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Learning Objectives

• Describe the major categories of exact inference algorithms and 
their strengths and weaknesses 

• Describe basics of bucket elimination algorithm
• Describe the underlying idea behind Monte Carlo approximation
• Describe how the major Monte Carlo inference algorithms work
• Implement likelihood weighting inference (fixed network, fixed 

query) in a computing environment with programming and/or 
macro capability and random number generator 

– Generate the sample
– Generating the estimate from the sample

• Implement Gibbs sampling inference (fixed network, fixed 
query) in a computing environment with programming and/or 
macro capability and random number generator 

– Generate the sample
– Generate the estimate from the sample

• Describe what a variational approximation is and how 
variational methods work
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All these algorithms can be used to solve the canonical inference 
problem:  find the posterior probability distribution for some 

variable(s) given exact or virtual evidence about other variable(s)

Taxonomy of Graphical Model Inference Algorithms

• Exact graph theoretic
– Pearl's tree algorithm and its modifications
– Junction tree algorithm
– Influence diagram reduction

• Exact factorization based
– Symbolic probabilistic inference
– Bucket elimination

• Approximate (deterministic)
– Loopy belief propagation
– Variational approximation
– Various special case approaches

• Approximate (Monte Carlo)
– Monte Carlo simulation

• Lifted inference in relational models
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Unit 6 Outline

• Exact Algorithms

• Monte Carlo Approximation Algorithms

• Deterministic Approximation Algorithms

• Inference in Relational Models
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• We have treated inference as a problem of message passing 
along links in a graph

• Algebraic algorithms view inference as a problem of efficient 
factorization of a complex expression

• A simple example:
– Goal:  compute P(C)
– Method 1:

»

» #A ´ #B ´ 2 multiplications and #A ´ #B - 1 additions for each P(ci)
– Method 2: Eliminate B and then eliminate A

»

» #A ´ (#B + 1) multiplications and (#A-1) ´ (#B-1) additions for each P(ci)
– Method 2 saves computation, especially as #A and #B get large

€ 

P(ci) = P(ci | aj ,bk )
k
∑

j
∑ P(aj)P(bk )
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P(ci) = P(aj) P(ci | aj ,bk )
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∑

j
∑ P(bk )

Inference as Factor Manipulation
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Symbolic Probabilistic Inference: 
Inference as Factor Manipulation

• Compile network into a factorization tree.  
– The tree represents a way of factorizing the joint distribution
– Nodes of the factorization tree are nodes in the Bayesian network

– There are many possible trees but some are more efficient for specific queries

– Tree construction algorithm is heuristic

• Query P(U | V) processing:
– Query is received at root node

– When a node receives a query, it:
» decomposes it into queries to send to nodes below in the graph
» waits for responses from below

» reaggregates responses (summing out variables that can be summed out) and 
reports result

• Features of SPI algorithm:
– Query processing is designed so that multiplications are brought outside of 

sums whenever possible (eliminate variables before combining factors)
– Algorithm does only computations needed to process particular query

– Efficient implementations cache results so that they can be reused
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Search Tree and Factorization

This tree corresponds to combining the factors in the following order:
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cancer
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Bayesian Network

Factoring Tree
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SPI Query
• An SPI query consists of

– A set of nodes for which a distribution is required
» e.g., compute P(U|V,W=w)

– A set of nodes needed to respond to the query
• Example query:  compute P(D)

– Compute distributions needed to respond to query
» Needed:  P(A) P(B|A) P(C|B,E) P(D|C) P(E|F) P(F)
» Not needed:  P(G|F) P(H|C,G)

– Node C receives query: Target node D, distributions needed are A,B,C,D,E,F
» Node C decomposes query to send to its children

• Send to children parts of query they can process
• C's factor is P(C|B,E)
• C is added to target for all children, B to left branch, E to right branch
• Needed factors include only factors on branch being queried

» Query to B:  Compute factor f(C,D,B); distributions needed are B, A, D
» Query to E:  Compute factor f(C,D,E); distributions needed are E, F

– When node C receives response from children it computes 
P(C|B,E)f(C,D,B)f(C,D,E) and sums out variables B,C and E

– Note that A and F are summed out before queries from children are sent 
back up to node C
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Bucket Elimination - Overview
• Bucket elimination (Dechter, 1999) is a unifying framework for 

complex reasoning problems such as:
– Computing posterior probabilities 
– Most probable explanation (MPE)
– Maximum a posteriori hypothesis (MAP)
– Maximum expected utility (MEU)
– Constraint satisfaction
– Propositional satisfiability

• Generalizes dynamic programming
• “Buckets” are an organizational device for algebraic manipulations 

involved in efficiently evaluating an algebraic expression
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Bucket Elimination Algorithm

1. Select a node order
2. Partition functions on graph into buckets

– Place functions mentioning Xi but not any variable with higher 
index into bucket for Xi

– For posterior inference these functions are the belief tables in 
the Bayesian network and the findings

– For posterior inference bucket function is product of belief 
tables mentioning Xi

3. Process buckets backwards relative to node order
– Process bucket for Xi means to eliminate variable Xi

– For posterior inference eliminating means summing
4. After elimination, place new function in bucket of highest-

numbered variable in its scope
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Bucket Elimination Example

