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Learning Objectives

• Describe the elements of a graphical model learning 
algorithm, and the main methods for each

• Given a Beta or Dirichlet prior distribution and a sample of 
cases, compute the posterior distribution for a local 
distribution for a Bayesian network

• Compute the relative posterior probability for two structures 
for a Bayesian network when the prior distribution is a Beta 
or Dirichlet mixture distribution

• Describe methods for learning graphical models with missing 
observations and latent/hidden variables
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Unit 5 Outline

• Overview of Learning in Graphical Models

• Parameter Learning in Directed Graphical 
Models

• Structure Learning in Directed Graphical 
Models

• Learning in Undirected Graphical Models

• Statistical Relational Learning
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Learning Graphical Models from Data

• A graphical model is defined by:
– Structure
– Parameters

• Structure
– Nodes and states
– Arcs
– Functional form of local distributions (noisy-OR; context-

specific independence; parameterized distributions; etc.)

• Parameters
– Probabilities in a conditional probability table
– Parameters of a parameterized local distribution

• The learning task can be decomposed into two parts:  
– Learning unknown parameters conditional on structure
– Learning unknown structure

» This is usually taken to mean learning conditional dependence 
relationships with random variables taken as given
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• Easiest case:
– Random sample (iid observations) of cases from the network to be learned
– Each case contains an observed value for all variables in the network

• Complexities:
– Missing observations: Some variables are not observed in some cases
– Hidden or latent variables:  Some variables are not observed in any cases
– Non-random sampling:  Sampled cases are not representative of the 

population for which the graphical model is being learned
– Relational learning: the model to be learned has relational structure
– Need to combine expert knowledge & data

Raw Material: The Observations
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Unit 5 Outline

• Overview of Learning in Graphical Models

• Parameter Learning in Directed Graphical 
Models

• Structure Learning in Directed Graphical 
Models

• Learning in Undirected Graphical Models

• Statistical Relational Learning
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Parameter Learning
• The distribution of a node X is a function of the parents of X and a 

set of parameters
– For a CPT, the parameters are the entries in the CPT
– We may be able to construct the CPT from fewer parameters, e.g.: 

» Noisy-or: a probability for each trigger and a leak probability

» Partitions: a probability for each partition element

– In general, a local distribution can be any parameterized function that 
maps parent configurations to probability distributions

• A local distribution is a regression model 
– A regression model expresses the probability distribution for a 

dependent variable as a function of independent variables and 
parameters

– The local distribution for X is a regression model in which X is the 
dependent variable and pa(X) are the independent variables

– Sometimes we write Pr(X|pa(X),q) to emphasize that the local 
distribution depends on both the parents of X and the parameter q

– Parameter learning uses data to estimate q
• Parameter learning can be recast as inference in a larger graphical 

probability model (data and parameters)
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X

Parameter Learning: Starting Simple
• Simplest case of learning:

– Bayesian network with one random variable

– Two states, X=1 or X=0

– Unknown probability q = P(X=1)

– Independent and identically distributed observations X
1
, …, X

n

• A natural idea is to estimate q by the frequency of 1�s in our sample

– If there are k 1’s out of n observations, estimate is    

– This estimator has some nice properties

» Maximizes the likelihood function
(i.e., we choose q to make the data 

as probable as possible)

» Consistent (i.e., k/n converges to 

q with probability 1 as nà∞

» Other nice theoretical properties

• But what if there are no 1’s in the 

sample? Do we want         ?

The likelihood function is P(data | parameter) 

viewed as a function of the parameter

θ̂ = k / n

θ̂ = 0
0
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• A Bayesian network for (!, X1, …, Xn): Plate notation: 

MFrag notation: 

• Given !, the X�s are independent and have the same distribution 
• The model specifies a prior distribution for ! and one distribution P(Xi| !) (same for all Xi)
• Note: ! is a continuous random variable taking on values in the unit interval
• Observations on the X's can be used to estimate !

– Common approaches: maximum likelihood, maximum a posteriori, full Bayes

!

X1

X2

Xn
･ ･ ･

!

Xi
n

!

X(i)

Learning a Parameter ": Graphical Model Formulation

- "Plate" stands for n copies of X
- Plate notation is widely used in 

Bayesian machine learning

This Bayesian network represents conditional 
independence but does not represent that 
local distributions are same for all xi
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Density and Cumulative Distribution 
Functions: Review

Area under f(!) between a and b 
is equal to difference

F(b)-F(a)
and is probability that value of random 

variable lies between a and b

Each individual value of a 
continuous random variable 
has probability zero

" ! = $%(!)
$!

" ! = (
)*+

% ! $!



Unit 5 (v4a) - 11 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Beta Family of Distributions

• Convenient family of prior distributions for an unknown probability !
– Possible values are real numbers between 0 and 1
– Closed under Binomial sampling: posterior distribution for ! is also Beta
– Uniform distribution (all probabilities equally likely) is a member of the 

Beta family
• The density function for the Beta distribution with integer parameters 
a and b is:

" ! #, % = '()*+ !
'*+ ! )*+ ! !

'*+(1 − !))*+ for 0 < θ < 1 (1a)

• The density function for the Beta distribution with arbitrary 
parameters a > 0 and b > 0 is:

" ! #, % = 7('())
7(')7()) !

'*+(1 − !))*+ for 0 < θ < 1 (1b)

!

