
Unit 6 (v2) - 1 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Graphical Models
for Inference

and Decision Making

Instructor: Kathryn Blackmond Laskey
Spring 2019

Unit 6: Inference in Graphical Models:
Other Algorithms

Unit 6 (v2) - 2 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Learning Objectives

• Describe the major categories of exact inference algorithms and
their strengths and weaknesses

• Describe basics of bucket elimination algorithm
• Describe the underlying idea behind Monte Carlo approximation
• Describe how the major Monte Carlo inference algorithms work
• Implement likelihood weighting inference (fixed network, fixed

query) in a computing environment with programming and/or
macro capability and random number generator

– Generate the sample
– Generating the estimate from the sample

• Implement Gibbs sampling inference (fixed network, fixed
query) in a computing environment with programming and/or
macro capability and random number generator

– Generate the sample
– Generate the estimate from the sample

• Describe what a variational approximation is and how
variational methods work

Unit 6 (v2) - 3 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

All these algorithms can be used to solve the canonical inference
problem: find the posterior probability distribution for some

variable(s) given exact or virtual evidence about other variable(s)

Taxonomy of Graphical Model Inference Algorithms

• Exact graph theoretic
– Pearl's tree algorithm and its modifications
– Junction tree algorithm
– Influence diagram reduction

• Exact factorization based
– Symbolic probabilistic inference
– Bucket elimination

• Approximate (deterministic)
– Loopy belief propagation
– Variational approximation
– Various special case approaches

• Approximate (Monte Carlo)
– Monte Carlo simulation

• Lifted inference in relational models

Unit 6 (v2) - 4 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Unit 6 Outline

• Exact Algorithms

• Monte Carlo Approximation Algorithms

• Deterministic Approximation Algorithms

• Inference in Relational Models

Unit 6 (v2) - 5 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

• We have treated inference as a problem of message passing
along links in a graph

• Algebraic algorithms view inference as a problem of efficient
factorization of a complex expression

• A simple example:
– Goal: compute P(C)
– Method 1:

»

» #A ´ #B ´ 2 multiplications and #A ´ #B - 1 additions for each P(ci)
– Method 2: Eliminate B and then eliminate A

»

» #A ´ (#B + 1) multiplications and (#A-1) ´ (#B-1) additions for each P(ci)
– Method 2 saves computation, especially as #A and #B get large

€

P(ci) = P(ci | aj ,bk)
k
∑

j
∑ P(aj)P(bk)

€

P(ci) = P(aj) P(ci | aj ,bk)
k
∑

j
∑ P(bk)

Inference as Factor Manipulation

Unit 6 (v2) - 6 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Symbolic Probabilistic Inference:
Inference as Factor Manipulation

• Compile network into a factorization tree.
– The tree represents a way of factorizing the joint distribution
– Nodes of the factorization tree are nodes in the Bayesian network

– There are many possible trees but some are more efficient for specific queries

– Tree construction algorithm is heuristic

• Query P(U | V) processing:
– Query is received at root node

– When a node receives a query, it:
» decomposes it into queries to send to nodes below in the graph
» waits for responses from below

» reaggregates responses (summing out variables that can be summed out) and
reports result

• Features of SPI algorithm:
– Query processing is designed so that multiplications are brought outside of

sums whenever possible (eliminate variables before combining factors)
– Algorithm does only computations needed to process particular query

– Efficient implementations cache results so that they can be reused

Unit 6 (v2) - 7 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Search Tree and Factorization

This tree corresponds to combining the factors in the following order:

A

B

D

C

E

H

F

G

Trip to Asia

Tuberculosis

Lung
cancer

Smoking

Positive
chest X-ray

BronchitisTuberculosis or
Lung cancer

Dyspnea (shortness
of breath)

C

B

A D

E

F

G

H

P(C|B,E)

P(B|A)

P(A) P(D|C)

P(E|F)

P(F)

P(G|F)

P(H|C,G)

Bayesian Network

Factoring Tree

€

P(C | B,E) P(B | A) P(A)P(D | C)()() P(E | F) P(F) P(G | F) P(H | C ,G)()()()()

Unit 6 (v2) - 8 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

C

B

A D

E

F

G

H

P(C|B,E)

P(B|A)

P(A) P(D|C)

P(E|F)

P(F)

P(G|F)

P(H|C,G)

SPI Query
• An SPI query consists of

– A set of nodes for which a distribution is required
» e.g., compute P(U|V,W=w)

– A set of nodes needed to respond to the query
• Example query: compute P(D)

– Compute distributions needed to respond to query
» Needed: P(A) P(B|A) P(C|B,E) P(D|C) P(E|F) P(F)
» Not needed: P(G|F) P(H|C,G)

– Node C receives query: Target node D, distributions needed are A,B,C,D,E,F
» Node C decomposes query to send to its children

• Send to children parts of query they can process
• C's factor is P(C|B,E)
• C is added to target for all children, B to left branch, E to right branch
• Needed factors include only factors on branch being queried

» Query to B: Compute factor f(C,D,B); distributions needed are B, A, D
» Query to E: Compute factor f(C,D,E); distributions needed are E, F

– When node C receives response from children it computes
P(C|B,E)f(C,D,B)f(C,D,E) and sums out variables B,C and E

– Note that A and F are summed out before queries from children are sent
back up to node C

Unit 6 (v2) - 9 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Bucket Elimination - Overview
• Bucket elimination (Dechter, 1999) is a unifying framework for

complex reasoning problems such as:
– Computing posterior probabilities
– Most probable explanation (MPE)
– Maximum a posteriori hypothesis (MAP)
– Maximum expected utility (MEU)
– Constraint satisfaction
– Propositional satisfiability

• Generalizes dynamic programming
• “Buckets” are an organizational device for algebraic manipulations

involved in efficiently evaluating an algebraic expression

Unit 6 (v2) - 10 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Bucket Elimination Algorithm

