-processing before starting the SAT attack. Hence, if the

execution time of theory solver poses a runtime beyond acceptable, the problem could only

be attacked by the Lazy SMT approach.

Table 3.4 shows the Lazy SMT attack execution time on ISCAS-85 benchmarks that

were obfuscated using the process that was explained in the previous section (mixing 50%

DLL+ 50% IOLTS). Considering the SAT and theory solver are invoked simultaneously,

we have a single execution for the entire SMT problem, and unlike Eager approach we

cannot separate the execution time of theory solver and the SAT solver. As illustrated,

in comparison with the Eager approach, in most cases the Lazy approach finds the key

obfuscation key in shorter time.

In the Lazy approach, the number of iterations decreases drastically compared to the

Eager approach. However, the execution time of each iteration increases. This is because

each DIP needs to satisfy both the theory constraints and the circuit SAT formulation.
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However, when a DIP is found, it is a stronger DIP with higher pruning power.

By comparing the results of Eager and Lazy approach of SMT attack in Table 3.3 and

Table 3.4 we observed that in majority of cases, the Lazy approach outperforms the Eager

approach. However, in some cases (e.g. for Benchmark C1908 with 50% overhead), the Lazy

approach may become slower than Eager approach, indicating that Lazy approach doesn’t

always result in the stronger attack. However, note that there exist a set of problems (such

as SRCLock [26]), that the Eager approach is not even applicable, since the pre-processing

alone (sole invocation of theory solver) cannot conclude in a reasonable amount of time,

leaving the Lazy approach as the only solution forward.

3.7.4 Evaluation of Lazy AccSMT Attack

Ability to find stronger DIPs: Before invoking the SMT or SAT attack, any key could

be considered as a potentially valid key. The strength of a DIP comes from its ability in

reducing the size of this set in each iteration. After finding each DIP, as illustrated in

Fig. 3.12, the size of potentially valid key set reduces. When reaching a complete set of

DIPs, any key left in this set is a correct key. As discussed in section 3.6.4, a stronger DIP

could sensitize a larger number of inconsistencies (due to application of a discriminating

input and two different keys) to the primary outputs. Hence, its natural for such a DIP to

have a higher pruning power in reducing the number of potentially valid keys. To evaluate

this claim, we profiled the number of potentially valid key after each iteration of SMT and

SAT attack, when working on the same obfuscation problem. Fig. 3.13 illustrates the key

reduction rate in three ISCAS-85 benchmarks obfuscated by RLL[7]. In all scenarios the

DIPs found by AccSMT solver are stronger, as the number of remaining keys is reduced

at a significantly higher rate. As illustrated, the number of iterations is also significantly

reduced because the complete set of DIPs, when the pruning power of DIPs is higher, is of

smaller size.
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Figure 3.12: Set of potentially valid keys reduces in each iteration of SMT or SAT attack.
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Figure 3.13: Key Reduction Rate of the Original SAT Attack and the AccSMT Attack.

Stronger and shorter attack:

The stronger DIPs found by the AccSMT attack, result in significant reduction of the

number of DIs needed for a complete discriminating input set. Each DI is found in one

iteration, Hence, smaller number of DIs indicates a smaller number of iterations. Table 3.5

compares the execution time and the number of iterations between the SAT solver and the

AccSMT solver. The ISCAS-85 benchmarks for this simulation are obfuscated using RLL

[7] obfuscation scheme with the overhead of 1% to 5%. As reported in this table, across

all attacks, the AccSMT attack is carried in a smaller number of iterations and requires

order(s) of magnitude smaller execution time.

Ability to carry approximate attack:

As described in section 3.6.4, the AccSMT attack is able to distinguish between SAT-

hard (SH) and high-corruption (HC) obfuscation. It quickly finds the correct keys for HC

obfuscation, detects the SH trap, exits, and reports the approximate key.
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Table 3.6: Execution Time and the Number of Iterations of AccSMT (Attack Mode 4).

Circuit c1908 c2670 c3540 c5315 c7552

#iter time #iter time #iter time #iter time #iter time

1% 7 0.512 16 3.075 8 1.304 3 0.384 7 2.905
5% 18 0.701 25 11.91 15 1.681 11 1.707 33 17.56
10% 31 4.085 51 26.47 21 3.779 35 7.402 61 44.07
25% 71 8.605 105 76.8 66 22.91 56 16.64 88 58.32

To evaluate the approximate mode of the AccSMT attack, we have obfuscated the

ISCAS-85 benchmarks using SARLock + IOLTS14 as suggested in [18]. The overall struc-

ture of the obfuscated circuit is illustrated in Fig. 3.10. In this hybrid obfuscation scheme,

the SARLock is the SH obfuscation, and the RLL is the HC obfuscation protocol. The

invocation of the original SAT attack in [10][9] results in a timeout, due to SARLock trap.

However, the AccSMT can very quickly find all the keys for HC obfuscation, detect the

SH trap, and report the approximate key. Table 3.6 depicts the number of iterations and

execution time of AccSMT attack for finding the approximate keys for each instance of the

obfuscated circuit under attack. Note that repetition count (R=20 in our case study) is

excluded from this table.

In this section, we introduce a class of Satisfiability Modulo Theory (SMT) attacks

on obfuscated circuits. The SMT attack benefits from the expressive nature of theory

solvers, that allow the attacker to express constraints that are difficult or even impossible

to express using CNF, including timing, delay, power, arithmetic, graph and many other

first-order theories. We first illustrated that a SAT attack could be easily implemented

using SMT solver to prove that SMT attack is a superset of the SAT attack. Then we

proposed two variants of SMT attack on obfuscated circuits using Eager and Lazy approach

of SMT solver. We illustrated that using the Eager and Lazy approach, we could break

the Delay Logic Locking [27] obfuscation that cannot be broken by a SAT attack, proving

that SMT attack’s capabilities go beyond a SAT attack. It shows that by only using non-

logical properties of a netlist for obfuscation, we not provably increase the security of an

obfuscated netlist, indicating the need for further study and exploration in this domain to

generate obfuscation schemes with provable security. Then we proposed the Accelerated
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SMT attack (AccSMT), and we illustrated that by using theory solvers (BitVector theory

solver in this work), we could significantly speed-up the attack against specific obfuscated

circuits, and reported significant reduction in the execution time of the AccSMT compared

to SAT attack. Finally, we illustrated that with a small modification, the AccSMT could

be used as an approximate attack, allowing us to find an approximate key for obfuscation

schemes that combine a SAT hard obfuscation with high corruption obfuscation.
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Chapter 4: COMA: Communication and Obfuscation