X1

X2

Xn

Γ(α ) = xα−1e− x dx
0

∞

∫
Γ(α ) = (α −1)!  for integer α
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Density Functions for Various Beta Distributions

! " #, % = Γ(# + *)
Γ(#)Γ(*) "

,-.(1 − ")1-. for 0 < θ < 1

Γ(α ) = xα−1e− x dx
0

∞

∫
Γ(α ) = (α −1)!  for integer α

Γ(α ) is the Gamma function

E[θ |α ,β ]= α
α + β

V[θ |α ,β ]= αβ
(α + β )2 (α + β +1)
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• The prior density function (for integer !, #):

$ % !, # = '()*+ !
'*+ ! )*+ ! %

'*+(1 − %))*+ (1a)

• Data likelihood for k 1’s and n-k 0’s:
P((X1,…Xn)=(x1,…,xn)| %) = %k(1- %)n-k (Bernoulli distribution)

• Prior times likelihood:

P((X1,…Xn)=(x1,…,xn)| %) $ % !, 1 = '()*+ !
'*+ ! )*+ ! %

'(2*+(1 − %))(3*2*+ (2)

Note: (2) is proportional to the density function of the Beta distribution 
with parameters a+k and b+n-k.

• Applying Bayes Rule:

(3)

Note: (3) is the density function of the Beta distribution with 
parameters a+k and b+n-k. 

Prior to Posterior Distribution

4 % (5+, … , 53 = (7+, … , 73)) =
4((5+, … , 53) = (7+, … , 73)|%)$(%|!, #)

∫:;<
+ 4((5+, … , 53) = (7+, … , 73)|%)$(% !, # =%

= %'(2*+(1 − %))(3*2*+
∫:;<
+ %'(2*+(1 − %))(3*2*+=%

= ! + # + ? − 1 !
! + @ − 1 ! # + ? − @ − 1 ! %

'(2*+(1 − %))(3*2*+
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• IF prior density function is Beta(!, #):

$ % !, # = '()*+ !
'*+ ! )*+ ! %

'*+(1 − %))*+ (1a)

• AND likelihood function is Bernoulli(%):
P((X1,…Xn)=(x1,…,xn)| %) = %k(1- %)n-k

• THEN posterior density function is Beta(! + 2, # + 3 − 2):

$ % ! + 2, # + 3 − 2 = '()(4*+ !
'(5*+ ! )(4*5*+ ! %

'(5*+(1 − %))(4*5*+ (3)

Beta – Bernoulli Conjugate Pair

The Beta family of prior distributions and the 
Bernoulli family of likelihoods are a 

conjugate pair
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Conjugate Pairs of Distributions
• A conjugate pair is a pair ! "|$ / % &|" of prior/likelihood 

families that is closed under sampling:
IF Observations X1, …, Xn are a random sample from 

% &|" and prior distribution for " is ! "|$
THEN Posterior distribution for " is ! "|a∗ , another 

member of the conjugate family
• Example: The Beta and Binomial families of distributions are a 

conjugate pair:
IF Observations X1, …, Xn are a random sample from 

Binomial(") and prior distribution for " is Beta(a,b)
THEN Posterior distribution for " is Beta(a+k,b+n-k), 

another member of the conjugate family

• Conjugate pairs simplify Bayesian inference
– Posterior distribution can be found exactly
– There is a simple updating rule to find the parameters of the 

posterior distribution from parameters of the prior distribution 
and data summaries
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Beta Conjugate Updating

• Inference from prior to posterior
– Prior distribution is Beta (a,b) with expected value E[!] = a/(a+b)
– Data:  n observations with k 1’s
– Posterior distribution is Beta (a+k, b+n-k) with expected value 

E[! |X] = (a+k)/(a+b+n)
• Interpretation of Beta prior distribution:

– Prior information is �like� a previous sample of a+b observations with a 1’s
– After n observations with k 1’s, posterior information is �like� a previous sample of 
a+b+n observations with a+k 1’s.

– The “hyperparameters” a and b are called “virtual counts” or “pseudo counts”

• Precision of estimate increases as sample size gets larger
– Variance of the prior distribution

– Variance of the posterior distribution

V[θ ]= αβ
(α + β )2 (α + β +1)

= E[θ ](1− E[θ ])
(α + β +1)

V[θ | X]= (α + k)(β + n − k)
(α + β + n)2 (α + β + n +1)

= E[θ | X](1− E[θ | X])
(α + β + n +1)
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Uniform Prior Distribution

• Uniform distribution is Beta(1,1)
• If prior distribution for ! is uniform then posterior distribution 

for ! is Beta(k+1, n-k+1)
• Posterior expected value of ! is 

E[! |X] = (k+1)/(n+2)
• Posterior variance of ! is

• A posterior credible interval can be obtained from quantiles 
of the Beta distribution

– Lower bound of 90% interval is 0.05 quantile of the Beta 
distribution, qbeta(0.05, k+1, n-k+1) in R

– Upper bound of 90% interval is 0.95 quantile of the Beta 
distribution, qbeta(0.95, k+1, n-k+1) in R

(This formula is called Laplace�s rule of succession)

V[θ | X]= (k +1)(n − k +1)
(n + 2)2(n + 3)
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• Parameter learning can be represented as Bayesian network
• Assumptions:

– Local independence: !B|a1 is independent of !B|a0

– Global independence: !B|a1 and !B|a0 are independent of !A

– All parameters !B|a1 , !B|a0, and !A, have Beta distributions
– We will assume a=1 and b=1 (uniform prior distribution) for all !�s

• Data: the number of observations in each category:
a1,b1 n11

a1,b0 n10

a0,b1 n01

a0,b0 n00

• Posterior distributions for Beta (1,1) (uniform) prior:

Learning Unknown Probabilities
in a Binary Bayesian Network

A

B

!"