1. Select a node order
2. Partition functions on graph into buckets

– Place functions mentioning Xi but not any variable with higher
index into bucket for Xi

– For posterior inference these functions are the belief tables in
the Bayesian network and the findings

– For posterior inference bucket function is product of belief
tables mentioning Xi

3. Process buckets backwards relative to node order
– Process bucket for Xi means to eliminate variable Xi

– For posterior inference eliminating means summing
4. After elimination, place new function in bucket of highest-

numbered variable in its scope

Unit 6 (v2) - 11 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Bucket Elimination Example

1. Initial buckets:
bucketG = P(G|F), finding: G=1
bucketD = P(D|A,B)
bucketF = P(F|B,C)
bucketB = P(B|A)
bucketC = P(C|A)
bucketA = P(A)

2. Process bucket G:
! " # = %(' = 1|#)

Remaining buckets:
bucketD = P(D|A,B)
bucketF = P(F|B,C) ! " +
bucketB = P(B|A)
bucketC = P(C|A)
bucketA = P(A)

3. Process bucket D:
! , -, / =0

1
%(2|-, /)

Remaining buckets:
bucketF = P(F|B,C) ! " +
bucketB = P(B|A) ! , 3, 4
bucketC = P(C|A)
bucketA = P(A)

A

F

B C

D G
Node Ordering:

A,C,B,F,D,G

Goal: Find P(A|G=1)

Note: this operation
(trivially) sums over
all values of G for
which finding is true

Example taken from undated presentation notes by Dechter and Lavee

Note: this sum
is equal to 1

Unit 6 (v2) - 12 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Bucket Elimination Example

4. Process bucket F:
! " #, % = '

(
)(+|#, %)! . +

Remaining buckets:
bucketB = P(B|A) ! / 0, 1 ! " 0, 2
bucketC = P(C|A)

bucketA = P(A)

5. Process bucket B:
! 3 %, 4 ='

5
)(#|4)! / #, 4 ! " #, %

Remaining buckets:
bucketC =) 2 1 ! 3 2, 1
bucketA = P(A)

6. Process bucket C:
! 6 4 ='

7
)(%|4)! 3 %, 4

Remaining bucket:
bucketA =)(1)! 6 1

6. Process bucket A:
8 ='

9
)(4)! 6 4

)(4|: = 1) = 1
8)(4)! 6 4

A

F

B C

D G
Node Ordering:

A,C,B,F,D,G

Goal: Find P(A|G=1)

Example taken from undated presentation notes by Dechter and Lavee

Unit 6 (v2) - 13 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Modifications

• Most probable explanation (MPE)

– Elimination operation: replace sum with max

– Keep track of maximizing value at each stage

– “Forward” step to determine maximizing value at each stage

• Maximum a Posterori Hypothesis(MAP)

– Sum over non-hypothesis variables

– Max over hypothesis variable(s)

– Forward phase over hypothesis variables only

• Also can be modified for constraint satisfaction, propositional

satisfiability, and maximum expected utility action

Software for bucket elimination (and other algorithms)

can be found at Rina Dechter’s software page

https://www.ics.uci.edu/~dechter/software.html

Unit 6 (v2) - 14 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Exact Inference with Continuous Variables

• So far we have focused on Bayesian networks with discrete
variables

• Graph-based and factorization-based exact algorithms can
be modified to handle certain networks with continuous
random variables

– Linear Gaussian networks
– Conditional linear Gaussian networks
– Mixtures of conditional linear Gaussian networks
– Mixtures of truncated exponentials

• Can be extended to “almost exact” inference for networks
with discrete children of Gaussian parents (Lerner, et al.,
2001)

Unit 6 (v2) - 15 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Junction Tree Algorithm for CLG Networks
• Junction tree algorithm can be adapted to exact inference for:

– Continuous graphical models with Gaussian potentials
– Conditional linear Gaussian (CLG) Bayesian networks

» Hybrid discrete / continuous
» No continuous RV can have a discrete child
» Continuous RVs are Gaussian with mean a linear function of continuous

parents given discrete parents
– CLG mixtures

» Continuous nodes either linear Gaussian or a mixture of linear Gaussians
• CLG junction tree algorithm propagates

– Means and covariances for Gaussian networks
– Mixtures of means and covariances for mixtures

• Inference is tractable for graphical models for which the treewidth
(size of largest clique) is not too large

– Even simple networks can lead to intractably large cliques
– Approximate inference must be used when cliques are too large

• JT for CLG networks is available in MATLAB BNT package
– BNT is widely used, available on GitHub, but no longer under active

development

Unit 6 (v2) - 16 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Unit 6 Outline

• Exact Algorithms

• Monte Carlo Approximation Algorithms

• Deterministic Approximation Algorithms

• Inference in Relational Models

Unit 6 (v2) - 17 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Approximate Inference: Monte Carlo Methods

• Objective: Compute a computationally challenging integral or sum
• Assumptions:

– We can represent the sum or integral as the expected value of a random
variable

– The random variable is cheap to simulate relative to computing the sum
or integral

• The procedure:
– Simulate many realizations of the random variable and compute the

average
• The theory:

– As the number of samples becomes large:
» The sample average converges to the sum or integral we want to compute
» The variance of the estimate becomes small

– There are intelligent ways to draw the sample and form the estimate to
keep the variance low

Unit 6 (v2) - 18 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Monte Carlo Methods
for Inference in Graphical Models

• Forward sampling (works only on Bayesian networks)
– Logic sampling
– Likelihood weighting
– Particle filtering (a variant of likelihood weighting)

• Markov blanket sampling (works on directed or undirected
graphical models)

– Gibbs sampling
– Metropolis-Hastings sampling

Unit 6 (v2) - 19 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Logic Sampling
(The Simplest Forward Sampling Algorithm)

• Logic sampling takes random draws from the
joint distribution of all variables in the network

• Each node keeps a running count of how many
times each of its states is drawn

• To take one random draw (one observation on
all variables):

– Sample the nodes in order (so parents of a node
are sampled before the node)