Management Architecture

In this work, we introduce a novel Communication and Obfuscation Management Architec-

ture (COMA) to handle the storage of the obfuscation key and to secure the communication

to/from untrusted yet obfuscated circuits. COMA addresses three challenges related to the

obfuscated circuits: First, it removes the need for the storage of the obfuscation unlock key at

the untrusted chip. Second, it implements a mechanism by which the key sent for unlocking

an obfuscated circuit changes after each activation (even for the same device), transforming

the key into a dynamically changing license. Third, it protects the communication to/from

the COMA protected device and additionally introduces two novel mechanisms for the ex-

change of data to/from COMA protected architectures: (1) a highly secure but slow double

encryption, which is used for exchange of key and sensitive data (2) a high-performance and

low-energy yet leaky encryption, secured by means of frequent key renewal. We demonstrate

that compared to state-of-the-art key management architectures, COMA reduces the area

overhead by 14%, while allowing additional features including unique chip authentication,

enabling activation as a service (for IoT devices), reducing the side channel threats on key

management architecture, and providing two new means of secure communication to/from

an untrusted chip.

4.1 Background

Active metering, Secure Split-Test, logic obfuscation, and solutions such as Ending Piracy

of Integrated Circuits (EPIC) have been proposed to protect ICs from supply chain-related

security threats by initializing the HW control to a locked state at power-up and hiding

the design intent [3, 7, 11, 12, 58–61]. Some of these techniques support single activation,
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while others support active metering mechanisms. Active metering techniques [3,12,58,60]

provide a mechanism for the IP owner to lock or unlock the IC remotely. In these solutions,

the locking mechanism is a function of a unique ID generated for each IC, possibly and

preferably by a Physical Unclonable Function (PUF) [28]. Only the IP owner knows the

transition table and can unlock the IC. Active metering, combined with a PUF, makes the

key a moving target from chip to chip. However, there exist a few issues with previous

metering techniques: first, the key(s) to unlock each IC remains static. Second, these

techniques unlock the chips before they are tested by the foundry. Hence, the IP owner

can control how many ICs enter the supply chain, but not how many properly tested ICs

exit the supply chain. Finally, these techniques do not respond well to the threat of the

foundry requesting more IDs by falsifying the yield to be lower during the test process.

Such shortcomings can potentially allow the foundry to ship more out-of-spec or defective

ICs to the supply chain.

Many of these shortcoming were addressed in FORTIS [62] shown in Fig. 4.1. In

FORTIS the registers that hold the obfuscation key are made a part of the scan chain,

allowing the foundry to carry structural test by assigning test values to these registers prior

to the activation of the IC. Authors of [62] argue that placing a DFT compression logic, not

only reduces the test size, but also prevents the readout of the individual register values.

After testing the IC, the obfuscation key is transferred and applied to unlock the circuit

using two types of cryptographic modules: a public-key crypto engine, and a One Time Pad

(OTP) crypto engine.

In FORTIS, the public and private keys are hardwired in the design. A TRNG is used

to generate a random number (m) that is treated as a message. This message is encrypted

using the private key of the chip to generate a signature sig(m). The actual message and

its signature are concatenated and later used as a mean for the authentication of the chip.

At the same time, the TRNG generates another random number KS . This random number

is used as the key for OTP, and at the same time is encrypted using the public key of

the designer to generate KDpub(KS). OTP uses KS for encrypting the (m, sig(m)), and
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Figure 4.1: FORTIS: Overall Architecture.

the output of OTP is concatenated with the KDpub(KS). The resulting string of bits is

transmitted to the SoC designer. The SoC designer uses a OTP to obtain m and sig(m) for

the purpose of authentication. She then uses the private key of the designer to recover KS .

Finally, KS is used by OTP to encrypt the chip unlock key (CUK). The encrypted CUK is

transmitted to the chip, decrypted using OTP, and applied to the obfuscation unlock key

registers to unlock the circuit.

FORTIS, however, suffers from several security issues including 1) using identical public

and private keys in all manufactured chips, and thus its inability for unique device authen-

tication, 2) being vulnerable to modeling attack in which the FORTIS structure is modeled

in software for requesting the CUK from SoC designer 3) being vulnerable to side channel

attacks on public-key encryption engine aimed at recovering the private key of the chip, 4)

being vulnerable to fault attacks in which the value of KS is fixated, 5) requiring a secure

memory for storage of the obfuscation unlock key, and 6) not addressing the mechanism

for generating a unique and truly random seed to initialize PRNG. After describing our

proposed solution, in section 4.6, we explain how these vulnerabilities are addressed in our

proposed solution.

Our proposed solution fits the category of active metering techniques. The key is neither

static nor stored in the untrusted chip. A key that is used to activate the IC at the test

time cannot be reused to activate the same or a different IC in the future. Hence, the test

facility is able to accomplish the test process using ATPG tools with a key which is valid for

structural/functional test and it is not valid for any subsequent activation. Additionally, the
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communication to/from IC is secured using a side-channel protected cryptographic engine,

combined with a dynamic switching and inversion structure that enhances the security of the

chip against invasive and side-channel attacks. We demonstrate that COMA provides two

useful means of secure communication to/from the untrusted chip, one for added security,

and one for supporting a higher throughput. The proposed architecture is a comprehensive

solution for the key management of the obfuscated IPs, where the challenges related to the

activation of the IC and secure communication to/from the IC are addressed at the same

time. However, as discussed earlier, it is not a universal solution and would fit within the

context of IoT-based solutions or within 2.5D package-integrated solutions, as this solution

requires constant connectivity.

4.2 Proposed COMA Architecture

The primary goal of the COMA is to remove the need for storing the obfuscation key (OK)

on an untrusted chip while securing the communication flow used for activation of the obfus-

cated circuit in the untrusted chip. The additional benefits of the proposed architecture are

the implementation of two new modes of 1) highly secure and 2) very high-speed encrypted

communication.

We propose two variants of the COMA architecture: The first variant is designed for

securing the activation of the obfuscated IP and communication to/from an untrusted IC

in 2.5D package-integrated architectures similar to the DARPA SPADE architecture [30]

(denoted by 2.5D-COMA). The second proposed architecture is designed for protecting IoT-

based or remotely activated/metered devices (denoted by R-COMA). Fig. 4.2 captures the

overall architecture of two variants of the proposed COMAs.