1. Initial buckets:
bucketG = P(G|F), finding: G=1
bucketD = P(D|A,B) 
bucketF = P(F|B,C) 
bucketB = P(B|A) 
bucketC = P(C|A) 
bucketA = P(A) 

2. Process bucket G:
! " # = %(' = 1|#)

Remaining buckets:
bucketD = P(D|A,B) 
bucketF = P(F|B,C) ! " +
bucketB = P(B|A) 
bucketC = P(C|A) 
bucketA = P(A) 

3. Process bucket D:
! , -, / =0

1
%(2|-, /)

Remaining buckets:
bucketF = P(F|B,C) ! " +
bucketB = P(B|A) ! , 3, 4
bucketC = P(C|A) 
bucketA = P(A) 

A

F

B C

D G
Node Ordering:     

A,C,B,F,D,G

Goal: Find P(A|G=1)

Note: this operation 
(trivially) sums over 
all values of G for 
which finding is true

Example taken from undated presentation notes by Dechter and Lavee

Note: this sum 
is equal to 1
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Bucket Elimination Example

4. Process bucket F:
! " #, % = '

(
)(+|#, %)! . +

Remaining buckets:
bucketB = P(B|A) ! / 0, 1 ! " 0, 2
bucketC = P(C|A) 

bucketA = P(A) 

5. Process bucket B:
! 3 %, 4 ='

5
)(#|4)! / #, 4 ! " #, %

Remaining buckets:
bucketC = ) 2 1 ! 3 2, 1
bucketA = P(A) 

6. Process bucket C:
! 6 4 ='

7
)(%|4)! 3 %, 4

Remaining bucket:
bucketA = )(1)! 6 1

6. Process bucket A:
8 ='

9
)(4)! 6 4

)(4|: = 1) = 1
8 )(4)! 6 4

A

F

B C

D G
Node Ordering:     

A,C,B,F,D,G

Goal: Find P(A|G=1)

Example taken from undated presentation notes by Dechter and Lavee
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Modifications

• Most probable explanation (MPE)

– Elimination operation: replace sum with max

– Keep track of maximizing value at each stage

– “Forward” step to determine maximizing value at each stage

• Maximum a Posterori Hypothesis(MAP)

– Sum over non-hypothesis variables

– Max over hypothesis variable(s)

– Forward phase over hypothesis variables only

• Also can be modified for constraint satisfaction, propositional 

satisfiability, and maximum expected utility action

Software for bucket elimination (and other algorithms)  

can be found at Rina Dechter’s software page

https://www.ics.uci.edu/~dechter/software.html
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Exact Inference with Continuous Variables

• So far we have focused on Bayesian networks with discrete 
variables

• Graph-based and factorization-based exact algorithms can 
be modified to handle certain networks with continuous 
random variables

– Linear Gaussian networks
– Conditional linear Gaussian networks 
– Mixtures of conditional linear Gaussian networks
– Mixtures of truncated exponentials

• Can be extended to “almost exact” inference for networks 
with discrete children of Gaussian parents (Lerner, et al., 
2001)
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Junction Tree Algorithm for CLG Networks
• Junction tree algorithm can be adapted to exact inference for:

– Continuous graphical models with Gaussian potentials
– Conditional linear Gaussian (CLG) Bayesian networks

» Hybrid discrete / continuous
» No continuous RV can have a discrete child
» Continuous RVs are Gaussian with mean a linear function of continuous 

parents given discrete parents
– CLG mixtures

» Continuous nodes either linear Gaussian or a mixture of linear Gaussians
• CLG junction tree algorithm propagates

– Means and covariances for Gaussian networks
– Mixtures of means and covariances for mixtures

• Inference is tractable for graphical models for which the treewidth
(size of largest clique) is not too large

– Even simple networks can lead to intractably large cliques
– Approximate inference must be used when cliques are too large

• JT for CLG networks is available in MATLAB BNT package
– BNT is widely used, available on GitHub, but no longer under active 

development
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Unit 6 Outline

• Exact Algorithms

• Monte Carlo Approximation Algorithms

• Deterministic Approximation Algorithms

• Inference in Relational Models
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Approximate Inference:  Monte Carlo Methods

• Objective:  Compute a computationally challenging integral or sum
• Assumptions:  

– We can represent the sum or integral as the expected value of a random 
variable

– The random variable is cheap  to simulate relative to computing the sum 
or integral

• The procedure:
– Simulate many realizations of the random variable and compute the 

average
• The theory:

– As the number of samples becomes large:
» The sample average converges to the sum or integral we want to compute
» The variance of the estimate becomes small

– There are intelligent ways to draw the sample and form the estimate to 
keep the variance low
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Monte Carlo Methods 
for Inference in Graphical Models

• Forward sampling (works only on Bayesian networks)
– Logic sampling
– Likelihood weighting
– Particle filtering (a variant of likelihood weighting)

• Markov blanket sampling (works on directed or undirected 
graphical models)

– Gibbs sampling
– Metropolis-Hastings sampling



Unit 6 (v2) - 19 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Logic Sampling
(The Simplest Forward Sampling Algorithm)