– For root node(s), select state with probability
P(state)

– For non-root node(s) select state with probability
P(state|sampled states of parents)

– After all nodes have been sampled
» Check whether sampled values of evidence values match observed states
» If they don’t match, throw away the draw
» If they match, increment the count for sampled state of each non-evidence node

• Estimate P(Xt|Xe) by observed frequency among the retained samples

A

B C

DE
F

H
G

Unit 6 (v2) - 20 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

A

B C

D E

P(a1)=.6

P(b1|a1)=.9
P(b1|a2)=.05 P(c1|a1)=.7

P(c1|a2)=.2

P(d1|b1,c1)=.99
P(d1|b1,c2)=.8
P(d1|b2,c1)=.9
P(d1|b2,c2)=.05

P(e1|c1)=.75
P(e1|c2)=.25

Example of Logic Sampling

• Goal: find P(B|D=d2,E=e2)
• Steps in drawing one sample:

– Select A=a1 with probability 0.6 and
a2 with probability .4

– Select value of B with probability P(B|A)
» If A=a1 select B=b1 with probability 0.9 & B=b2 with probability 0.1
» If A=a2 select B=b1 with probability 0.05 & B=b2 with probability 0.95

– Select value of C with probability P(C|A)
» If A=a1 select C=c1 with probability .7 & C=c2 with probability .3
» If A=a2 select C=c1 with probability .2 & C=c2 with probability .8

– Select value of D with probability P(D | B, C)
» If D=d1 throw sample out and start over
» If D=d2 continue

– Select value of E with probability based P(E | C)
» If E=e1 throw sample out and start over
» If E=e2 continue

– Increment counts for observed states of A,B, and C
• Estimate P(B|D=d2,E=e2) by the frequency of times each value of B

occurs in the retained sample

Unit 6 (v2) - 21 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

• On each sample draw,
– We get (A,B,C,D,E) = (a,b,c,d,e) with probability P(a)P(b|a)P(c|a)P(d|b,c)P(e|c),

which is equal to P(a,b,c,d,e)
– We get (B,D,E) = (b,d,e) with probabilty P(b,d,e)
– We get (D,E) = (d,e) with probabiltiy P(d,e)
– We keep the sample with probability P(d2,e2)
– We increment the count for state b of B=b with probability P(b,d2,e2)
– Conditional on keeping the sample we increment the count for state B with

probability P(b|d2,e2)
• For samples we keep, the observed value of B is a random variable with

possible values b1 and b2, with probabilities P(bi|d2,e2)
• The estimate is:

– Expected value: P(b|d2,e2)
– Variance:

• We keep sampling until we have kept enough observations that the
variance of the estimate is acceptably low

• If P(b|d2,e2) ≠ 0, then the estimate satisfies the Central Limit Theorem.
As count gets large, estimate will be approximately normally distributed
with mean and variance as given above

€

ˆ p b =
count for state b

total count for all states

€

1
#samples keptP(b| d2,e2) 1 - P(b| d2,e2)()

Theory Behind Logic Sampling

Unit 6 (v2) - 22 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Aside: Random Numbers
• Monte Carlo algorithms depend on sequences of random numbers
• These sequences can be produced by:

– Hardware random number generator: uses a physical device to produce
sequences of numbers that are random according to physical theory (e.g.,
thermal noise or quantum phenomena)

– Pseudo-random number generator: uses an algorithm to produce a
deterministic sequence of numbers that passes statistical randomness tests

» The sequence is determined by an initial value called the seed
– Combination: use physical device to set the seed for a pseudo-random

number generator with a faster data rate
» "Anyone who considers arithmetical methods of producing random digits is, of

course, in a state of sin.” – John von Neumann
• Any pseudo-random number generator is ultimately periodic and can

produce artifacts such as autocorrelation and values that fall into a low-
dimensional subspace. These artifacts can provide poor performance on
Monte Carlo simulations

• Reproducibility of pseudo-random sequences is useful for debugging
– Results of a Monte Carlo algorithm will be the same each time if the seed is

set to a given value at initiation of the algorithm

Unit 6 (v2) - 23 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Modification: Likelihood Weighting
• Logic sampling can be very inefficient due to discarded observations

– In our example, P(d2,e2) = .26
– This means we are throwing out 74% of the observations!
– For some problems the vast majority of observations are discarded

• Logic sampling can be modified to avoid throwing out observations
– Suppose we had sampled (a2,b2,c1)
– Then P(d2|a2,b2,c1) = .1 and P(e2|a2,b2,c1) = .25
– To sample D:

» If we sampled many times, 90% of the time we would throw out observations (a2,b2,c1)
» In other words, 10% of the time we would increment the counts for a2, b2, and c1
» Instead of throwing out the sample, we assign a weight of .1 to the sampled value due to D

– To sample E:
» The weight due to E for this observation is .25 (probability of getting e2 with logic sampling)

– Multiply the weights together to get a weight for the observation of .025
– Instead of throwing out the observation, we increment the counts for a2, b2 and c1

by the observation weight (0.025 in this case)
• Observation weights in our example:

– If B=b1 and C=c1, observation weight is .0025 = Pr(d2|b1,c1)Pr(e2|c1)
– If B=b1 and C=c2, observation weight is .15= Pr(d2|b1,c2)Pr(e2|c2)
– If B=b2 and C=c1, observation weight is .025
– If B=b2 and C=c2, observation weight is .7125

Unit 6 (v2) - 24 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

• Likelihood weighting estimate of P(b|d2,e2) is given by:

• If P(b|d2,e2) ≠ 0, then the likelihood weighting estimate also
has a limiting normal distribution

€

˜ p b =
weights for b∑

all weights∑ =
weights for b∑

weights for b1 + weights for b2∑∑

The Likelihood Weighting Estimate

Unit 6 (v2) - 25 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Comparison: LW and Logic Sampling
• General rule in Monte Carlo: replacing sampling by exact computation

reduces variance
• Both logic sampling and likelihood weighting can be viewed as following

these steps:
– Sample A, B, C according to P(A,B,C)
– Fix D=d2, E=e2
– Weight the observation by a "sampling weight" that depends on B and C

» In likelihood weighting the weight is P(d2,e2|B,C)
» In logic sampling the weight is drawn randomly. It is equal to 1 with probability

P(d2,e2|B,C) and 0 with probability 1-P(d2,e2|B,C) [kept observations have weight 1,
thrown out observations have weight 0]

• In both algorithms:
– Given B,C the sampling weights have expected value P(d2,e2|B,C)
– Variance of sampling weight is smaller for likelihood weighting:

V(W) = E[V[W | B,C]] + V[E[W | B,C]]
– First term in this sum is zero for likelihood weighting, nonzero for logic sampling.