4.2.1 2.5D-COMA: Protecting 2.5D package integrated system solutions

The DARPA SPADE project [30] explores solutions in which an overall system is split

manufactured between two different technologies, In this solution, a trusted IC which is

constructed in an older yet secure technology is packaged with an IC fabricated in an
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Figure 4.2: Proposed COMAs for (left) 2.5D and (right) IoT-based/remote devices.

untrusted foundry in an advanced geometry. The purpose of this solution is to provide the

best of two worlds: the security of older yet trusted technology and the scalability, power,

and speed of the newer yet untrusted technology. The 2.5D-COMA is designed to work with

an architecture similar to the DARPA SPADE architecture. The proposed solution allows

an entire or partial IP in an untrusted chip to be obfuscated, while pushing the mechanism

for unlocking and secure activation of the untrusted chip out to a trusted chip. In this

solution, the trusted chip encapsulates the sensitive information, verifies the integrity of

the untrusted chip, performs sensitive logic monitoring, and controls the activation of the

untrusted chip. Also, the key to unlock the obfuscated circuit changes per activation, details

of which will be explained shortly.

As shown in Fig. 4.2, the two variants of COMA contain two main parts, the trusted

side (green) and the untrusted side (red). In both variants, the architectures of untrusted

chips are identical, and only the architectures of trusted sides are different. In 2.5D-COMA,

only the trusted chip is equipped with a secure memory. The secure memory stores the Ob-

fuscation Key (OK) and the Secret Key (SK) used for encrypted communication between
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the trusted and untrusted chips. The SK is generated using a PUF in the untrusted chip,

thus it is unique for each untrusted chip, and the untrusted chip does not need a secure

memory to store the SK. The Configurable Switching Network (CSN) and Reverse CSN

(RCSN) are logarithmic routing and switching networks. They are capable of permuting

the order and possibly inverting the logic levels of their primary inputs while these sig-

nals are being routed to different primary outputs. The RCSN is the exact inverse of the

CSN. Hence, passing a signal through CSN-RCSN (or RCSN-CSN) will recover the origi-

nal input. The switching and inversion behavior of CSN-RCSN is configured using a True

Random Number (TRN). This TRN is generated in the trusted chip to avoid any potential

weakening/manipulating of the TRNG. In addition, since the TRNG in COMA is equipped

with standard-statistical-tests applied post-fabrication, such as Repetition-Count test and

the Adaptive-Proportion test, as described in NIST SP 800-90B [63], any attempt at weak-

eningthe TRNG during regular operation (i.e. fault attack) can be detected by continuously

checking the output of a source of entropy for any signs of a significant decrease in entropy,

noise source failure, and hardware failure. By using TRN for the CSN-RCSN configuration,

any signal passing through the CSN is randomized, and then by passing through the RCSN

is recovered. Additional details are provided in section 4.3.1.

The untrusted chip unlock process in COMA is as follows: Prior to each activation,

the CSN and RCSN are configured with the same TRN. Since the SK is a PUF-based

key generated at the untrusted side, first the SK must be securely readout from untrusted

chip. This is done by deploying public key cryptography, the details of which are described

in section 4.3.4. Then, the trusted chip encrypts the TRN using the SK and sends it to

the untrusted chip. To perform an activation, as shown in Fig. 4.2, the OK is read in

segments, denoted as Partial Obfuscation Key (POK), and is passed through the CSN and

encryption on the trusted side and the decryption and RCSN on the untrusted side. This

process is repeated every time the obfuscated circuit in the untrusted chip is to be activated,

each time using a different TRN for configuring the CSN-RCSN. Usage of a different TRN

as the configuration input for the CSN-RCSN for each activation randomizes the input
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data to Secret key crypto engine. Hence, by using a different TRN for each activation,

the obfuscation key (after passing through CSN) is transformed into a one-time license,

denoted as Dynamic Activation License (DAL). Since the OK is read and sent in segments

(from trusted chip), the DAL will be received (at untrusted chip) in segments, denoted as

Dynamic Partial Obfuscation Key (DPOK), shown in Fig. 4.2, and is used as an input to

RCSN. Passing DPOKs through RCSN recovers the POKs, and concatenating the POKs

will generate the OK. Note that the DAL is only valid until the TRN is changed. So, the

DAL cannot be used to activate other chips or the same chip at a later time.

In 2.5D-COMA, the untrusted chip(s) is used as an accelerator, and for safety reasons

should not be able to directly communicate to the outside world. Hence, all communication

to/from the untrusted chip must go through the trusted chip. In addition, it is possible

that the computation, depending on the sensitivity of processed data, is divided between the

trusted and untrusted chips. Hence, there is a need for constant communication between

the trusted and untrusted chips. The communication needed is sometimes for limited but

highly sensitive data, and sometimes for vast amounts of less sensitive data. As illustrated

in Fig. 4.3, the proposed architecture is designed to provide two hybrid means of encrypted

communication : (1) Double-Cipher Communication (DCC) as ultra-secure communication,

and (2) Leaky-Cipher Communication (LCC) as ultra-fast communication mechanism.

Double-Cipher Communication (DCC)

As shown in Fig. 4.3(a), in DCC each message passes through both CSN-RCSN and

the secret key cryptography engine, where the TRN used in CSN-RCSN is renewed every

U cycles. DCC provides the ultimate protection against side-channel attacks. In DCC

mode, two necessary requirements for mounting a side channel attack are eliminated. The

side channel attack aims to break the cryptography system by analyzing the leaked side

channel information for different input patterns. Hence, (1) the degree of correlation between

the input and the leaked side-channel information, and (2) the intensity of side-channel
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Figure 4.3: Modes of Encrypted Communication in COMA: (a) DCC, (b) LCC.

variation, are important. In COMA, the attacker cannot control the input to the secret-

key cryptography. In addition, the input to the CSN is randomized using a TRN and

then passed to the secret-key cryptography, removing the correlation between leaked side

channel info (from secret-key cryptography) and the original input to the CSN. Additionally,

the secret-key cryptography engine is side-channel protected to pass a t-test [64]. So, the

intensity and variation in side-channel information is significantly reduced, making the DCC

an extremely difficult attack target.

Leaky-Cipher Communication (LCC)

LCC is a fast and energy efficient mode of communication between the trusted (or remote

device) and the untrusted chip. As illustrated in Fig. 4.3(b), in this protocol, the CSN-

RCSN pair is used for exchanging data. The secret key cryptography engine is used to

transmit a TRN from one chip to the other. Since the throughput of TRNG is the bottleneck

point compared to the performance of CSN-RCSN, the TRNG is used as a seed generator
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Figure 4.4: 2.5D-COMA Architecture.

to the PRNG (which offers higher performance) on both sides, Hence, in LCC mode, PRNG

is used to configure the CSN-RCSN to avoid any performance degradation on transmitting

data. For U consecutive cycles, the PRNG is kept idle allowing the CSN to use the same

PRNG output for U cycles. It not only reduces the power consumption of PRNG and

TRNG, it also provides faster communication in LCC mode. However, using this model of

communication is prone to algebraic and SAT attacks as each communicated message leaks

some information about the TRN used to configure the CSN-RCSN pair. If an attacker

can control the message and observe the output of the CSN, each communicated message

leaks some information about the key, reducing its security. Extracting the key from such

observations is possible by various attack models, including Satisfiability attacks. Hence,

an attacker with enough time and enough traces could extract the TRN and retrieve the

communicated messages. Preventing such attacks poses a minimum limit to U (the update

frequency of the PRNG). U should be small to prevent SAT and other trace-based learning

or analysis attacks, but large enough to be energy efficient. In Section 4.5, we deploy a SAT

attack against LCC and will further elaborate on the required TRN update frequency.