• Logic sampling takes random draws from the 
joint distribution of all variables in the network

• Each node keeps a running count of how many 
times each of its states is drawn

• To take one random draw (one observation on 
all variables):

– Sample the nodes in order (so parents of a node 
are sampled before the node)

– For root node(s), select state with probability 
P(state)

– For non-root node(s) select state with probability 
P(state|sampled states of parents)

– After all nodes have been sampled
» Check whether sampled values of evidence values match observed states
» If they don’t match, throw away the draw
» If they match, increment the count for sampled state of each non-evidence node

• Estimate P(Xt|Xe) by observed frequency among the retained samples

A

B C

DE
F

H
G
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A

B C

D E

P(a1)=.6

P(b1|a1)=.9
P(b1|a2)=.05 P(c1|a1)=.7

P(c1|a2)=.2

P(d1|b1,c1)=.99
P(d1|b1,c2)=.8
P(d1|b2,c1)=.9
P(d1|b2,c2)=.05

P(e1|c1)=.75
P(e1|c2)=.25

Example of Logic Sampling

• Goal:  find P(B|D=d2,E=e2)
• Steps in drawing one sample:

– Select A=a1 with probability 0.6 and 
a2 with probability .4 

– Select value of B with probability P(B|A)
» If A=a1 select B=b1 with probability 0.9 & B=b2 with probability 0.1
» If A=a2 select B=b1 with probability 0.05 & B=b2 with probability 0.95

– Select value of C with probability P(C|A)
» If A=a1 select C=c1 with probability .7 & C=c2 with probability .3
» If A=a2 select C=c1 with probability .2 & C=c2 with probability .8

– Select value of D with probability P(D | B, C)
» If D=d1 throw sample out and start over
» If D=d2 continue

– Select value of E with probability based P(E | C)
» If E=e1 throw sample out and start over
» If E=e2 continue

– Increment counts for observed states of A,B, and C
• Estimate P(B|D=d2,E=e2) by the frequency of times each value of B 

occurs in the retained sample



Unit 6 (v2) - 21 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

• On each sample draw, 
– We get (A,B,C,D,E) = (a,b,c,d,e) with probability P(a)P(b|a)P(c|a)P(d|b,c)P(e|c), 

which is equal to P(a,b,c,d,e)
– We get (B,D,E) = (b,d,e) with probabilty P(b,d,e)
– We get (D,E) = (d,e) with probabiltiy P(d,e)
– We keep the sample with probability P(d2,e2)
– We increment the count for state b of B=b with probability P(b,d2,e2)
– Conditional on keeping the sample we increment the count for state B with 

probability P(b|d2,e2)
• For samples we keep, the observed value of B is a random variable with 

possible values b1 and b2, with probabilities P(bi|d2,e2)
• The estimate is:  

– Expected value: P(b|d2,e2)
– Variance: 

• We keep sampling until we have kept enough observations that the 
variance of the estimate is acceptably low

• If P(b|d2,e2) ≠ 0, then the estimate  satisfies the Central Limit Theorem.  
As count gets large, estimate will be approximately normally distributed 
with mean and variance as given above

€ 

ˆ p b =
count for state b

total count for all states

€ 

1
#samples keptP(b|  d2,e2) 1 - P(b|  d2,e2)( )

Theory Behind Logic Sampling
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Aside: Random Numbers
• Monte Carlo algorithms depend on sequences of random numbers
• These sequences can be produced by:

– Hardware random number generator: uses a physical device to produce 
sequences of numbers that are random according to physical theory (e.g., 
thermal noise or quantum phenomena)

– Pseudo-random number generator: uses an algorithm to produce a 
deterministic sequence of numbers that passes statistical randomness tests

» The sequence is determined by an initial value called the seed
– Combination: use physical device to set the seed for a pseudo-random 

number generator with a faster data rate
» "Anyone who considers arithmetical methods of producing random digits is, of 

course, in a state of sin.” – John von Neumann
• Any pseudo-random number generator is ultimately periodic and can 

produce artifacts such as autocorrelation and values that fall into a low-
dimensional subspace. These artifacts can provide poor performance on 
Monte Carlo simulations

• Reproducibility of pseudo-random sequences is useful for debugging
– Results of a Monte Carlo algorithm will be the same each time if the seed is 

set to a given value at initiation of the algorithm
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Modification:  Likelihood Weighting
• Logic sampling can be very inefficient due to discarded observations

– In our example, P(d2,e2) = .26
– This means we are throwing out 74% of the observations!
– For some problems the vast majority of observations are discarded

• Logic sampling can be modified to avoid throwing out observations
– Suppose we had sampled (a2,b2,c1)
– Then P(d2|a2,b2,c1) = .1 and P(e2|a2,b2,c1) = .25
– To sample D:

» If we sampled many times, 90% of the time we would throw out observations (a2,b2,c1) 
» In other words, 10% of the time we would increment the counts for a2, b2, and c1
» Instead of throwing out the sample, we assign a weight of .1 to the sampled value due to D

– To sample E:
» The weight due to E for this observation is .25 (probability of getting e2 with logic sampling)

– Multiply the weights together to get a weight for the observation of .025
– Instead of throwing out the observation, we increment the counts for a2, b2 and c1 

by the observation weight (0.025 in this case)
• Observation weights in our example:

– If B=b1 and C=c1, observation weight is .0025 = Pr(d2|b1,c1)Pr(e2|c1)
– If B=b1 and C=c2, observation weight is .15= Pr(d2|b1,c2)Pr(e2|c2)
– If B=b2 and C=c1, observation weight is .025
– If B=b2 and C=c2, observation weight is .7125
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• Likelihood weighting estimate of P(b|d2,e2) is given by:

• If P(b|d2,e2) ≠ 0, then the likelihood weighting estimate also 
has a limiting normal distribution

€ 

˜ p b =
weights for b∑

all weights∑ =
weights for b∑

weights for b1 + weights for b2∑∑

The Likelihood Weighting Estimate
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Comparison: LW and Logic Sampling
• General rule in Monte Carlo:  replacing sampling by exact computation 

reduces variance
• Both logic sampling and likelihood weighting can be viewed as following 

these steps:
– Sample A, B, C according to P(A,B,C)
– Fix D=d2, E=e2
– Weight the observation by a "sampling weight" that depends on B and C

» In likelihood weighting the weight is P(d2,e2|B,C)
» In logic sampling the weight is drawn randomly.  It is equal to 1 with probability 

P(d2,e2|B,C) and 0 with probability 1-P(d2,e2|B,C)  [kept observations have weight 1, 
thrown out observations have weight 0]

• In both algorithms:
– Given B,C the sampling weights have expected value P(d2,e2|B,C) 
– Variance of sampling weight is smaller for likelihood weighting:

V(W)  =  E[V[W | B,C]] + V[E[W | B,C]]
– First term in this sum is zero for likelihood weighting, nonzero for logic sampling.  

Second term is same for both algorithms
– This is an example of a “Rao-Blackwell” method

» Rao-Blackwell Theorem: variance of estimator is reduced by replacing a sampling step 
by a deterministic step that preserves expected value
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• If the observed evidence was a priori very unlikely then
– Most weights will be very low
– Logic sampling and likelihood weighting can be very inefficient

• Key idea behind importance sampling is to try to focus sampling on 
probable cases

– Draw observations not from P(X) but from another distribution Q(X) 
called an importance sampling distribution.

– Weight the observations to compensate for drawing from a different 
distribution from the one we want to estimate

• Example:  estimate P(B=b1|D=d2,E=e2) in the Bayesian network of 
the earlier example

– Draw observations (A,B,C) from the distribution Q

– Let and

• Draw N samples and calculate Zi and Wi, i=1,…,n
• Estimate P(B=b1|D=d2,E=e2) as weight for b1 / total weight:

€ 

Z =
P(A,b1,C,d2,e2)

Q(A,b1,C)
if B = b1

0 if B ≠ b1

# 
$ 
% 

& % 

€ 

W =
P(A,B,C,d2,e2)

Q(A,B,C)

€ 

ˆ p b1 =

Zi
i =1

N

∑

Wi
i =1

N

∑

Importance Sampling
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•

•

• By the Law of Large Numbers, 

• If P(b1|d2,e2), P(b2|d2,e2) ≠ 0 then (S Zi , S Wi ) satisfies a  central 
limit theorem.

– Variance will be smallest when distribution Q is near P(A,B,C|d2,e2)
– Variance may be very high if Q places too small a probability on values of 

A,B,C relative to P(A,B,C|d2,e2)

• A good importance distribution is crucial
• Adaptive importance sampling

– Adapt importance distribution as sampling progresses
– Has shown good results in experimental tests

€ 

E[W ] =
P(a,b,c,d2,e2)
Q(a,b,c)

Q(a,b,c)
a,b,c
∑ = P(d2,e2)

)2,2,1(),2,(0),1,(
),1,(
)2,2,,1,(][

,

edbPcbaQcbaQ
cbaQ
edcbaPZE

ca
=!!

"

#
$$
%

&
⋅+=∑

€ 

Zi
i=1

N

∑

Wi
i=1

N

∑
→ P(b1 |d2,e2)

Why Importance Sampling Works
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A

B C

D

P(b1|a1)=.9
P(b1|a2)=.05 P(c1|a1)=.7

P(c1|a2)=.2

P(d1|b1,c1)=.99
P(d1|b1,c2)=.8
P(d1|b2,c1)=.9
P(d1|b2,c2)=.05

Markov Blanket Scoring
• Logic sampling and likelihood weighting increment the count only of 

the sampled node
– If we sample B=b2 then we increment the count for b2 by the sampling 

weight (1 for logic sampling and P(evidence|sample) for likelihood 
weighting)

• Markov blanket scoring (see Pearl, 1987):
– Compute scores

» sbi = P(bi | sampled values of Markov blanket)

– Increment the count for each value bi of B by its score

– Another Rao-Blackwell method 

• Markov blanket scoring is another example of replacing a sample 
by an expectation

• Shachter and Peot (1989) performed an experimental comparison 
of algorithms on some hard networks.  Their results indicated that 
Markov blanket scoring was worth the computational overhead in 
computing the scores.  This is an empirical evaluation and not a 
theoretical proof of greater efficiency.
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Summary: Forward Sampling