!#|%&

!#|%'

n
θA ~   Beta(n11 + n10 +1,n01 + n00 +1)        E[θA | data) = n11 + n10 +1

n11 + n10 + n01 + n00 + 2

θB|a1 ~   Beta(n11 +1,n10 +1)        E[θB|a1 | data) = n11 +1
n11 + n10 + 2

θB|a0 ~   Beta(n01 +1,n00 +1)        E[θB|a0 | data) = n01 +1
n01 + n00 + 2



Unit 5 (v4a) - 19 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Numerical Example
• Beta(1,1) (uniform) prior distribution for !A, !B|a1 and !B|a0

• The data:
a1,b1 10 n11

a1,b0 6 n10

a0,b1 2 n01

a0,b0 7 n00

• Posterior distribution for !A
– Beta distribution with parameters 17 = 1+10+6 and 10 = 1+2+7
– Mean: 17/(17+10) = 0.63
– Standard deviation: ((0.63)(0.37)/(28))1/2 = 0.09

• Posterior distribution for !B|a1
– Beta distribution with parameters 11 = 1+10 and 7 = 1+6
– Mean: 11/(11+7) = 0.61
– Standard deviation: ((0.61)(0.39)/(19))1/2 = 0.11

• Posterior distribution for !B|a0
– Beta distribution with parameters 3 = 1+2 and 8 = 1+7
– Mean: 3/(3+8) = 0.27
– Standard deviation: ((0.27)(0.73)/(12))1/2 = 0.13
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Nodes with More than 2 States

• For nodes with more than 2 states we can use a Dirichlet prior distribution for 
the local distributions

• Dirichlet distribution is a multivariate generalization of the Beta distribution
– If a p-dimensional random variable (!1, …, !p) has a Dirichlet(a1, …, ap) 

distribution then:
» Only values 0 < !i < 1 and Si !i = 1 have positive probability density
»

– Dirichlet(1,…,1) puts equal density on all probability distributions (uniform 
distribution)

– If ! has a Beta(a,b) distribution then (!,1- !) has a Dirichlet(a,b) distribution
– If (!1, …, !p) has a Dirichlet(a1, …, ap) distribution then !1 has a 

Beta(a1, a2+…+ ap) distribution
• If the prior distribution is Dirichlet(a1, …, ap) and ni observations are 

observed in each state, then:
– Posterior distribution is Dirichlet(n1+ a1,…,np+ ap)
– E[!i|data] =  

E[θi ]=
α i

α1 +!+α p
V[θi ]=

E[θi ](1− E[θi ])
α1 +!+α p +1

ni +α i

n1 +!+ np +α1 +!+α p
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Uniform Prior Distribution with Many States 

• Uniform prior distribution Dirichlet(1, …, 1) corresponds to 
assigning one �virtual observation� per state

– A uniform distribution on k probabilities is not a uniform 
distribution on each probability if k>2!

– If there are k states each state has a Beta(1, k-1) distribution with 
expected value 1/k

• Accurate estimation from data requires  the sample size to be 
large relative to the number of 
�virtual observations�

• When there are many states and
few observations the uniform 
prior  distribution results in a 
posterior distribution that is 
very �flat.�

• This can happen even with 
large sample sizes when a 
node has many parents
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Effect of Many States: Example

• Consider a distribution for a node A which has p states
– Observations: 40 cases in state a1; 10 cases in state a2

– Uniform prior distribution
• Case 1: Node A has 2 states: a1 and a2

– Posterior distribution for !1 is Beta(41, 11)
– Posterior Mean for !1 is 0.79
– Posterior 90% interval for !1 is (0.69, 0.87)

• Case 2: Node A has 20 states: a1, a2, …, a20

– Posterior distribution for (!1, !2, …, !20) is Dirichlet (41, 11, 1, …, 1)
– Posterior distribution for !1 is Beta(41, 29)
– Posterior Mean for !1 is 0.59
– Posterior 90% interval is (0.49, 0.68)

• Uniform prior for node with p states assigns p virtual observations 
uniformly (one to each state)

– This can give problematic results when the number of virtual 
observations is large relative to the number of actual observations



Unit 5 (v4a) - 23 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Curse of Dimensionality

• There are no 
observations for many 
combinations of A and B 

• Many distributions are 
based on very small 
sample sizes

Actual Frequency Estimate Posterior Expected Value
With Uniform Prior

Comparison of actual 
probabilities with 
probabilities learned from 
a sample of size 200
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Modeling Local Distributions

• Parameterized models can increase efficiency of learning
– Context-specific independence

» Same child distribution for different combinations of parents
» This is a special type of parameterized distribution

– General parameterized distribution
» e.g., child node has normal distribution with parameters depending on parent

Actual Posterior Expected Value 
with Uniform Prior

Regression Estimate

Regression model:
• C is normally distributed given 

A & B
• Mean wAA+wBB+w0
• Standard deviation s
• Four parameters:  wA, wB, w0, s

If we can model the relationship well with a parameterized model, 
regression dramatically out-performs unconstrained Dirichlet learning
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Example: 
Cigarettes

Cigarette data set http://www.mste.uiuc.edu/regression/cig.html consists of 
measurements of weight, tar, nicotine, and CO content of 25 cigarette brands

http://www.mste.uiuc.edu/regression/cig.html
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Graphical Model for Cigarette Data

• Assume a graphical model in which all RVs have normal 
distribution with mean a linear function of parents:

C ~ N(bC, sC) 
N ~ N(b0N + b1NC , sN)
T ~ N(b0T + b1TC + b2TN , sT) 
W ~ N(b0W + b1WT , sW)   
(statistical tests indicate W conditionally independent of C & N given T

• Parameters of this model can be estimated by estimating a linear 
regression model using statistical software