4.2.2 R-COMA: Protecting IoT devices

The R-COMA architecture in the untrusted chip is identical to that of 2.5D-COMA. How-

ever, the trusted chip is replaced with a remote key management service. The R-COMA

provides a mechanism for an IP owner to remotely activate parts or entire functionality of

the hardware. Similar to 2.5D-COMA, the DAL is different from chip to chip and from
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activation to activation. In R-COMA, the obfuscation unlock key is stored in a central

database, while the CSN, the TRNG for configuring CSN-RCSN, and the secret key cryp-

tography engine are implemented in software.

In R-COMA, an authentication server (AS) first securely receives the PUF-based SK

from the untrusted chip. Then, it generates a TRN and sends it to the untrusted chip for

RCSN configuration. Then, the AS starts sending the obfuscation key (OK). For the activa-

tion phase, the communication is double encrypted and authenticated using the CSN-RCSN

and side-channel protected cryptography engine. Each COMA-protected device needs to

be registered with the AS to receive the obfuscation key. The registration is done using

the PUF-ID of the untrusted chip. Hence, the PUF is used for both authentication and

generation of the secret key for communication. In R-COMA, the generation of DAL is

granted after PUF authentication, and is based on the generated TRN, and the stored OK,

which is generated at design time. The generation of DAL is algorithmic and takes linear

time.

4.3 Implementation Detail of COMA

Fig. 4.4 captures the overall architecture of COMA and relation and connectivity of its

macros. As discussed, COMA supports both key-management and secure data communi-

cation. Based on the selected mode of communication (LCC/DCC), the message passes

through {CSN → RCSN} or {CSN → encryption → decryption → RCSN}. RNG, which

contains both TRNG and PRNG, is used in both sides. In the trusted chip, RNG is used

for implementing side-channel protected cryptography engine, as well as generating the con-

figuration of the CSN-RCSN (TRN). In the untrusted side, it is used only for implementing

the side-channel protected cryptography engine. Finally, PUF is engaged in the untrusted

chip for both unique IC authentication and for generation of the secret key for encryption.

As shown in Fig. 4.4, all modules employ an AXI-stream interface to maximize the simplic-

ity of the overall design, and minimize the overhead incurred by the controller of the top

module in each side. The description of the behavior of each macro in COMA is provided
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Figure 4.5: Logarithmic Network (a) Omega-based Blocking, (b) near Non-blocking.

next.

4.3.1 Configurable Switching Network (CSN)

The CSN is a logarithmic routing network that could route the signals at its input pins to

its output pins while permuting their order and possibly inverting their logic levels based

on its configuration. Fig. 4.5(a) captures a simple implementation of an 8-by-8 CSN using

OMEGA [65] network. The network is constructed using routing elements, denoted as Re-

Routing Blocks (RRB). Each RRB is able to possibly invert and route each of the input

signals to each of its outputs. The number of RRBs needed to implement this simple CSN

for N inputs (N is a power of 2) is simply N/2 ∗ logN . Each CSN should be paired with an

RCSN. The RCSN, is simply constructed by flipping the input/output pins of RRB, and

treating the CSN input pins as its output pins and vice versa.

The OMEGA network along with many other networks of such nature (Butterfly, etc.)

are blocking networks [65], in which we cannot produce all permutations of input at the

network’s output pins. This limitation significantly reduces the ability of a CSN to ran-

domize its input. Also, we will show that a blocking CSN can be easily broken by a SAT

attack within few iterations.

Being a blocking or a non-blocking CSN depends on the number of stages in CSN.

Since no two paths in an RRB are allowed to use the same link to form a connection,
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for a specific number of RRB columns, only a limited number of permutations is feasible.

However, adding extra stages could transform a blocking CSN into a strictly non-blocking

CSN. Using a strictly non-blocking CSN not only improves the randomization of propa-

gated messages through the CSN, but also improves the resiliency of these networks against

possible SAT attacks for extraction of a TRN used as the key for a CSN-RCSN cipher.

A non-blocking logarithmic network could be represented using LOGn,m,p, where n is the

number of inlets/outlets, m is the number of extra stages, and p indicates the number of

copies vertically cascaded [66].

According to [66], to have a strictly non-blocking CSN for an arbitrary n, the smallest

feasible values of p and m impose very large area/power overhead. For instance, for n = 64,

the smallest feasible values, which make it strictly non-blocking, are m = 3 and p = 6,

which means there exists more than 5× as much overhead compared to a blocking CSN

with the same n, resulting in a significant increase in the area and delay overhead. To avoid

such large overhead, we employ a close to non-blocking CSN described in [66] to implement

the CSN-RCSN pair. This network is able to generate not all, but almost all permutations,

while it could be implemented using a LOGn,log2(n)−2,1 configuration, meaning it needs

log2(n) − 2 extra stages and no additional copy. Fig. 4.5(b), demonstrates an example

of such a close-to-non-blocking CSN with n = 8. In the results section, we demonstrate

that using these close-to-non-blocking CSNs enhances the resiliency of a CSN against SAT

attack, even in small sizes of CSNs with significantly lower power, performance and area

(PPA) overhead.

4.3.2 Authenticated Encryption with Associated Data

The Authenticated Encryption with Associated Data (AEAD) is used in the DCC mode

for communicating messages, and in the LCC mode for the initial transmission of the CSN-

RCSN key (TRN). Authenticated ciphers incorporate the functionality of confidentiality,

integrity, and authentication. The input of an authenticated cipher includes Message, As-

sociated Data (AD), Public Message Number (NPUB), and a secret key. The ciphertext is
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generated as a function of these inputs. A Tag, which depends on all inputs, is generated

after message encryption to assure the integrity and authenticity of the transaction. This

tag is then verified after the decryption process. The choice of AEAD could significantly

affect the area overhead of the solution, the speed of encrypted communication, and the

extra power consumption. To show the performance, power, and area trade-offs, we employ

two AEAD solutions: a NIST compliant solution (AES-GCM), and a promising lightweight

solution (ACORN).