• Forward sampling draws samples in the order 
of arcs in a directed graphical model

– Parents of X are always sampled before X
• Logic sampling is the simplest forward 

sampling algorithm
– X is sampled with P(X|pa(X))
– Samples are discarded if inconsistent with 

evidence
– Samples from correct distribution but inefficient

• Many modifications have been proposed, e.g.
– Likelihood weighting
– Importance sampling / adaptive importance sampling
– Markov blanket scoring

• The R package bnlearn does inference using 
likelihood weighting

– For continuous hybrid networks, bnlearn finds only 
MAP value, even for discrete nodes 

A

B C

DE
F

H
G
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Dealing with Near-Deterministic Relationships

• Likelihood weighting and importance sampling can give very 
poor results when there are deterministic relationships

– Many zero-weight samples are rejected
– Sampling is highly inefficient

• Many applications involve mixed deterministic and 
probabilistic relationships

• SampleSearch (Gogate and Dechter, 2011) augments 
sampling with systematic constraint-based backtracking 
search

– Combining sampling with search results in bias
– SampleSearch adjusts for the bias using weights

» Exactly or approximately (when exact weights are too complex to 
compute)

– Experimental results demonstrate performance improvement in 
models with significant amount of determinism
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Markov Blanket Sampling
• In forward sampling, variables are sampled in the order imposed by 

the directed graph
– Requires a directed graphical model
– Each random variable is sampled with a distribution depending on 

values of its parents
– Consecutive realizations of the network are independent and identically 

distributed (except for weak dependence with adaptive importance 
sampling)

• Markov blanket sampling samples random variables in arbitrary order
– Applies to directed or undirected graph
– Each random variable is sampled with a distribution depending on 

values of its Markov blanket
– Consecutive realizations of the network are dependent

• Markov blanket sampling is a kind of Markov chain Monte Carlo
(MCMC) method
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Markov Chain Monte Carlo
• MCMC originated in statistical physics and has become popular in statistics
• A MCMC algorithm draws samples from a Markov Chain designed to have 

the target distribution as its stationary distribution
– A Markov chain is a sequence X1, X2, … of random variables with the 

“memoryless property”
» Pr(Xi | X1, …, Xi-1) = Pr(Xi | Xi-1) order 1 Markov chain

– A stationary distribution Q is one that persists once it is established:  if Xi has 
distribution Q, so does Xi+1

• How MCMC works
– Design a Markov chain having Ptarget as its stationary distribution
– Draw a large number of samples from the Markov chain
– Estimate Ptarget by the sample frequency 

» Discarding initial “burn in” period
» Optionally “thin” sample to reduce autocorrelation

• For inference in graphical models the 
Markov chain state is the vector of 
realizations of all random variables
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Review: Markov Chain
• Example: model evolution of colds with a Markov chain

– States:  Cold, Exposed, Healthy

– Allowable transitions:  

» Cold ® Healthy

» Healthy ® Exposed

» Exposed ® Cold

• This Markov chain has a unique stationary distribution

– If a Markov chain has a finite state space and all states are reachable 

from any state, then it has a unique stationary distribution and  all initial 

distributions evolve to this stationary distribution
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The Simplest MCMC Algorithm:
Gibbs Sampling

• Begin with an initial assignment of values to nodes
– Evidence nodes Xev are set to their observed values
– Other nodes can be set to any value

• Go through the non-evidence nodes one at a time, following 
these steps:

– Sample the node with probability:
P(node|rest of nodes)  =  P(node|Markov blanket)

– Replace  node’s state with newly sampled state
• Repeat until a large sample of observations is obtained
• Estimate P(node=value) by sample frequency

– Usually we discard samples from a “burn in” period before 
collecting statistics for computing sample frequency

– To adjust for correlation of consecutive samples we often only 
count every kth observation, where k is called the thinning interval
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A

B C

D E

P(a1)=.6

P(b1|a1)=.9
P(b1|a2)=.05 P(c1|a1)=.7

P(c1|a2)=.2

P(d1|b1,c1)=.99
P(d1|b1,c2)=.8
P(d1|b2,c1)=.9
P(d1|b2,c2)=.05

P(e1|c1)=.75
P(e1|c2)=.25

• Sample values (ai,bi,ci) form a Markov chain

• The probability distribution for (a1,bi,c1) is 

independent of past samples given the 

immediately preceding sample (ai-1,bi-1,ci-1)

• The unique stationary distribution for this 

Markov chain is P(A,B,C|D=d2,E=e2)

Example of Gibbs Sampling
• Goal is to find P(B|D=d2,E=e2)

• To sample node A:

– Markov blanket is B,C

– P(A|B,C) µ P(A) P(B|A) P(C|A)

– Example probabilities for configurations of (B,C):

» P(a1|b1,c1) = .6´.9´.7/(.6´.9´.7 + .4´.05´.2) = .99

» P(a1|b2,c1) = .6´.1´.7/(.6´.1´.7 + .4´.95´.2) = .36

• To sample node B:

– Markov blanket is A,C,D

– P(B|A,C,D) µ P(B|A)P(D|B,C)

– Example configuration for (A,C,D) = (a1,c2,d2):