Second term is same for both algorithms
– This is an example of a “Rao-Blackwell” method

» Rao-Blackwell Theorem: variance of estimator is reduced by replacing a sampling step
by a deterministic step that preserves expected value

Unit 6 (v2) - 26 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

• If the observed evidence was a priori very unlikely then
– Most weights will be very low
– Logic sampling and likelihood weighting can be very inefficient

• Key idea behind importance sampling is to try to focus sampling on
probable cases

– Draw observations not from P(X) but from another distribution Q(X)
called an importance sampling distribution.

– Weight the observations to compensate for drawing from a different
distribution from the one we want to estimate

• Example: estimate P(B=b1|D=d2,E=e2) in the Bayesian network of
the earlier example

– Draw observations (A,B,C) from the distribution Q

– Let and

• Draw N samples and calculate Zi and Wi, i=1,…,n
• Estimate P(B=b1|D=d2,E=e2) as weight for b1 / total weight:

€

Z =
P(A,b1,C,d2,e2)

Q(A,b1,C)
if B = b1

0 if B ≠ b1

$
%

& %

€

W =
P(A,B,C,d2,e2)

Q(A,B,C)

€

ˆ p b1 =

Zi
i =1

N

∑

Wi
i =1

N

∑

Importance Sampling

Unit 6 (v2) - 27 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

•

•

• By the Law of Large Numbers,

• If P(b1|d2,e2), P(b2|d2,e2) ≠ 0 then (S Zi , S Wi) satisfies a central
limit theorem.

– Variance will be smallest when distribution Q is near P(A,B,C|d2,e2)
– Variance may be very high if Q places too small a probability on values of

A,B,C relative to P(A,B,C|d2,e2)

• A good importance distribution is crucial
• Adaptive importance sampling

– Adapt importance distribution as sampling progresses
– Has shown good results in experimental tests

€

E[W] =
P(a,b,c,d2,e2)
Q(a,b,c)

Q(a,b,c)
a,b,c
∑ = P(d2,e2)

)2,2,1(),2,(0),1,(
),1,(
)2,2,,1,(][

,

edbPcbaQcbaQ
cbaQ
edcbaPZE

ca
=!!

"

#
$$
%

&
⋅+=∑

€

Zi
i=1

N

∑

Wi
i=1

N

∑
→ P(b1 |d2,e2)

Why Importance Sampling Works

Unit 6 (v2) - 28 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

A

B C

D

P(b1|a1)=.9
P(b1|a2)=.05 P(c1|a1)=.7

P(c1|a2)=.2

P(d1|b1,c1)=.99
P(d1|b1,c2)=.8
P(d1|b2,c1)=.9
P(d1|b2,c2)=.05

Markov Blanket Scoring
• Logic sampling and likelihood weighting increment the count only of

the sampled node
– If we sample B=b2 then we increment the count for b2 by the sampling

weight (1 for logic sampling and P(evidence|sample) for likelihood
weighting)

• Markov blanket scoring (see Pearl, 1987):
– Compute scores

» sbi = P(bi | sampled values of Markov blanket)

– Increment the count for each value bi of B by its score

– Another Rao-Blackwell method

• Markov blanket scoring is another example of replacing a sample
by an expectation

• Shachter and Peot (1989) performed an experimental comparison
of algorithms on some hard networks. Their results indicated that
Markov blanket scoring was worth the computational overhead in
computing the scores. This is an empirical evaluation and not a
theoretical proof of greater efficiency.

Unit 6 (v2) - 29 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Summary: Forward Sampling

• Forward sampling draws samples in the order
of arcs in a directed graphical model

– Parents of X are always sampled before X
• Logic sampling is the simplest forward

sampling algorithm
– X is sampled with P(X|pa(X))
– Samples are discarded if inconsistent with

evidence
– Samples from correct distribution but inefficient

• Many modifications have been proposed, e.g.
– Likelihood weighting
– Importance sampling / adaptive importance sampling
– Markov blanket scoring

• The R package bnlearn does inference using
likelihood weighting

– For continuous hybrid networks, bnlearn finds only
MAP value, even for discrete nodes

A

B C

DE
F

H
G

Unit 6 (v2) - 30 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Dealing with Near-Deterministic Relationships

• Likelihood weighting and importance sampling can give very
poor results when there are deterministic relationships

– Many zero-weight samples are rejected
– Sampling is highly inefficient

• Many applications involve mixed deterministic and
probabilistic relationships

• SampleSearch (Gogate and Dechter, 2011) augments
sampling with systematic constraint-based backtracking
search

– Combining sampling with search results in bias
– SampleSearch adjusts for the bias using weights

» Exactly or approximately (when exact weights are too complex to
compute)

– Experimental results demonstrate performance improvement in
models with significant amount of determinism

Unit 6 (v2) - 31 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Markov Blanket Sampling
• In forward sampling, variables are sampled in the order imposed by

the directed graph
– Requires a directed graphical model
– Each random variable is sampled with a distribution depending on

values of its parents
– Consecutive realizations of the network are independent and identically

distributed (except for weak dependence with adaptive importance
sampling)