AES-GCM is the current National Institute of Standards and Technology (NIST) stan-

dard for authenticated encryption and decryption as defined in [67]. ACORN is one of

two finalists of the Competition for Authenticated Encryption: Security, Applicability, and

Robustness (CAESAR), in the category of lightweight authenticated ciphers, as defined in

[68]. An 8-bit side-channel protected version of AES-GCM and a 1-bit side-channel pro-

tected version of ACORN are implemented as described in [69]. Both implementations

comply with lightweight version of the CAESAR HW API [70].

Our methodology for side channel resistant is threshold implementation (TI), which

has wide acceptance as a provably secure Differential Power Analysis (DPA) countermea-

sure [71]. In TI, sensitive data is separated into shares and the computations are performed

on these shares independently. TI must satisfy three properties: 1) Non-completeness: Each

share must lack at least one piece of sensitive data, 2) Correctness: The final recombination

of the result must be correct, and 3) Uniformity: An output distribution should match

the input distribution. To ensure uniformity, we refresh TI shares after non-linear trans-

formations using randomness. We use a hybrid 2-share/3-share approach, where all linear

transformations in each cipher are protected using two shares, which are expanded to three

shares only for non-linear transformations.

To verify the resistance against DPA, we employ the Test Vector Leakage Assessment

methodology in [64]. We leverage a ”fixed versus random” non-specific t-test, in which we

randomly interleave first fixed test vectors and then randomly-generated test vectors, leading

to two sequences with the same length but different values. Using means and variances of
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power consumption for our fixed and random sequences, we compute a figure of merit t.

If |t| > 4.5, we reason that we can distinguish between the two populations and that our

design is leaking information. The protected AES-GCM design has a 5-stage pipeline and

encrypts one 128-bit input block in 205 cycles. This requires 40 bits of randomness per

cycle. In ACORN-1, there are ten 1-bit TI-protected AND-gate modules, which consume

a total of 20 random reshare, and 10 random refresh bits per state update. In a two-cycle

architecture, 15 random bits are required per clock cycle.

4.3.3 Random Number Generator (RNG)

An RNG unit is required on both sides to generate random bits for side channel protection

of AEAD units, a random public message number (NPUB) for AEAD, and TRNs for CSN-

RCSN. We adopted the ERO TRNG core described in [72], which is capable of generating

only 1-bit of random data per over 20,000 clock cycles. In our TI implementations, AES-

GCM needs 40 and ACORN 15 bits of random data per cycle. So, we employed a hybrid

RNG unit combining the ERO TRNG with a Pseudo Random Number Generator (PRNG).

TRNG output is used as a 128-bit seed to PRNG. The PRNG generates random numbers

needed by other components. The reseeding is performed only once per activation.

The choice of PRNG depends on the expected performance and overhead. To support

COMA, we adopted two different implementations of PRNG: (1) AES-CTR PRNG, which

is based on AES, is compliant with the NIST standard SP 800-90A, and generates 12.8 bits

per cycle. (2) Trivium based PRNG, which is based on the Trivium stream cipher described

in [73]. The Trivium-based PRNG is significantly smaller in terms of area and much faster

than AES-CTR PRNG. It can generate 64 bits of random data per cycle, however, it is not

compliant with the NIST standard.

4.3.4 PUF and Secure PUF Readout

The response of the PUF to a challenge selected randomly by Enrollment Authority (SoC

designer) is used as the secret key in AEAD. Hence, the readout of the PUF-response
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should be protected. The simplest solution for the safe readout of a PUF-generated key is

to enable the readout by burning one set of fuses, and disabling it by burning a second set

of fuses. However, this solution, especially when combined with a weak PUF, is not likely

to be resistant against the untrusted foundry, which may possibly burn the first set of fuses,

read out PUF key, and then repair fuses before releasing the chip. To avoid this problem,

we implement a lightweight one-sided public key cryptography (encryption only) based on

Elliptic-Curve Cryptography (ECC). Considering the PUF readout is a one-time event, the

performance of the public-key cryptography engine is not critical.

In order to prevent any attempts at fully characterizing a PUF in the untrusted foundry,

only strong PUFs, e.g. an arbiter PUF, are considered. The secure readout of the PUF key is

allowed only at the device enrollment time, in the secure facility. During the secure readout,

the strong PUF is fed with multiple challenges selected by the Enrollment Authority. The

corresponding PUF responses are encrypted by the untrusted chip using the public key

of the Enrollment Authority, that is embedded in the chip layout or stored in the one-

time programmable memory. Only the Enrollment Authority has access to the decrypted

responses. Afterwords, one of the previously applied challenges is randomly selected and

used for the generation of the secret key. This challenge is then hardwired on the untrusted

chip, and the PUF response to that challenge is recorded by the Enrollment Authority. This

PUF response is then stored in the secure memory of the trusted chip in 2.5D-COMA, or

in the secure cloud directory in R-COMA. This process makes each PUF key unique to a

given device, and resistant against any unauthorized readout by the untrusted foundry.

Still, additional precautions must be taken to protect this scheme against an attack

aimed at replacing a real PUF by a pseudo-PUF, generating randomly looking responses

that can be easily calculated by an attacker. An example of such a pseudo-PUF may be a

lightweight symmetric-key cipher, with a fixed key known to the untrusted party, encrypting

each challenge and outputing a ciphertext as the PUF response.

Such pseudo-PUF should be treated as a Trojan and detected by Enrollment Author-

ity using the best known anti-Trojan techniques, e.g., those based on the measurement
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and analysis of the power consumption during the operation of the device [74]. Additional

methods may be used to differentiate the outputs of a strong PUF from encrypted data,

e.g., using known correlations between the PUF responses corresponding to closely-related

challenges, such as challenges differing on only one bit position, or being mutual comple-

ments of each other [75]. These kinds of PUF-health tests may be specific to a particular

strong PUF type, e.g., to an arbiter PUF, and will be the subject of our future work.

4.4 COMA Resistance against various Attacks

4.4.1 Assumed Attacker Capabilities

Different sources of vulnerability are considered in this section to demonstrate the COMA

security. The attacker can be an adversary in the manufacturing supply chain, and has

access to either the reverse engineered or design house-generated netlist of the COMA-

protected untrusted chip. The attacker can purchase an activated COMA-protected IC

from the market. The attacker can monitor the side channel information of chips at or post

activation. The attacker can observe the communication between untrusted and trusted (or

remote manager) chips and could also alter the communicated data. An Attack objective

may be (1) extracting the obfuscation key (OK), (2) illegal activation of the obfuscated

circuit without extracting the key, (3) extracting the long-term secret key (SK), (4) ex-

tracting short-term CSN keys (TRNs), (5) eavesdropping on messages exchanged between

the untrusted chip and the external sources, (6) removing the COMA protection, or (7)

COMA-protected IC overproduction.