» P(b1|a1,c2,d2)  =  .9´.2/(.9´.2+.95´.95)  =  .166

• To sample node C:

– Markov blanket is A,B,D,E

– P(C|A,B,D,E) µ P(C|A)P(D|B,C)P(E|C)

• D and E are not sampled
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Comments on Gibbs Sampling
• Successive states of network form a Markov chain

– Each time through the cycle gives a new set of values for all nodes in network
– Probability distribution for new set of values depends only on most recent set of 

values, not on rest of past samples

• Joint distribution P(X|Xev) is a stationary distribution of this chain
– Suppose distribution of Markov blanket of X is P(Markov blanket of X | Xev)
– Now sample X according to P(X|Markov blanket of X)
– Joint distribution of (X, Markov blanket of X) is

P(X|Markov blanket of X) P(Markov blanket of X |Xev)

• If all distributions are strictly positive P(X|Xev) is a unique stationary 
distribution and the chain converges to it

• Practical issues
– Typically we discard “burn-in” period, thin the chain to reduce correlation between 

consecutive estimates, and use convergence diagnostics to decide when we have 
enough observations

– When some probabilities are near zero the chain can get "stuck" in certain regions 
for a long time

– Convergence diagnostics can be misleading when chain gets stuck (“poor mixing”)
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Soft Evidence and Gibbs Sampling

• Hard evidence is incorporated by fixing evidence variable at 
observed value

• If variable X has soft evidence l(X) then sampling 
distribution of X|Markov blanket of X is proportional to the 
product of l(X) and all belief tables that mention X
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Cutset Conditioning & Cutset Sampling 
• Loop cutset (Becker and Geiger):

– A sink for a loop is a vertex with two edges on the loop directed into it
– A vertex is allowed for a loop if it is not a sink for that loop
– A loop cutset is a set of vertices that has at least one 

allowed vertex for each loop
• Cutset Conditioning (Pearl)

– Calculate result for all combinations of cutset
variables and weight by probability of cutset variables

– This is an exact algorithm which can be very 
costly when there are many loops

• Cutset sampling (Bidyuk and Dechter)
– Find loop cutset
– Do repeatedly for large number of samples

» Sample values for cutset variables using Gibbs sampling
» Propagate using algorithm for singly connected networks

– Has shown good results in experimental tests

{C, D} is 
a cutset

A

B C

DE
F

H
G
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Component-Wise
Metropolis-Hastings Sampling

• For many inference problems:
– P(Xnew | Markov blanket of X) is expensive or impossible to sample
– It is cheap to calculate 

P(Xnew | Markov blanket of X) / P(Xold |  Markov blanket of X) 
• Metropolis-Hastings algorithm works exactly like Gibbs sampling 

except: 
– We can use any distribution for sampling a proposed value for Xnew

given Markov blanket of X
– To ensure the correct stationary distribution, we add a rule for 

deciding stochastically whether to accept or reject the proposed 
value of Xnew
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• Begin with an initial assignment of values to nodes
– Evidence nodes Xev assigned to their observed values
– Other nodes can have any value

• Go through the non-evidence nodes one at a time, following these 
steps:

– Sample new value Xnew with Q(Xnew | Xold, MB) where Xold is the current 
value of X and MB is the current value of the Markov blanket of X

– Apply the following acceptance rule:
» Compute the acceptance probability

» Accept xnew as the new state for X with probability A(xnew|xold,MB)
» Reject xnew and keep xold as the state of X with probability 1- A(xnew|xold,MB)

• Repeat until a large sample of observations is obtained
• Estimate P(node=value) by sample frequency

€ 

A(xnew | xold ,MB) =min 1,Q(xold | xnew,MB)P(xnew |MB)
Q(xnew | xold ,MB)P(xold |MB)

" 
# 
$ 

% 
& 
' 

Metropolis-Hastings Steps
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Some Comments

• The Metropolis-Hastings algorithm has the same stationary 
distribution as Gibbs sampling.  

• Acceptance probability is higher when:
– Posterior probability of new state is higher
– Transition back to old state is more probable

• Under regularity conditions (e.g., sampling distribution Q(×) 
and A(×) do not change as sampling progresses and all 
values of each X are sampled with positive probability for all 
values of MB) the stationary distribution is unique and 
satisfies a central limit theorem

• Metropolis-Hastings sampling = Gibbs sampling when
Q(Xnew | Xold, MBold) = P(Xnew | Markov blanket of X) 

• Both Gibbs and component-wise MH suffer from the problem 
of getting stuck in local basins when exiting the basin 
requires multiple simultaneous changes
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Comparison: Markov Blanket 
and Forward Sampling

• Forward sampling with importance weights
– Sample unobserved nodes in direction of node ordering 

(Xi is sampled after Xpa(i))
– Sampled cases Xn are independent draws from from sampling 

distribution
– Achieve correct expectation by giving each draw an importance 

weight proportional to ratio of target probability and sampling 
likelihood

• Markov blanket sampling
– Begin by assigning arbitrary values to the nodes
– Visit nodes in an arbitrary order

» Propose new value for node using distribution that depends on current 
value of node’s Markov blanket