– Maximum likelihood
– Maximum a posteriori
– Fully Bayesian



Unit 5 (v4a) - 27 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Representing Regression Model in a BN Package
• To represent this model in Netica:

– Enter equations using scripting language
P (C | ) = NormalDist(C,12.5,4.74)
P (N | C) = NormalDist(N, 0.01+0.069*C,0.137) 
P (T | N, C) = NormalDist(T, -2.22 + 10.1*N + 0.446*C, 0.96)
P (W | T) = NormalDist(W, 0.877+0.0076*T, 0.078)

– Discretize all nodes
– Convert all equations to tables 
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Parameter Estimation in High Dimensions
• Parameter learning in graphical models is a problem of statistical 

estimation in high-dimensional parameter spaces
• Statistical estimates perform poorly when the number of 

parameters being estimated is large relative to the number of 
observations

• When expert knowledge is available it can be used to 
– Specify prior distributions for parameters
– Find models that capture essential aspects of the problem and have 

fewer parameters
• Both these uses of expert knowledge involve application of expert 

judgment
• Good modeling practice includes many practical tools for coping 

with the “large k small n” problem
• Bayesian analysis is a formal, theory-based approach to combining 

expert judgment with empirical observations
• Most methods that work well in practice can be given a Bayesian 

justification
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Parameterized Models for Local Distributions
• Context-specific independence:

– Probabilities are identical for a subset of configurations of the parent variables
– Example:  Sensor A and B have the same detection probability in the daytime 

in clear weather
– We can group the cases for Sensor A and Sensor B under these conditions 

and estimate a single probability
– This is called “parameter tying” (parameters for grouped cases are “tied” to 

each other
• Independence of causal influence

– ICI models have fewer parameters than general local distribution
– There is no closed-form solution for parameter learning with common ICI 

models such as noisy-OR 
– Can be handled with methods for hidden variables (auxiliary variables are 

treated as hidden)
• Numeric and continuous random variables

– A RV’s distribution given its parents can be specified using any parameterized 
statistical model

– Parameters can be estimated by regression methods
– Conjugate priors are often used for continuous distributions to simplify 

computation
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Conjugate Families and Virtual Sufficient Statistics

• Conjugate families of distributions are very useful in Bayesian modeling
• Many commonly applied distributions have conjugate families

– We have already discussed the Beta/Bernoulli (or Beta/Binomial) conjugate 
pair and its generalization to the Dirichlet/Multinomial conjugate pair

– The Gamma distribution is a conjugate prior for the rate parameter for 
Poisson observations (or exponential observations parameterized by rate) 

– The Normal distribution is a conjugate prior for mean of a normal 
distribution with known covariance

– The Normal / inverse Gamma distribution is conjugate prior for the mean 
and precision (inverse covariance) of a normal distribution with unknown 
mean and covariance

• Any conjugate prior distribution has an interpretation as a summary of 
�virtual prior samples�

• Parameter learning with conjugate priors can be viewed as updating 
�virtual sufficient statistics�

– A function of the observations is a sufficient statistic if it captures all the 
information needed to obtain the posterior distribution
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Missing Observations

• Many standard learning algorithms discard cases with 
missing data

• This can seriously degrade learning algorithms
• There are statistically justified methods for learning with 

missing data
• The most common are imputation and EM algorithm

– Imputation inserts educated guess for missing observation
» Random or deterministic
» Heuristic or theory-based
» Single pass or iterative

– EM algorithm is an iterative method for maximum likelihood or 
maximum a posteriori estimation in presence of missing data



Unit 5 (v4a) - 32 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

EM Algorithm
• General method for statistical parameter estimation in the presence 

of missing data
• The method consists of two steps:

– E-step:  Given the current estimate of the parameter, compute the 
expected value of the �missing data sufficient statistics�

» In the case of learning a belief table this means �filling in� missing values 
with probabilities 

– M-step:  Given the current estimate of the �missing data sufficient 
statistics� compute the maximum a posteriori (or maximum likelihood) 
estimate of the parameter

» In the case of learning a belief table this means estimating local 
probabilities from counts

• Under regularity conditions (data are �missing at random� and the 
model is exponential family) the EM algorithm converges to a local 
maximum of the posterior distribution

– Missing at random (MAR): no systematic relationship between the 
propensity to be missing and the value of the missing data

– Example: missing responses to “Did you cheat on your taxes?” are 
probably not MAR

– Note: if uniform prior, then MAP is same as MLE
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The Data Iteration 1 Iteration 2 Iteration 3

Example of EM Algorithm

• Detailed steps:
– Estimate all missing observations

» Iteration 1: use uniform probabilities, possible values are all 0.5
» Iteration 2, Rows 2& 5: .42/(.42+.21) and .21/(.42+.21)
» Iteration 3, Row 10: .16/(.16+.19) and .19/(.16+.19)

– Compute column sums
– Normalize to obtain probabilities for 00, 01, 10, 11
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Learning with 
Independence of Causal Influence

• Example:  noisy-OR
– Represent as "trigger variable" 

model
– Estimate P(!i | Ci = TRUE)
– All other probabilities are given

» P(!i | Ci = FALSE) = 0
» P(E | C1, …, Cn) = 0 if all causes 

are false
» P(E | C1, …, Cn) = 1 if any 

cause is true

• C’s and E are observed but 
Q′s are not
– No closed form solution
– EM algorithm can be used to 

estimate parameters
» Local distribution for E given Q’s is 

specified by the model
» Local distribution for Qi given Ci is 

estimated via EM

• Other ICI models can be 
handled in a similar way

– Represent as �trigger variable�
model

– Apply EM to learn parameters
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Example: Learning Noisy-Or with EM