Side Channel Attack (SCA)

The objective of SCA on COMA is to extract either the secret key (SK) used by AEAD

or the TRN used by CSN. Extracting a SK is sufficient to break the obfuscation; extracting

a TRN reveals only messages sent in the LCC mode.

DCC significantly increases the SCA difficulty, since (1) the AEAD is side-channel pro-

tected, and (2) the attacker loses access to the input of AEAD. Fig. 4.6 captures our
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Figure 4.6: The t-test Results for Pr and UnPr version of AES-GCM and ACORN.

assessment of side channel resistance of AEAD using a t-test for unprotected and protected

implementations of AES-GCM and ACORN [76]. As illustrated, both implementations pass

the t-test, indicating increased resistance against SCA. On the other hand, the inability to

control the input to AEAD comes from the COMA requirement of encryption in the DCC

mode where a message first passes through the CSN. Hence, there exists no relation between

the power consumption of the AEAD and the original input due to CSN randomization.

CSN power consumption is also randomized as it is a function of n inputs (possibly known

to the attacker) and 3n× (log2n− 1) TRN inputs unknown to the attacker, while the TRN
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is repeatedly updated based on the value of U . Note that during the physical design of

COMA, the side channel information on power and voltage noise (IR drop) could be further

mitigated using timing aware IR analysis [77], and voltage noise aware clock distribution

techniques [78,79].

The LCC mode is prone to side-channel, algebraic, and SAT attacks aimed at extracting

the TRN. However, the attack must be carried out in a limited time while the TRN of the

CSN/RCSN is unchanged. As soon as the TRN is renewed, the previous side-channel

traces or SAT iterations are useless. The period of TRN updates (U) introduces a trade-off

between energy and security and can be pushed to maximum security by changing the TRN

for every new input. In section 4.5.3 we investigate the time required to break the LCC

using side-channel or SAT attack and accordingly define a safe range for U to prevent such

attacks.

4.4.2 Reverse Engineering

In COMA, reverse engineering (RE) to extract the secret key from layout is useless as the

secret key is not hardwired in the design and is generated based on PUF. RE to extract

the key from memory in an untrusted chip is no longer an option as the key is not stored

in the untrusted chip. RE to extract the key from the trusted chip’s memory is limited by

the difficulty of tampering with secure memory in the trusted technology.

4.4.3 Algebraic Attacks

Algebraic attacks involve (a) expressing the cipher operations as a system of equations,

(b) substituting in known data for some variables, and (c) solving for the key. AES-GCM

and ACORN have been demonstrated to be resistant against all known types of algebraic

attacks, including linear cryptanalysis. Therefore, in the absence of any new attacks, the

DCC mode is resistant against algebraic attacks. Using CSN and RCSN for fast encryption

is new and requires more analysis. CSN can be expressed as an affine function of the data

input x, of the form y = A ·x+ b, where A is an n×n matrix and b is an n× 1 vector, with

78



all elements dependent on the input TRN. Although recovering A and b is not equivalent

to finding the TRN, it may enable the successful decryption of all blocks encrypted using a

given TRN. We protect against this threat in two ways: (1) The number of blocks encrypted

using a given TRN is set to the value smaller than n, which prevents generating and solving

a system of linear equations with A and b treated as unknowns, (2) We partially modify

the TRN input of CSN with each block encryption (by a simply shifting the input TRN

bits), so the values of A and b are not the same in any two encryptions, without the need

of feeding CSN with two completely different TRN values.

4.4.4 Counterfeiting and Overproduction

COMA can be used to prevent the resale of used ICs, usage of illegal copies, and reproduction

of a design. During packaging and testing, each COMA protected IC is first tested and then

is matched with a trusted chip. So, the untrusted chip can only be activated by the matched

trusted chip or the registered remote manager. Building illegal copies that work without the

secure chip (or remote activation) and reproduction of the design requires successful RE.

Blind reproduction is useless as its activation requires a matching trusted chip or passing

PUF authentication of a remote manager. By receiving one or more DALs for testing,

the manufacturer cannot activate additional IPs as the DAL changes from activation to

activation.

4.4.5 Removal attacks

Removal of the TRNG fixates the DAL and breaks the LCC mode. In DCC mode, it

gives an attacker control over the input to the AEAD, increasing the chances of SCA on

the cryptography engine. NIST standard SP 800-90B [63] dictates that continuous health

testing must be performed on the TRNG. These tests include repetition counting to detect

catastrophic failure and adaptive proportion testing to detect loss of entropy. Removal of

the TRNG would be detected as this would result in insufficient entropy to satisfy the health

test, assuming the test is implemented on the trusted chip. Removal of COMA architectural
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modules makes the chip non-functional as COMA is not a wrapper architecture, but a

fused one. Complete removal of COMA requires successful RE. Removing the PUF can be

made challenging by using a strong PUF, with a large number of challenge-response pairs.

Replacing such a PUF with a deterministic function is challenging as such functions are

likely to have a substantially different area and power, making them detectable.

Table 4.1: Main features of the two proposed COMA variants.

Feature COMA1 COMA2

AEAD AES-GCM ACORN
PRNG AES-CTR Trivium
BUS Width 8 8
Pins used for Communication 8 8
CSN-RCSN Size 64 64
Trusted Memory 4 Kbits 4 Kbits
Cfix: initialization overhead (cycles) 10,492 20,452
Cbyte: cycles needed for encrypting each byte 72 17
PRNGperf : Throughput of generating PRN 128bit/10cycles 64bit/cycle

4.5 COMA Implementation Results

For evaluation, all designs have been implemented in VHDL and synthesized for both FPGA

and ASIC. For ASIC implementation we used Synopsys generic 32nm educational libraries.

For FPGA verification, we targeted a small FPGA board, Digilent Nexys-4 DDR with Xilinx

Artix-7 (XC7A100T-1CSG324).

4.5.1 COMA Area Overhead

We implemented two variants of COMA architecture: a NIST compliant solution (denoted

by COMA1) and a lightweight solution (denoted by COMA2). The AEAD and PRNG in

COMA1 is based on AES-GCM and AES-CTR respectively. The COMA2 is implemented

by using ACORN for AEAD and Trivium for PRNG, The details of these two variants are

summarized in Table 4.1. The breakdown of area (in terms of Slices, LUTs, and FFs) for

these solutions for an FPGA implementation in Xilinx Artix-7 is reported in Table 4.2.
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Table 4.2: Resource Utilization of the COMA Architecture.