» Accept new state with probability depending on relative probabilities of 
new and old states, and relative proposal likelihoods of new and old 
states 

– Sampling distribution is a Markov chain with unique stationary 
distribution equal to target distribution 
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Comments on Markov
Blanket Sampling

• Markov blanket sampling is popular because: 
– It is general-purpose 
– It is easy to implement
– It works for both directed and undirected graphs

• BUGS (Bayesian inference Using Gibbs Sampling) is a free 
software package for statistical modeling

– Modeling language allows specification of complex graphical 
probability models

– Approximate inference uses Gibbs sampling
• Markov blanket sampling can be very slow to converge

– Can remain stuck for long periods in local basin of attraction (this is 
called “poor mixing”)

– Difficult to escape when multiple simultaneous changes are needed 
– May be very difficult to diagnose when sampler mixes poorly
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Summary of Key Ideas 
in Monte Carlo Sampling

• Rejection sampling
– Sample observations from a distribution 
– Reject observations according to criterion
– Estimate target quantity from remaining 

observations
– Resulting estimate approximates target 

quantity
– Examples:  Logic sampling and 

Metropolis-Hastings
• Importance sampling

– Sample observations from a distribution
– Compute sampling weight
– Estimate target quantity as ratio of 

weighted sums
– Resulting estimate approximates target 

quantity
– Likelihood weighting can be viewed as 

importance sampling with the importance 
distribution equal to the prior distribution

• “Rao Blackwellization”
– Replace the sampled quantity 

with its expectation when the 
expectation can be computed 
cheaply

– Examples:  likelihood weighting 
and Markov blanket scoring and 
cutset sampling

• Markov Chain sampling
– Sometimes a distribution is 

difficult to compute or sample 
directly but is the stationary 
distribution of a Markov chain that 
is cheap to sample 

– Sampling from the Markov chain 
approximates target distribution

– Examples:  Gibbs sampling and 
Metropolis-Hastings sampling
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Some General Comments
• Markov Chain Monte Carlo (MCMC)

– Construct Markov chain with stationary distribution equal to distribution 
being estimated

– If we run N parallel chains, discard first B observations of each chain 
(burn-in sample), we can treat B+1st observation from each chain as a 
sample of N independent observations from target distribution

– Correlations between draws of Markov chain induces inefficiency

• Independent sampling with importance weights
– Examples are logic sampling, adaptive importance sampling; SIR 

(sampling / importance resampling)
– Draw independent samples with distribution that approximates target 

distribution

– Use importance weights to achieve correct expected values

– Skewed weights induce inefficiency
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Unit 6 Outline

• Exact Factorization Based Algorithms

• Monte Carlo Approximation Algorithms

• Deterministic Approximation Algorithms

• Inference Inference in Relational Models
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Loopy Belief Propagation

• Apply method designed for singly connected networks in a multiply 
connected network

– Works by “peer pressure” – node’s neighbors tell it how to update its 
beliefs

– Evidence enters at observed nodes and propagates via links in network
• May not converge

– May oscillate indefinitely between belief states
– Precise conditions for convergence are not well understood
– Sufficient conditions for convergence have been identified

• Not guaranteed to be accurate even if it converges
• Works surprisingly well on some hard problems
• Sometimes used as starting point for approximation algorithms
• Iterative Join-Graph Propagation (IJGP) generalizes loopy BP to a 

join graph (like a junction tree but with loops)
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Combining Sampling with 
Deterministic Approximation

• There are algorithms that combine deterministic approximation 
with sampling

• IJGPSampleSearch is one such algorithm
– SampleSearch combines importance sampling with search in 

networks that have deterministic links
» These networks are very hard for Monte Carlo algorithms
» SampleSearch combines uses constraint-based backtracking search 

to find and avoid sampling zero-probability paths
» Weights compensate for the bias introduced by avoiding zero-

probability paths
– Iterative Join-Graph Propagation (IJGP)

» Replaces junction (join) tree with join graph
» Generalization of loopy BP
» Anytime algorithm
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Variational Approximations

• Basic idea:  
– Transform intractable network by removing some links to leave 

"tractable backbone"
– Adjust parameters in distributions in "tractable backbone" to 

approximate desired distribution
– Common approximation approach:  minimize information 

theoretic measure of distance
• Important area of research:  Upper and lower bounds on 

approximation error
– Results exist for special case network and local distribution 

structures
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• Remove all links
• Assign each node an initial probability

– Evidence nodes have probability equal to 1 on observed value
– Others have arbitrary probability

• Re-estimate each probability as:

• Iterate until convergence
• This estimate minimizes an information theoretic measure of 

distance
• Converges to local maximum of likelihood constrained to 

tractable structures 
– Can use restarts from randomly chosen initial probabilities to 

find better local optimum

€ 

Pest(X) = P(X |MarkovBlanket )Pest(MarkovBlanket )
ConfigMarkovBlanket

∑

Mean Field Approximation
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Unit 6 Outline