• Data: 2000 samples from Noisy-Or 
model

• Comparison: 
– Model 1: standard parameter learning, 

unrestricted model
– Model 2: trigger variable representation 

of noisy-or model, learned by EM, then 
trigger variables absorbed

True noisy or distribution Learned by EMLearned via unrestricted 
parameter learning

Note: 2000 observations contain 
only 3 cases with C1 = C2 = C3 = f
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How EM Works for Bayesian Dirichlet 
Parameter Learning in Bayesian Networks

1. Initialize table of expected data for each clique in the junction tree
– Rows are cases; columns are configurations of clique variables
– For each case, assign probability 0 to configurations inconsistent with 

observations; uniform probabilities for other configurations
2. Sum over cases and normalize to find expected clique marginal 

distributions
3. Estimate local distributions ! " #$ " from clique marginal 

distributions 
4. Compute new clique tables in JT using new estimates of ! " #$ "
5. For each case with missing data, update expected data tables for 

each clique in JT:
– Insert observed data and use JT algorithm to propagate evidence
– Use clique marginal distribution given observed data to assign 

probabilities to configurations consistent with the data (this will assign 0 
probability to configurations inconsistent with data)

6. If change since last iteration is greater than tolerance, go to Step 2, 
else stop



Unit 5 (v4a) - 37 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Parameter Learning – It Can Get Complicated!

Plate notation for a hierarchical 
linear regression model*

* https://www.researchgate.net/publication/328878614_Variational_Bayesian_hierarchical_regression_for_data_analysis/figures?lo=1

Plate notation for a dynamical 
topic model**

** https://www.researchgate.net/publication/261424851_Topic_models_and_advanced_algorithms_for_profiling_of_knowledge_in_scientific_papers/figures?lo=1
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Summary: Learning Local Distributions in BNs
• Beta or Dirichlet conjugate updating is appropriate when:

– A random variable has finitely many states (two states for Beta 
distribution; k states for Dirichlet distribution)

– There are no constraints on the probabilities
– Prior information is �like� having observed a previous sample with ai

observations in category i, for i = 1, …, p
• When there is context-specific independence:

– Combine all configurations of parent states for which the child node has 
the same distribution (this is an example of “parameter tying”)

• In general, the local distribution for node X can be any function of the 
states of pa(X)

– A node�s local distribution is a regression model with that node as the 
dependent variable and its parents as the independent variables

• Missing data can be handled with EM
• ICI can be represented as hidden variables and handled with EM
• General Bayesian parameter learning is inference on a set of 

Bayesian regression problems
– Difficulty depends on distributions of random variables & pattern of 

missing data and latent variables
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Unit 5 Outline

• Overview of Learning in Graphical Models

• Parameter Learning in Directed Graphical 
Models

• Structure Learning in Directed Graphical 
Models

• Learning in Undirected Graphical Models

• Statistical Relational Learning
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Learning the Structure of a BN
• Structure of a BN represents qualitative information

– Is there an arc between two random variables?
» If so, what is the direction of the arc?

– What are the functional forms of the local distributions?
» Are two rows of the belief table identical (context-specific independence)?

» Is there a parametric equation to represent the relationship between parents and 
children?

– Is there a hidden (unobserved, latent) random variable?

• Methods for learning structure
– Score based methods

» Method for searching over structures 

» Method for scoring how good a structure is
• Bayesian score; description length; BIC or AIC score; others

– Constraint-based methods
» Use conditional independence tests to identify the Markov blanket of all variables

» Find BN structure (or structures) matching the Markov blanket
• Arc orientation may be undetermined for some arcs
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Bayesian Structure Score
• We can represent uncertainty about the structure of a Bayesian 

network as a probability distribution over structures
– Assign prior probability to each structure and to local distributions 

conditional on structure
– Apply Bayes Rule to obtain posterior distribution for structures and 

parameters given data D
• Bayes rule for learning structure:

• P(D|S) is the marginal distribution (integrating out parameters) 
of P(D|S, !S), where !S is the structure-specific vector of 
parameters

– Note that !S has different dimension for different structures
• The ratio P(D|Si)/P(D|Sj) is called the Bayes factor for 

comparing structure i against structure j
• The value ln P(D|S) is called the Bayesian score for S
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Example of Learning Structure
• Bayesian network with 2 nodes, A and B, each with 2 possible 

values
• We are considering two structures, S1 and S2
• Assign prior probabilities P(S1) and P(S2) to the two structures
• Assign independent uniform prior distributions for parameters 

given structures

A

B
n

!A

!B|a0

!B|a1

A

B
n

!A

!B

S1 S2
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Computing P(Data|Structure)

• P(D|S,!S) can be written as a product of factors
• For structure S1:

"($|&',!(, !*) = !( -../-.0(1 − !()-0./-00(!*)-../-0.(1 − !*)-.0/-00
• For structure S2:

"($|&3,!(, !*|4', !*|45) =
!( -../-.0(1 − !()-0./-00(!*|4')-..(1 − !*|4')-.0(!*|45)-0.(1 − !*|45)-00

• The local and global independence assumptions allow us to integrate 
the !′s out of each factor separately and multiply the results together

– The factor for parameter ! has the form of an integral:

∫895
' !-. 1 − ! -0:(!|;, <)=!

where nv1 observations have V=v1 and  nv0 observations have V=v0 
• This integral is called the marginal likelihood of D (parameter ! is 

integrated out)

: ! ;, < is the Beta density function
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Marginal Likelihood for the Beta Distribution
• The marginal likelihood is the likelihood of the data D integrated 

over the prior distribution for !
∫#$%
& !'() 1 − ! '(,-(!|0, 2)4!

= ∫#$%
& !'() 1 − ! '(, 5(678)

5(6)5(8) !
69& 1 − ! 89&4!