• Markov blanket sampling samples random variables in arbitrary order
– Applies to directed or undirected graph
– Each random variable is sampled with a distribution depending on

values of its Markov blanket
– Consecutive realizations of the network are dependent

• Markov blanket sampling is a kind of Markov chain Monte Carlo
(MCMC) method

Unit 6 (v2) - 32 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Markov Chain Monte Carlo
• MCMC originated in statistical physics and has become popular in statistics
• A MCMC algorithm draws samples from a Markov Chain designed to have

the target distribution as its stationary distribution
– A Markov chain is a sequence X1, X2, … of random variables with the

“memoryless property”
» Pr(Xi | X1, …, Xi-1) = Pr(Xi | Xi-1) order 1 Markov chain

– A stationary distribution Q is one that persists once it is established: if Xi has
distribution Q, so does Xi+1

• How MCMC works
– Design a Markov chain having Ptarget as its stationary distribution
– Draw a large number of samples from the Markov chain
– Estimate Ptarget by the sample frequency

» Discarding initial “burn in” period
» Optionally “thin” sample to reduce autocorrelation

• For inference in graphical models the
Markov chain state is the vector of
realizations of all random variables

Unit 6 (v2) - 33 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Cold_Status(Maria,0)
Cold

Exposed

Healthy

100

0

0

Cold_Status(Maria,1)
Cold

Exposed

Healthy

12.0

0

88.0

Cold_Status(Maria,2)
Cold

Exposed

Healthy

1.44

10.6

88.0

Cold_Status(Maria,3)
Cold

Exposed

Healthy

8.09

10.6

81.3

Cold_Status(Maria,4)
Cold

Exposed

Healthy

8.89

9.76

81.3

Cold_Status(Maria,0)
Cold

Exposed

Healthy

0

100

0

Cold_Status(Maria,1)
Cold

Exposed

Healthy

75.0

0

25.0

Cold_Status(Maria,2)
Cold

Exposed

Healthy

9.00

3.00

88.0

Cold_Status(Maria,3)
Cold

Exposed

Healthy

3.33

10.6

86.1

Cold_Status(Maria,4)
Cold

Exposed

Healthy

8.32

10.3

81.3

Cold_Status(Maria,0)
Cold

Exposed

Healthy

0

0

100

Cold_Status(Maria,1)
Cold

Exposed

Healthy

0

12.0

88.0

Cold_Status(Maria,2)
Cold

Exposed

Healthy

9.00

10.6

80.4

Cold_Status(Maria,3)
Cold

Exposed

Healthy

9.00

9.65

81.3

Cold_Status(Maria,4)
Cold

Exposed

Healthy

8.32

9.76

81.9

Review: Markov Chain
• Example: model evolution of colds with a Markov chain

– States: Cold, Exposed, Healthy

– Allowable transitions:

» Cold ® Healthy

» Healthy ® Exposed

» Exposed ® Cold

• This Markov chain has a unique stationary distribution

– If a Markov chain has a finite state space and all states are reachable

from any state, then it has a unique stationary distribution and all initial

distributions evolve to this stationary distribution

Unit 6 (v2) - 34 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

The Simplest MCMC Algorithm:
Gibbs Sampling

• Begin with an initial assignment of values to nodes
– Evidence nodes Xev are set to their observed values
– Other nodes can be set to any value

• Go through the non-evidence nodes one at a time, following
these steps:

– Sample the node with probability:
P(node|rest of nodes) = P(node|Markov blanket)

– Replace node’s state with newly sampled state
• Repeat until a large sample of observations is obtained
• Estimate P(node=value) by sample frequency

– Usually we discard samples from a “burn in” period before
collecting statistics for computing sample frequency

– To adjust for correlation of consecutive samples we often only
count every kth observation, where k is called the thinning interval

Unit 6 (v2) - 35 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

A

B C

D E

P(a1)=.6

P(b1|a1)=.9
P(b1|a2)=.05 P(c1|a1)=.7

P(c1|a2)=.2

P(d1|b1,c1)=.99
P(d1|b1,c2)=.8
P(d1|b2,c1)=.9
P(d1|b2,c2)=.05

P(e1|c1)=.75
P(e1|c2)=.25

• Sample values (ai,bi,ci) form a Markov chain

• The probability distribution for (a1,bi,c1) is

independent of past samples given the

immediately preceding sample (ai-1,bi-1,ci-1)

• The unique stationary distribution for this

Markov chain is P(A,B,C|D=d2,E=e2)

Example of Gibbs Sampling
• Goal is to find P(B|D=d2,E=e2)

• To sample node A:

– Markov blanket is B,C

– P(A|B,C) µ P(A) P(B|A) P(C|A)

– Example probabilities for configurations of (B,C):

» P(a1|b1,c1) = .6´.9´.7/(.6´.9´.7 + .4´.05´.2) = .99

» P(a1|b2,c1) = .6´.1´.7/(.6´.1´.7 + .4´.95´.2) = .36

• To sample node B:

– Markov blanket is A,C,D

– P(B|A,C,D) µ P(B|A)P(D|B,C)

– Example configuration for (A,C,D) = (a1,c2,d2):

» P(b1|a1,c2,d2) = .9´.2/(.9´.2+.95´.95) = .166

• To sample node C:

– Markov blanket is A,B,D,E

– P(C|A,B,D,E) µ P(C|A)P(D|B,C)P(E|C)

• D and E are not sampled

Unit 6 (v2) - 36 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Comments on Gibbs Sampling
• Successive states of network form a Markov chain

– Each time through the cycle gives a new set of values for all nodes in network
– Probability distribution for new set of values depends only on most recent set of

values, not on rest of past samples

• Joint distribution P(X|Xev) is a stationary distribution of this chain
– Suppose distribution of Markov blanket of X is P(Markov blanket of X | Xev)
– Now sample X according to P(X|Markov blanket of X)
– Joint distribution of (X, Markov blanket of X) is

P(X|Markov blanket of X) P(Markov blanket of X |Xev)