• Exact Factorization Based Algorithms

• Monte Carlo Approximation Algorithms

• Deterministic Approximation Algorithms

• Inference in Relational Models
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Learning as Inference in a Relational Model 
• We have shown how parameter learning can be viewed as a 

problem of inference in graphical models
– Plate model containing repeated structure is a simple kind of 

relational model
• Structure learning treats the arcs and/or within-node 

structural assumptions as uncertain
• Markov chain Monte Carlo methods can be applied to both 

parameter and structure learning
– BUGS uses Gibbs sampling for 

parameter learning in graphical 
models

– Reversible-jump MCMC
allows sampling from spaces
of different dimensionality
and can be applied to
structure learning

Plate representation for parameter 
learning in a Bayesian network
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Mixture Model
• A mixture model represents dependence of observations on 

hidden (latent) variable representing sub-populations
– Observations are drawn from parametric family
– Parameter depends on sub-population

• Mixture models can be applied to discover sub-populations 
and/or  classify observations into sub-populations

Example: Body Length of Weaver Ants (Weber, 1946)

4 6 8 10
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Although exact 
inference for this model 
is intractable, the 
parameters can be 
approximated with 
MCMC or EM

Zi

Xi
i=1,…,N

π

μr ,σr

r=1,2

π ~ Beta(ξ,ζ )
µr ,σ r

−2 ~ Normal /Gamma(m,k,α ,β )
Zi |π ~ Bernoulli(π )
Xi | Zi ,µZi

,σ Zi
~ Normal(µZi

,σ Zi
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Mixed Membership Model

• A mixed membership model (aka topic model) is a model in which:
– Observations belong to groups
– Each group is modeled as a mixture
– Mixture components (topics) are shared across all the groups
– Mixture proportions vary between groups

• This is a powerful modeling technique
– Groups share information via common set of topics
– Groups differ in the emphasis placed on the topics

• Learning methods allow us to discover topics and group 
membership simultaneously

• Many applications, e.g.:
– Text mining
– Recommender systems
– Social networks

Reference: 
http://www.people.fas.harvard.edu/~airoldi/pub/books/b02.AiroldiBleiEroshevaFienberg2014HandbookMMM/Ch1_MMM2014.pdf
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Latent Dirichlet Allocation (LDA) Model
• Popular  mixed membership model commonly applied to natural language 

understanding and text retrieval
– There are M documents
– Each document has N words
– The nth word in the mth document is denoted by Wmn

– Each word Wmn has an associated “topic” Zmn
– The topics Zmn are independent draws from a K-dimensional multinomial 

distribution, where K is the number of topics. 
– The parameter θm of the topic distribution depends on the document.
– θm is drawn from a Dirichlet distribution with parameter !
– The words Wmn are independent draws from a M-dimensional 

multinomial distribution, where M is the number of words 
– The parameter "# of the word distribution depends on 

the topic k
– β is the parameter of the Dirichlet prior for the

parameter "# of the word distribution
• The words are observed; the 

topics are discovered from the 
document corpus.

Source: http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

=observation
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Comments on Mixed Membership Models
• In a standard mixture model each observation would be 

associated with exactly one of the mixture components
– E.g., each ant is either a major or a minor ant

• In a mixed membership model like LDA, each document can 
be associated with multiple components (multiple topics)

– The topics cluster words that tend to co-occur
– A document can be “about” more than one topic (i.e., it can 

contain more than one co-occurring cluster of words)
– This allows co-occurrence of word patterns to be shared 

among documents, and also allows for document heterogeneity
• The Dirichlet distribution’s tendency for sparsity tends to 

keep the number of topics per document small
• Inference problems for mixed membership model

– Training: learn parameters of mixed membership model from a 
sample of observations

– Application: inference on new observations
– Online learning: refine model as new observations come in



Unit 6 (v2) - 57 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Enron Email Dataset LDA Topics
source: William Darling, http://www.uoguelph.ca/~wdarling/tm/enron.html#fn
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Inference in Mixed Membership Models
• Typical mixed membership models use a conjugate prior for 

the mixture components and the observations
– If the latent memberships were observed we could do exact 

inference on the parameters
• Standard inference methods

– Variational approximation
– Gibbs sampling
– Collapsed Gibbs sampling

» Conditional on the observations and all other 
latent membership variables, the distribution for 
an individual membership variable can be 
computed exactly

» Thus, we can sample !" conditional on
#$:" and !¬"

» This “collapsed” sampling helps
to prevent the Gibbs sampler
from getting stuck in local
modes of the posterior distribution
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Lifted Inference

• In Unit 3 we used first-order languages to allow 
representation of repeated structure

– We discussed inference by constructing a problem-specific BN 
called a SSBN or “ground network”

– The ground network typically has repeated structure
– Inference on the full ground network can be intractable

• Sometimes we can improve inference performance by 
exploiting the repeated structure

• “Lifted” inference does this
– Perform inference directly on the first-order representation
– Apply results to the ground model

• Performance improvements depend on:
– Structure of the ground model
– Specific patterns of evidence 
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Summary and Synthesis

• Exact inference
– There is a duality between factorization approach and graph-

based approach
– Efficiency improvements in one type of algorithm can often be 

transported to another type of algorithm
– Hard problems are generally hard for all algorithms
– Factoring approach seems a more natural way to handle 

context-specific independence
• Common types of approximation algorithm

– Stochastic sampling
– Deterministic approximation

• There are many problem-specific types of approximation 
algorithm
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