= 5(678)5(6)5(8) ∫#$%
& !'()769& 1 − ! '(,789&4!

= 5(678)
5(6)5(8)

5(67'())5(87'(,)
5(6787'()7'(,)

• If 0 and 2 are integers:

∫#$%
& !'() 1 − ! '(,-(!|0, 2)4! = 6789& ! 67'()9& ! 87'(,9& !

69& ! 89& ! 6787'()7'(,9& !

• If a=b=1 (uniform distribution):  

∫#$%
& !'() 1 − ! '(,-(!|0, 2)4! = '() ! '(, !

'()7'(,7& !

Prior normalizing constant
divided  by

Posterior normalizing constant
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Example
• The learning problem:

– Two binary nodes, A and B
– Two possible structures, S1 and S2

• The prior distribution:
– Structures have prior probabilities P(S1) = 0.7 and P(S2)=0.3

– Conditional on structure, all local distributions have independent uniform 
distributions

• The data:  Counts in each category
na1,b1 5 na0,b1 2

na1,b0 3 na0,b0 3

• The marginal likelihoods: • Structure posterior probabilities:

P(S1|D) µ P(S1)P(D|S1)

= 0.7                 = 1.62´10-9

P(S2|D) µ P(S2)P(D|S2)

= 0.3                        = 5.51 ´10-10

8!5!
14!

7!6!
14!

8!5!
14!

5!3!
9!

2!3!
6!

A

B
n

!A

!B|a0

!B|a1

A

B
n

!A

!B

S1 S2

P(D | S1) =
na1!na0 !
(n +1)!

nb1!nb0 !
(n +1)!

= 8!5!
14!

7!6!
14!

P(D | S2 ) =
na1!na0 !
(n +1)!

na1b1!na1b0 !
(na1 +1)!

na0b1!na0b0 !
(na0 +1)!

= 8!5!
14!

5!3!
9!
2!3!
6!
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Example (cont)
• Usually we compare structures by computing relative posterior 

probabilities P(Si|D)/P(Sj|D)

– P(S1|D)/P(S2|D) =                                = 2.94

– P(S1|D) = 2.94/(1+2.94) = 0.746 

• If all structures have equal prior probabilities we need only P(D|S)
– Ratio P(D|S1) / P(D|S2) depends only on marginal likelihoods for 

nodes with different parents in S1 than in S2

– Marginal likelihoods for nodes with same parents cancel out
• For large networks and large numbers of observations:

– The number of structures is astronomical and each has tiny 
probability

– We usually work with ln P(D|S) to prevent numeric underflow
– ln P(D|S) is called the Bayesian Dirichlet (BD) score 
– The goal is usually to find one or a few good structures, not to 

estimate the posterior probability of any one structure

0.7
0.3

8!5!
14!

7!6!
14!

8!5!
14!

5!3!
9!
2!3!
6!
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How the Posterior Probability 
Varies as Counts Vary

• The data:  100 observations divided into categories as follows:
– a1,b1 m1

– a1,b0 50-m1

– a0,b1 m2

– a0,b0 50-m2

• Plot of ln [ P(S2|D)/P(S1|D) ] against m1 and m2 (uniform prior)

Structure S2 with arc from A to B 
becomes more probable as k1 

differs more from k2

A

B
n

!A

!B|a0

!B|a1

A

B
n

!A

!B

S1 S2
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Marginal Likelihood for the Dirichlet Distribution

• When a node has more than 2 states we use the Dirichlet
distribution

• The marginal likelihood for the Dirichlet distribution is similar to the 
marginal likelihood for the Beta distribution

• The marginal likelihood for  n1, n2, …, nr observations in states 1, 2, 
…, r  is:

• If the ai are all integers then the marginal likelihood is:

• For a uniform prior distribution the marginal likelihood is:

• Usually take logs to avoid numeric underflows

Γ(α1 +!+α r )
Γ(α1)!Γ(α r )

Γ(α1 + n1)!Γ(α r + nr )
Γ(α1 +!+α r + n1 +!nr )

(α1 +!+α r −1)!
(α1 −1)!!(α r −1)!

(α1 + n1 −1)!!(α r + nr −1)!
(α1 +!+α r + n1 +!nr −1)!

(r −1)! n1!!nr !
(n1 +!nr + r −1)!
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The K2 BN Learning Algorithm 
• We have covered the machinery necessary to understand a basic 

Bayesian learning algorithm
• Assumptions behind the K2 learning algorithm 

– Assume ordering of nodes is given
– All graphs consistent with node ordering are equally likely a priori
– All local distributions of nodes given parents are uniform 

» Beta(1,1) for binary nodes
» Dirichlet(1,1,…,1) distribution for nodes with more than 2 states

• K2�s basic approach to structure learning:
– K2 evaluates structures by P(D|S) 
– Under the equal-prior assumption, this is proportional to P(S|D)
– The algorithm uses a greedy search over structures and returns the 

structure with the highest P(D|S)
– This is a local optimum of the posterior distribution of structures given 

the observations
– ln P(D|S) is called the K2 score; the K2 algorithm finds a local optimum 

of the K2 score
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Steps in the K2 BN Learning Algorithm 

(Assume a given order of the nodes)

1. Begin with a network with no arcs

2. Look for the best arc to add

a) Compute score ln P(D|S) of network with each new arc

b) This can be computed efficiently because only one term in the 

sum changes when an arc is added (the local distribution of the 

node at the tail of the arc)

c) Pick highest scoring arc

3. If best arc from Step 2 does not increase posterior probability of 

resulting network, go to Step 4.  Else add best-scoring arc to the 

network and go to Step 2.