• If all distributions are strictly positive P(X|Xev) is a unique stationary
distribution and the chain converges to it

• Practical issues
– Typically we discard “burn-in” period, thin the chain to reduce correlation between

consecutive estimates, and use convergence diagnostics to decide when we have
enough observations

– When some probabilities are near zero the chain can get "stuck" in certain regions
for a long time

– Convergence diagnostics can be misleading when chain gets stuck (“poor mixing”)

Unit 6 (v2) - 37 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Soft Evidence and Gibbs Sampling

• Hard evidence is incorporated by fixing evidence variable at
observed value

• If variable X has soft evidence l(X) then sampling
distribution of X|Markov blanket of X is proportional to the
product of l(X) and all belief tables that mention X

Unit 6 (v2) - 38 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Cutset Conditioning & Cutset Sampling
• Loop cutset (Becker and Geiger):

– A sink for a loop is a vertex with two edges on the loop directed into it
– A vertex is allowed for a loop if it is not a sink for that loop
– A loop cutset is a set of vertices that has at least one

allowed vertex for each loop
• Cutset Conditioning (Pearl)

– Calculate result for all combinations of cutset
variables and weight by probability of cutset variables

– This is an exact algorithm which can be very
costly when there are many loops

• Cutset sampling (Bidyuk and Dechter)
– Find loop cutset
– Do repeatedly for large number of samples

» Sample values for cutset variables using Gibbs sampling
» Propagate using algorithm for singly connected networks

– Has shown good results in experimental tests

{C, D} is
a cutset

A

B C

DE
F

H
G

Unit 6 (v2) - 39 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Component-Wise
Metropolis-Hastings Sampling

• For many inference problems:
– P(Xnew | Markov blanket of X) is expensive or impossible to sample
– It is cheap to calculate

P(Xnew | Markov blanket of X) / P(Xold | Markov blanket of X)
• Metropolis-Hastings algorithm works exactly like Gibbs sampling

except:
– We can use any distribution for sampling a proposed value for Xnew

given Markov blanket of X
– To ensure the correct stationary distribution, we add a rule for

deciding stochastically whether to accept or reject the proposed
value of Xnew

Unit 6 (v2) - 40 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

• Begin with an initial assignment of values to nodes
– Evidence nodes Xev assigned to their observed values
– Other nodes can have any value

• Go through the non-evidence nodes one at a time, following these
steps:

– Sample new value Xnew with Q(Xnew | Xold, MB) where Xold is the current
value of X and MB is the current value of the Markov blanket of X

– Apply the following acceptance rule:
» Compute the acceptance probability

» Accept xnew as the new state for X with probability A(xnew|xold,MB)
» Reject xnew and keep xold as the state of X with probability 1- A(xnew|xold,MB)

• Repeat until a large sample of observations is obtained
• Estimate P(node=value) by sample frequency

€

A(xnew | xold ,MB) =min 1,Q(xold | xnew,MB)P(xnew |MB)
Q(xnew | xold ,MB)P(xold |MB)

"

$

%
&
'

Metropolis-Hastings Steps

Unit 6 (v2) - 41 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Some Comments

• The Metropolis-Hastings algorithm has the same stationary
distribution as Gibbs sampling.

• Acceptance probability is higher when:
– Posterior probability of new state is higher
– Transition back to old state is more probable

• Under regularity conditions (e.g., sampling distribution Q(×)
and A(×) do not change as sampling progresses and all
values of each X are sampled with positive probability for all
values of MB) the stationary distribution is unique and
satisfies a central limit theorem

• Metropolis-Hastings sampling = Gibbs sampling when
Q(Xnew | Xold, MBold) = P(Xnew | Markov blanket of X)

• Both Gibbs and component-wise MH suffer from the problem
of getting stuck in local basins when exiting the basin
requires multiple simultaneous changes

Unit 6 (v2) - 42 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Comparison: Markov Blanket
and Forward Sampling

• Forward sampling with importance weights
– Sample unobserved nodes in direction of node ordering

(Xi is sampled after Xpa(i))
– Sampled cases Xn are independent draws from from sampling

distribution
– Achieve correct expectation by giving each draw an importance

weight proportional to ratio of target probability and sampling
likelihood

• Markov blanket sampling
– Begin by assigning arbitrary values to the nodes
– Visit nodes in an arbitrary order

» Propose new value for node using distribution that depends on current
value of node’s Markov blanket

» Accept new state with probability depending on relative probabilities of
new and old states, and relative proposal likelihoods of new and old
states

– Sampling distribution is a Markov chain with unique stationary
distribution equal to target distribution

Unit 6 (v2) - 43 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Comments on Markov
Blanket Sampling

• Markov blanket sampling is popular because:
– It is general-purpose
– It is easy to implement
– It works for both directed and undirected graphs

• BUGS (Bayesian inference Using Gibbs Sampling) is a free
software package for statistical modeling

– Modeling language allows specification of complex graphical
probability models

– Approximate inference uses Gibbs sampling
• Markov blanket sampling can be very slow to converge

– Can remain stuck for long periods in local basin of attraction (this is
called “poor mixing”)

– Difficult to escape when multiple simultaneous changes are needed
– May be very difficult to diagnose when sampler mixes poorly

Unit 6 (v2) - 44 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Summary of Key Ideas
in Monte Carlo Sampling

• Rejection sampling
– Sample observations from a distribution
– Reject observations according to criterion
– Estimate target quantity from remaining

observations
– Resulting estimate approximates target

quantity
– Examples: Logic sampling and

Metropolis-Hastings
• Importance sampling

– Sample observations from a distribution
– Compute sampling weight
– Estimate target quantity as ratio of

weighted sums
– Resulting estimate approximates target

quantity
– Likelihood weighting can be viewed as

importance sampling with the importance
distribution equal to the prior distribution

• “Rao Blackwellization”
– Replace the sampled quantity

with its expectation when the
expectation can be computed
cheaply

– Examples: likelihood weighting
and Markov blanket scoring and
cutset sampling

• Markov Chain sampling
– Sometimes a distribution is

difficult to compute or sample
directly but is the stationary
distribution of a Markov chain that
is cheap to sample