Name AES-GCM+AES-CTR ACORN+Trivium

Slice LUT FF Slice LUT FF

TRUSTED

AEAD EXT 1,336 3,804 4,432 333 1,067 591
RNG 712 2,226 618 215 601 450
CSN 257 540 739 257 540 739
Others 149 345 144 149 345 144

UNTRUSTED

AEAD EXT 1,336 3,804 4,432 333 1,067 591
RNG 738 2,352 628 241 683 460
RCSN 252 607 737 252 607 737
ECC 563 1569 1161 563 1569 1161
PUF [80] 177 — — 177 — —
Others 209 359 257 209 359 257

On Xilinx Artix-7 (XC7A100T-1CSG324) FPGA.

The breakdown of area (in terms of Cells and um2), critical path, and power consumption

for an ASIC implementation is reported in Table 4.3. Note that the 2.5D-COMA needs

both the trusted and untrusted parts of the architecture, while the R-COMA only requires

the untrusted part. Table 4.4 reports optimized area and frequency results on FPGA for

top-level of trusted and untrusted sides. As illustrated, the total area of lightweight solution

is around 1/3 of the NIST-compliant solution. The reported numbers in Table 4.2 include

the overhead of all sub-modules including AEAD, CSN-RCSN, RNG, ECC, etc. Due to the

optimization on the boundaries among the units, resource utilization in Tables 4.4 is less

than the sum of row values in Table 4.2.

4.5.2 COMA Performance

Fig. 4.7 compares the performance of two solutions in DCC and LCC mode. As illustrated,

for small data sizes, the COMA1 outperforms the COMA2 solution. However, as the size

of data increases, the COMA2 outperforms the COMA1 solution. It is due to the fact that

stream ciphers such as ACORN have a long initialization phase, making them inefficient for
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Table 4.3: Resource Utilization for ASIC implementation of COMA.

Name AES-GCM+AES-CTR ACORN+Trivium

Cells Areaum2 Tclkns PowermW Cells Areaum2 Tclkns PowermW

COMA 25338 0.11 1.97 1.62 8681 0.046 1.18 0.84

. RNG 5684 0.025 1.43 0.431 1267 0.007 0.27 0.144

. CSN/RCSN 1749 0.008 0.08 0.11 1749 0.008 0.08 0.11

. AEAD 13675 0.061 1.67 0.704 2257 0.013 0.97 0.251

. ECC 3278 0.016 1.34 0.321 3278 0.016 1.34 0.321

Using Synopsys generic 32nm libraries.

Table 4.4: Optimized results of COMA Architecture.

Name AES-GCM+AES-CTR ACORN+Trivium

Slice LUT FF Freq[MHz] Slice LUT FF Freq[MHz]

Trusted 2,297 7,094 5,892 103 1,030 2,901 1,924 121

Untrusted 2,818 8,781 7,169 109 1451 4,182 3,156 120

On Xilinx Artix-7 (XC7A100T-1CSG324) FPGA.

small data size. In addition, our AES-GCM implementation benefits from an 8-bit datapath,

but the ACORN is realized by a 1-bit serial implementation. The total latency in terms

of the number of clock cycles for COMA1 and COMA2 implementations can be calculated

using equation (4.1), in which the number of cycles for the initialization and finalization is

fixed and is given in Table 4.1. The Cbyte is the number of cycles needed for encrypting each

input message byte, which is 17 and 72 for COMA2 and COMA1, respectively. Hence, in

spite of longer initialization, the COMA2 outperforms the COMA1 for message sizes larger

than 128 Bytes.

Tcomm = Cfix +Messagesize × Cbyte (4.1)
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4.5.3 COMA performance in LCC mode

In the LCC mode, the AEAD is used to synchronize the initial seed of the PRNG, while the

CSN is used for encrypting data. The random (TRN) configuration key for the CSN-RCSN

is generated by PRNG, which is updated after transferring every U messages. In COMA,

the PRNG has a limited buffer size, and as soon as the buffer is filled with random data, the

PRNG stops producing additional bits. The consumption of TRNG output is synchronized

(every U messages) and the generation of random inputs is limited to the size of buffer.

Hence, the PRNGs in the trusted and untrusted sides are always in sync. The number

of cycles it takes to initialize the LCC mode includes the time to initialize the secret key

engine (Cfix), the encryption and transfer and decryption of PRNG seed (CENC), and the

time for the PRNG to generate enough output from a newly received TRN (CPRNG):

CLCC−init = Cfix + CENC + CPRNG (4.2)

Depending on the AEAD used for transferring the original seed, the Cfix is obtained

from Table 4.1. The seed size in our implementation is 16 Bytes, hence the CENC is simply

Cbytes × 16, and the CPRNG is:
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Table 4.5: SAT Execution Time on Blocking CSN and a Close to Non-blocking CSN .

CSN Size 4 8 16 32 64 128 256 512

Mode blk non-blk blk non-blk blk non-blk blk non-blk blk non-blk blk non-blk blk non-blk blk non-blk

SAT Iterations 6 14 7 18 8 25 12 31 14 TO 24 TO 25 TO TO TO
SAT Exe. Time (s) 0.01 0.01 0.03 0.15 0.2 2.35 0.8 79.18 5.9 TO 130.5 TO 1136.2 TO TO TO

TO: Timeout = 2× 106 seconds; The SAT attack is carried on a Dell PowerEdge R620 equipped with Intel Xeon
E5-2670 2.6 GHz and 64GB of RAM.

CPRNG =
Bitsneeded
PRNGperf

=
3n× (log2n− 1)

PRNGperf
(4.3)

Finally, after initialization, and by using a CSN of size n when the bus width of COMA

is BW , the number of cycles to encrypt and transfer one byte of information is:

CLLC
byte =

8

n
× (

n

BW
+ 1) (4.4)

Using a 64-bit CSN and BW of 8 bits, the CLLC
byte = 9/8. Compared to CDCC

byte for the

COMA1 (CDCC
byte =72), and for the COMA2 (CDCC

byte =17), the LCC mode is at least an order

of magnitude faster. Fig. 4.7 compares the superior performance of LCC mode compare

with DCC mode in both COMA variants.

Frequency of TRN updates in LCC mode

The frequency of TRN update (U) for LCC is an important design feature. A large U

reduces energy as PRNG/TRNG is kept idle for U −P cycles. P is the number of required

cycles to refill the PRNG buffer after a TRN read. However, when the TRN is fixated

for a long duration of time, the possibility of a successful side-channel, algebraic, or SAT

attack on the CSN increases. The minimum number of messages required for an algebraic

attack (even if such attack is possible) is n, which is the CSN input size. Our experiments

show that a SAT attack could recover the key with an even smaller number of inputs.