4. Output network with highest posterior probability

(Cooper and Herskovits, 1992)
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Some Common Score Functions

• K2 score

• BD score

• BDe (e = likelihood equivalence)

– Uses a single global virtual sample size, e.g.:

» For S1 - !"~$%&' 1,1 , !*~$%&' 1,1
» For S2 - !"~$%&' 1,1 , !*|,-~$%&' -

. ,
-
. , !*|,/~$%&' -

. ,
-
.

» Prior for all structures is “like” 2 total prior observations distributed 

evenly across states '-0-, '-0/, '/0-, '/0/
– Ensures that any two networks with same likelihood have the 

same score

• Bayesian Information Criterion (BIC) / Minimum Description 

Length (MDL) / Schwartz Information Criterion

• Akaike Information Criterion (AIC)

• Log-likelihood Score / Entropy

The above score functions are available in the bnlearn R package

For more information see http://www.lx.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf

A

B
n

!A

!B|a0

!B|a1

A

B
n

!A

!B

S1 S2
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Structure Learning Using MB Detection: 
Basic Method

• Use conditional independence tests to detect the strongly relevant 
variables for each node

– Strongly relevant variables carry information that cannot be obtained 
from any other variable

– In a causal graph these are the parents, children and co-parents

• Find V-structures (aka “colliders”) and remove co-parent links
– V-structures are independent causes that become dependent when 

conditioned on common effect
– Arcs in a V-structure can be oriented

• Propagate orientation constraints

Pellet and Elisseeff (2008)

Example Markov Blanket Detection algorithms:
• Grow-shrink algorithm (the original and the simplest)
• Incremental Association Markov Blanket (IAMB) and variants
• Total Conditioning (TC) and variants
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Grow-Shrink Algorithm

1. For each node X, initialize MBX (Markov Blanket of X) to 
empty set

2. Grow phase: Add variables to MBX if dependent on X given 
current contents of MBX

– We keep adding new variables to MBX until X is conditionally 
independent of rest of network given MBX

3. Shrink phase: Identify and remove any variables from MBX
that are conditionally independent of X given the rest of MBX

– The process of adding nodes to MBX may have rendered other 
variables in MBX independent of X given the rest of MBX

– The shrink phase removes these extra variables from MBX

https://www.cs.cmu.edu/~dmarg/Papers/PhD-Thesis-Margaritis.pdf
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Special Structures for Bayesian Network Classifiers

• Naïve Bayes
– Class node is root
– All features independent given class node
– Simple, robust, commonly used classifier

• Tree-augmented naïve Bayes (TAN)
– Class node is root
– All features are children of class node
– When class node is removed, remaining network is a tree
– Often improves on naïve Bayes classifier 

• Bayes net augmented naïve Bayes (BAN)
– Class node is root
– All features are children of class node
– When class node is removed, remaining nodes form arbitrary 

Bayesian network
– Sometimes improves on TAN, but requires more search
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Examples of Free Software for 
Learning Bayesian Network Structure

• bnlearn is an R package for learning Bayesian networks from data
– Discrete or continuous variables

» Continuous variables must have Gaussian distribution and may have no discrete children –
this is called a conditional Gaussian network

– Score-based or conditional independence test-based learning algorithms
– Supports blacklist (arcs not allowed) and whitelist (arcs required)
– Inference in learned network 

» Approximate inference via likelihood weighting algorithm
» Translate to gRain network for exact inference

– http://www.jstatsoft.org/v35/i03/paper
• bnstruct is an R package for learning Bayesian networks with missing data

– https://academic.oup.com/bioinformatics/article/33/8/1250/2730229
• SMILearn (from Bayes Fusion, formerly GeNIe/SMILE) is free for academic use

– https://www.bayesfusion.com/academic-users 
• Weka has several Bayesian network classifiers:

– http://www.cs.waikato.ac.nz/~remco/weka.bn.pdf
• Other packages (last updated June 2014) can be found at

– http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
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Efficient Summing over Many Structures
(Friedman and Koller, 2002)

• Most learning algorithms attempt to find a single high-probability structure
• There typically are many structures consistent with the data

– The number of structures is super-exponential in the number of nodes
• We would like to be able to compute the posterior probability of a feature 

(e.g., is A a parent of B?)

– This requires summing over all structures:

• Under certain assumptions on the prior distribution, the structure score 
decomposes into a product of factors 

– Structure modularity: Given a node ordering, the choice of parents for any node is 
independent of the choice of parents for other nodes 

– Global parameter independence:  parameter for one node is independent of 
parameters for other nodes

– Parameter modularity: If X has the same parents in two different structures then 
the parameter prior is the same for both structures

• If the node ordering is fixed and the number of parents per node is bounded, 
the above sum can be computed efficiently by factoring products outside the 
sum  

P(F |D) = P(F | S)P(S |D)
F
∑
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Computing the Posterior Probability of a Feature
• Suppose the ordering of the nodes is fixed and known and the 

number of parents of each node is smaller than a bound k
• We can write:

– O is a fixed node ordering
– SO is the set of structures consistent with node ordering O
– Ui,O is the set of possible parents of node Xi consistent with node ordering 

O and the bound on the number of parents

• If there are n nodes and no more than k parents per node there are 
fewer than nk+1 terms to compute in this product of sums

• For certain types of feature (e.g., AàB?) this same trick can be 
applied to computing feature probabilities. Then we obtain:

• For unknown node ordering use Monte-Carlo sampling to average 
over node orderings
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Learning with Local Structure: Partitions
• Partitions of parent variable

– When there is context-specific independence, local distributions are 
the same for some combinations of parent variable 

– In a partition model, we need to learn one probability distribution for 
each element of a partition of the state space of a parent variable 