– Sampling from the Markov chain
approximates target distribution

– Examples: Gibbs sampling and
Metropolis-Hastings sampling

Unit 6 (v2) - 45 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Some General Comments
• Markov Chain Monte Carlo (MCMC)

– Construct Markov chain with stationary distribution equal to distribution
being estimated

– If we run N parallel chains, discard first B observations of each chain
(burn-in sample), we can treat B+1st observation from each chain as a
sample of N independent observations from target distribution

– Correlations between draws of Markov chain induces inefficiency

• Independent sampling with importance weights
– Examples are logic sampling, adaptive importance sampling; SIR

(sampling / importance resampling)
– Draw independent samples with distribution that approximates target

distribution

– Use importance weights to achieve correct expected values

– Skewed weights induce inefficiency

Unit 6 (v2) - 46 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Unit 6 Outline

• Exact Factorization Based Algorithms

• Monte Carlo Approximation Algorithms

• Deterministic Approximation Algorithms

• Inference Inference in Relational Models

Unit 6 (v2) - 47 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Loopy Belief Propagation

• Apply method designed for singly connected networks in a multiply
connected network

– Works by “peer pressure” – node’s neighbors tell it how to update its
beliefs

– Evidence enters at observed nodes and propagates via links in network
• May not converge

– May oscillate indefinitely between belief states
– Precise conditions for convergence are not well understood
– Sufficient conditions for convergence have been identified

• Not guaranteed to be accurate even if it converges
• Works surprisingly well on some hard problems
• Sometimes used as starting point for approximation algorithms
• Iterative Join-Graph Propagation (IJGP) generalizes loopy BP to a

join graph (like a junction tree but with loops)

Unit 6 (v2) - 48 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Combining Sampling with
Deterministic Approximation

• There are algorithms that combine deterministic approximation
with sampling

• IJGPSampleSearch is one such algorithm
– SampleSearch combines importance sampling with search in

networks that have deterministic links
» These networks are very hard for Monte Carlo algorithms
» SampleSearch combines uses constraint-based backtracking search

to find and avoid sampling zero-probability paths
» Weights compensate for the bias introduced by avoiding zero-

probability paths
– Iterative Join-Graph Propagation (IJGP)

» Replaces junction (join) tree with join graph
» Generalization of loopy BP
» Anytime algorithm

Unit 6 (v2) - 49 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Variational Approximations

• Basic idea:
– Transform intractable network by removing some links to leave

"tractable backbone"
– Adjust parameters in distributions in "tractable backbone" to

approximate desired distribution
– Common approximation approach: minimize information

theoretic measure of distance
• Important area of research: Upper and lower bounds on

approximation error
– Results exist for special case network and local distribution

structures

Unit 6 (v2) - 50 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

• Remove all links
• Assign each node an initial probability

– Evidence nodes have probability equal to 1 on observed value
– Others have arbitrary probability

• Re-estimate each probability as:

• Iterate until convergence
• This estimate minimizes an information theoretic measure of

distance
• Converges to local maximum of likelihood constrained to

tractable structures
– Can use restarts from randomly chosen initial probabilities to

find better local optimum

€

Pest(X) = P(X |MarkovBlanket)Pest(MarkovBlanket)
ConfigMarkovBlanket

∑

Mean Field Approximation

Unit 6 (v2) - 51 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Unit 6 Outline

• Exact Factorization Based Algorithms

• Monte Carlo Approximation Algorithms

• Deterministic Approximation Algorithms

• Inference in Relational Models

Unit 6 (v2) - 52 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Learning as Inference in a Relational Model
• We have shown how parameter learning can be viewed as a

problem of inference in graphical models
– Plate model containing repeated structure is a simple kind of

relational model
• Structure learning treats the arcs and/or within-node

structural assumptions as uncertain
• Markov chain Monte Carlo methods can be applied to both

parameter and structure learning
– BUGS uses Gibbs sampling for

parameter learning in graphical
models

– Reversible-jump MCMC
allows sampling from spaces
of different dimensionality
and can be applied to
structure learning

Plate representation for parameter
learning in a Bayesian network

Unit 6 (v2) - 53 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Mixture Model
• A mixture model represents dependence of observations on

hidden (latent) variable representing sub-populations
– Observations are drawn from parametric family
– Parameter depends on sub-population

• Mixture models can be applied to discover sub-populations
and/or classify observations into sub-populations

Example: Body Length of Weaver Ants (Weber, 1946)

4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Body Length (mm)

Mixture Density
Sample Frequency

Major
ants
(Z=2)

Minor
ants
(Z=1)

Although exact
inference for this model
is intractable, the
parameters can be
approximated with
MCMC or EM

Zi

Xi
i=1,…,N

π

μr ,σr

r=1,2

π ~ Beta(ξ,ζ)
µr ,σ r

−2 ~ Normal /Gamma(m,k,α ,β)
Zi |π ~ Bernoulli(π)
Xi | Zi ,µZi

,σ Zi
~ Normal(µZi

,σ Zi
)

Unit 6 (v2) - 54 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Mixed Membership Model

• A mixed membership model (aka topic model) is a model in which:
– Observations belong to groups
– Each group is modeled as a mixture
– Mixture components (topics) are shared across all the groups
– Mixture proportions vary between groups

• This is a powerful modeling technique
– Groups share information via common set of topics
– Groups differ in the emphasis placed on the topics

• Learning methods allow us to discover topics and group
membership simultaneously

• Many applications, e.g.:
– Text mining
– Recommender systems
– Social networks

Reference:
http://www.people.fas.harvard.edu/~airoldi/pub/books/b02.AiroldiBleiEroshevaFienberg2014HandbookMMM/Ch1_MMM2014.pdf

Unit 6 (v2) - 55 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Latent Dirichlet Allocation (LDA) Model
• Popular mixed membership model commonly applied to natural language

understanding and text retrieval
– There are M documents
– Each document has N words
– The nth word in the mth document is denoted by Wmn

– Each word Wmn has an associated “topic” Zmn
– The topics Zmn are independent draws from a K-dimensional multinomial

distribution, where K is the number of topics.
– The parameter θm of the topic distribution depends on the document.
– θm is drawn from a Dirichlet distribution with parameter !
– The words Wmn are independent draws from a M-dimensional

multinomial distribution, where M is the number of words
– The parameter "# of the word distribution depends on

the topic k
– β is the parameter of the Dirichlet prior for the

parameter "# of the word distribution
• The words are observed; the

topics are discovered from the
document corpus.