Knowing the number of encryptions/decryptions needed by such attacks, we can set the U

to a safe value smaller than the number of required messages to make it resistant against

these attacks. So, the value of U should be between P ≤ U ≤ n.
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Figure 4.8: Energy Breakdown in COMA.

The SAT attack against CSN is implemented similar to [10]. In this attack the CSN

gate-level netlist and an activated chip is available to the attacker, while the attacker aims

to extract the CSN-RCSN configuration signals. Table 4.5 captures the results of the SAT

attack against blocking and near non-blocking CSNs. As illustrated, the time to break

a near non-blocking CSN is significantly larger. In each iteration SAT test one carefully

selected input message. Hence, if the U is kept smaller than the number of required SAT

iterations, the SAT attack could not be completed.

Energy saving in LCC mode

As illustrated in Fig. 4.9(a), in the LCC mode, the TRN is updated every U cycles. U

is determined based on the fastest attack on CSN-RCSN pair, which is the SAT attack.

After each TRN update, the PRNG takes P cycles to refill its buffer. Note that P cycles

required for PRNG could be stacked at the beginning of U cycles, or distributed over U

cycles depending on the size of PRNG buffer. As long as the TRN completely changes

every U cycle, the possibility of attack is eliminated. Hence in each U cycles, for P cycles

the PRNG/TRNG and CSN are active, and for U − P cycles, the PRNG is clock gated,

and only CSN is active. In both cases, the AEAD is active only for the initial exchange of
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Table 4.6: COMA vs. FORTIS.

Scheme Key Management Data Comm Private Key SC Protected Session Key Activation Need to TPM RNG

FORTIS Constant 7* Embedded (known to the fab) 7 Vulnerable to Fault Attack Once at Untrusted PRNG
COMA PUF-based Unique X+ No private key at untrusted X Secure per Demand at Trusted TRNG

*: Not Implemented, but Naturally available using OTP. Limited Performance Due to Lightweight RSA
+: Available in Two Variant: DCC (Fully Secure and Limited Performance) and LCC (Leaky yet Secure and High Performance).

Table 4.7: Area Overhead of COMA vs. FORTIS.

Design Gate Count FORTIS/Design COMA1/Design COMA2/Design

b19 40,789 24.52% 62.1% 21.28%

VGA LCD 43,346 23.07% 58.45% 20.02%

Leon3MP 253,050 3.95% 10.01% 3.43%

SPARC 836,865 1.19% 3.02% 1.03%

Virtex-7 2M 0.5% 1.26% 0.43%

PRNG seed, allowing us to express the power consumption of the LCC mode as:

ELLC = CPRNG × PH +
(
U(

n

BW
+ 1)− CPRNG

)
× PL (4.5)

Obviously, the number of required cycles to refill the PRNG buffer after TRN read (P )

affects energy consumption and communication throughput. If P < U , as illustrated in Fig.

4.9(a), for U −P cycles the PRNG is kept idle (power-gated). However, if P > U , as shown

in Fig. 4.9(b), the communication should be stopped for P −U cycles till the next TRN is

ready and to resist SAT or algebraic attacks.

The energy consumption of LCC mode for COMA architectures constructed using NIST-

compliant and lightweight solution when transmitting different size of messages is captured

in Fig. 4.8. As illustrated, the LCC mode, for having to synchronize the two sides using

a TRNG seed, is burdened with the initialization cost of AEAD. However, when the CSN-

RCSN and PRNG are setup, the energy consumed for exchanging additional messages grow

at a much lower rate compare to DCC mode (which is dominated by AEAD and PRNG

power consumption as reported in table 4.3).
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Figure 4.9: The Power Consumption at LCC mode: (a) While P < U , (b) While P > U .

4.6 Comparing COMA with Prior Work

To the best of our knowledge, FORTIS [62] is the only comprehensive key-management

scheme that was previously proposed. Table 4.6 compares our proposed solution against

FORTIS. COMA addresses several shortcomings of the FORTIS:

1) In FORTIS, all chips use identical keys, hence there is no mean of differentiating

between chips. In COMA each chip has a unique key generated by PUF. 2) In COMA,

secret key for communication and authentication is generated by PUF, when FORTIS relies

on embedding the private key and public key in GDSII. So, the private key in FORTIS will

be known to the fabrication posing the risk that the entire process of activation could be

faked in software. In COMA, such attack is prevented as secret key is generated by PUF and

is securely read out using public key cryptography. 3) In FORTIS, the usage of the private
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key for chip authentication is vulnerable to SCA. In COMA, the secret-key cryptography

is side channel protected, and the public-key encryption is only used once, making COMA

secure against SCA. 4) In FORTIS, there is also the possibility of deploying a fault attack

by fixing the value of session key Ks. In COMA, the same attack would require fixing the

PUF output or replacing the PUF with a known function. This however could be tested

by reading out the output of the PUF using multiple challenges and performing statistical

test on the PUF response (PUF health check). 5) In FORTIS, the activation is done once,

hence there is a need to store the obfuscation key in the untrusted chip. In COMA, the

need to store the obfuscation key in untrusted chip is removed. In R-COMA, the activation

takes place on demand, and the key is removed after power down or reset. In 2.5D-COMA,

the activation key is stored in a trusted chip. 6) COMA provides two new mechanisms for

communication: a) the DCC mode for added security, and b) the LCC mode for high-speed

communication. 7) COMA uses a TRNG to produce the seed for PRNG, while FORTIS

uses a PRNG without addressing a random source for its seed.

In terms of area overhead, FORTIS [62] provides an estimate for the incurred overhead

of their solution, which is around 10K gates. As shown in Table 4.3, the numbers of cells

for implementing the NIST-compliant (COMA1) implementation is 25.4K gates, while the

lightweigh solution (COMA2) is implemented using 8.7K gates. Table 4.7 compares the area

overhead of FORTIS against COMA1 and COMA2, when these architectures are deployed

to protect a few mid- and large-size benchmarks. Using COMA2, which improves the

overhead by 14% compared to FORTIS, requires between 0.43% and 21.3% of circuit area

in selected benchmarks.

In this section we presented COMA, an architecture for obfuscation-key management

and metered activation of an obfuscated IC that is manufactured in an untrusted foundry,

while securing its communication. The proposed solution removes the need to store the

key in the untrusted chip, makes the obfuscation unlock-key a moving target, allows unique

identification of the protected IC, and secures the communication to/from the protected

chip using two hybrid cryptographic schemes for ultra-high-speed and ultra-security. Our
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experimental results show that compared to the state-of-the-art key management architec-

ture, FORTIS, COMA is able to reduce the area overhead by 14%, while addressing many

of the shortcomings of the previous work.
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