Source: http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

=observation

Unit 6 (v2) - 56 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Comments on Mixed Membership Models
• In a standard mixture model each observation would be

associated with exactly one of the mixture components
– E.g., each ant is either a major or a minor ant

• In a mixed membership model like LDA, each document can
be associated with multiple components (multiple topics)

– The topics cluster words that tend to co-occur
– A document can be “about” more than one topic (i.e., it can

contain more than one co-occurring cluster of words)
– This allows co-occurrence of word patterns to be shared

among documents, and also allows for document heterogeneity
• The Dirichlet distribution’s tendency for sparsity tends to

keep the number of topics per document small
• Inference problems for mixed membership model

– Training: learn parameters of mixed membership model from a
sample of observations

– Application: inference on new observations
– Online learning: refine model as new observations come in

Unit 6 (v2) - 57 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Enron Email Dataset LDA Topics
source: William Darling, http://www.uoguelph.ca/~wdarling/tm/enron.html#fn

Unit 6 (v2) - 58 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Inference in Mixed Membership Models
• Typical mixed membership models use a conjugate prior for

the mixture components and the observations
– If the latent memberships were observed we could do exact

inference on the parameters
• Standard inference methods

– Variational approximation
– Gibbs sampling
– Collapsed Gibbs sampling

» Conditional on the observations and all other
latent membership variables, the distribution for
an individual membership variable can be
computed exactly

» Thus, we can sample !" conditional on
#$:" and !¬"

» This “collapsed” sampling helps
to prevent the Gibbs sampler
from getting stuck in local
modes of the posterior distribution

Unit 6 (v2) - 59 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Lifted Inference

• In Unit 3 we used first-order languages to allow
representation of repeated structure

– We discussed inference by constructing a problem-specific BN
called a SSBN or “ground network”

– The ground network typically has repeated structure
– Inference on the full ground network can be intractable

• Sometimes we can improve inference performance by
exploiting the repeated structure

• “Lifted” inference does this
– Perform inference directly on the first-order representation
– Apply results to the ground model

• Performance improvements depend on:
– Structure of the ground model
– Specific patterns of evidence

Unit 6 (v2) - 60 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Summary and Synthesis

• Exact inference
– There is a duality between factorization approach and graph-

based approach
– Efficiency improvements in one type of algorithm can often be

transported to another type of algorithm
– Hard problems are generally hard for all algorithms
– Factoring approach seems a more natural way to handle

context-specific independence
• Common types of approximation algorithm

– Stochastic sampling
– Deterministic approximation

• There are many problem-specific types of approximation
algorithm

Unit 6 (v2) - 61 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

References for Unit 6
Factorization Methods
• Dechter, R. Bucket Elimination: A Unifying Framework For Probabilistic Inference. Constraints: An International Journal, No. 2, pp. 51-55,

1997.
• D'Ambrosio, B. Symbolic Probabilistic Inference, International Journal of Approximate Reasoning, 1990.
Continuous and hybrid networks
• Cobb, B., Shenoy, P. and Rumi, R. Approximating Probability Density Functions with Mixtures of Truncated Exponentials. Proceedings of

the Tenth Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 2004, pp. 429—436.
• Lerner, U., Segal, E. and Koller, D. U. Lerner and R. Parr. Exact Inference in Networks with Discrete Children of Continuous Parents. In

Proc. Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2001.
Monte Carlo Methods
• Bidyuk, B. andDechter, R. Cutset Sampling for Bayesian Networks. In Proceedings of the 22nd Annual Conference on Uncertainty in

Artificial Intelligence (UAI-06), 2006.
• Cheng, J. and Druzdzel, M.. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks.

Journal of Artificial Intelligence Research (JAIR), 13:155-188, 2000.
• Gilks, W. R., Richardson, S. and Spiegelhalter, D. Markov Chain Monte Carlo in Practice, Chapman and Hall, 1996.
• Gogate, V. and Dechter, R. SampleSearch: Importance sampling in presence of determinism, Artificial Intelligence, Volume 175, Issue 2,

2011, Pages 694-729, ISSN 0004-3702, http://dx.doi.org/10.1016/j.artint.2010.10.009
• Pearl, J. Evidential Reasoning using Stochastic Simulation, Artificial Intelligence 32, 245-257, 1987.
• Robert, C. and Casella, G., Monte Carlo Statistical Methods, Springer-Verlag, 2005.
• R D. Shachter and M. A. Peot. Simulation Approaches to General Probabilistic Inference on Belief Networks, Proceedings of the Fifth

Conference on Uncertainty in Artificial Intelligence, 1989.
• The BUGS project: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
Variational Methods
• Tommi S. Jaakkola and Michael I. Jordan. Computing Upper and Lower Bounds on Likelihoods in Intractable Networks. √
Loopy belief propagation
• Kevin Murphy, Yair Weiss, and Michael Jordan. Loopy-belief Propagation for Approximate Inference: An Empirical Study Proceedings of the

Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999.
Lifted inference
• R. Braz, E. Amir, and D. Roth, “Lifted First-Order probabilistic inference,” in Introduction to Statistical Relational Learning. MIT Press, 2007.

Available: http://l2r.cs.uiuc.edu/∼danr/Papers/BrazAmRo07.pdf.

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