– We apply exactly the same method for computing P(D|S) except that 
we pool all the cases in a given partition element

• Modifications to basic learning algorithm:
– Define a procedure for searching over partitions

– Scoring rule pools cases in same partition element

• Friedman and Goldszmidt (1997 UAI) 
– 2 different ways to define partitions: classification tree or 

default+exception

– Learning was more efficient
» Richer graph structures with less data

» Better predictive performance with less data

• Edera et al (2014) – Grow-Shrink algorithm with context-specific 
indpendence
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Recap
• We considered methods for parameter learning

– Beta and Dirichlet conjugate prior distributions treated in detail

– EM algorithm can be used when observations are missing

– General regression methods were mentioned briefly

• We considered methods for structure learning

– Simple K2 Bayesian search and score method

» Fixed node order is given

» Greedy search over arc presence

» Scoring method based on uniform prior distributions

– Different score functions

– Markov blanket detection algorithms

– Using within-node structure (e.g., ICI, context-specific independence) to increase 

efficiency of learning

– We have not discussed:

» Searching over node orders (stochastic search is commonly used)

» Learning structure with missing observations

• We have seen that in fully Bayesian learning parameter and structure learning 

are intertwined
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Hard Problems in Learning
• Learning with more complex kinds of information

– Missing data / hidden variables
– Non independent and identically distributed data
– Combining observations with other kinds of information (not just Beta or Dirichlet 

priors)
– Constraints on the model (partitions are easy; other kinds of constraints can be very 

hard)

• Combinatorics and search over structures
– There are 2 parts to a learning algorithm:  searching for plausible structures and 

evaluating structures
– Search for structures is especially important for more complex learning problems

» Missing data and hidden variables
» Local search algorithms get "stuck" at local optima

– We have discussed a Bayesian evaluation method:  compare structures by their 
relative posterior probabilities

– There is a LARGE number of possible structures when there are many variables
– Open research issue:  search methods that quickly focus in on a high probability set 

of structures
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Learning with Incomplete Information
• Learning is hard with missing data and hidden variables
• Structural EM (Friedman, 1978) combines greedy search over 

structures with the EM algorithm for estimating parameters
– Need to approximate marginal likelihood 
– Can get stuck in local minima
– Use random restarts to avoid being stuck in a bad local optimum
– bnstruct R package implements SEM

• Monte Carlo simulation (e.g., Laskey and Myers, 2003) can be used 
to learn structure and parameters in presence of missing data and 
hidden variables

– Initialize structure and missing/hidden observations
– Make random changes in structure (add/delete arcs) and missing/hidden 

observations
– Accept or reject changes according to a probabilistic rule
– Long-run distribution:  arcs and missing/hidden observations are 

sampled from posterior distribution given the actual observations
– Algorithm generates a sample of structures and missing/hidden 

observations -- can make inferences about probability of arc
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Summary:  Bayesian Learning of
Parameters Given Structure

• Given the graph structure, we need to learn a set of probability distributions 
for each node, one distribution for each configuration of its parent variables

– If there is local structure in the form of partitions, then one distribution needs to be 
learned for each partition element

– Probability of child given parent is a regression model
• Conjugate families are mathematically convenient for representing prior 

information about the probabilities
– Simple updating formula
– Interpretation as �virtual sample summary�
– Larger virtual prior sample size è more highly concentrated prior distribution
– Ratio of actual sample size to virtual prior sample size determines relative effects 

of prior and likelihood
• The Beta (for binary nodes) or Dirichlet (for many-valued nodes) are 

conjugate families for unconstrained discrete probabilities
• Parameterized models increase efficiency of learning
• EM algorithm can be used when there are missing data
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Summary:  Bayesian Learning of Structures 
• The posterior probability of a structure P(S|D) is proportional to the 

marginal likelihood of the observations P(D|S) times the prior 
probability of a structure P(S)

• There is an explicit formula for the marginal likelihood when the 
prior distributions for the local distributions comes from a conjugate 
family 

– We examined the case of Beta / Binomial and Dirichlet / 
Multinomial conjugate families

– There are other common conjugate pairs
• Generally there are too many structures to enumerate them all
• Approaches:

– Heuristic search
– Stochastic search
– Summing over large number of structures
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• Heckerman et al (1995) suggest the following method for Bayesian 
learning to combine expert knowledge with data:

– Expert specifies a Bayesian network (structure and probabilities)
– This expert-specified Bayesian network defines a joint distribution on all 

variables in the network
– This joint distribution plus a global virtual sample size defines a BDe prior 

distribution on parameters given any structure
– We can search over structures using the BDe score to evaluate structures
– Steck (2008) provided a method to find an optimal virtual sample size from 

data
• Expert knowledge about arc existence and orientation can be included

– Many BN learning algorithms allow ”blacklists” (arcs not allowed in learned 
network) and “whitelists” (arcs that must be in the learned network)

» Expert can say “A cannot cause B,” or “A must be included as a cause of B”
– We can define an informative prior on structures by allowing expert to 

assign probabilities for arc existence and orientation

Combining Data with Expert Judgment 
in Learning Bayesian Networks
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Unit 5 Outline

• Overview of Learning in Graphical Models

• Parameter Learning in Directed Graphical 
Models

• Structure Learning in Directed Graphical 
Models

• Learning in Undirected Graphical Models

• Statistical Relational Learning
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Learning Undirected Graphical Models
• The problem: learn structure and parameters for undirected graphical 

model

– Structure: Arcs (implies cliques) and functional form of potential functions

– Parameters: Parameters of parameterized potential functions

• Complicating factor: partition function Z is global normalization and 
prevents decomposing into separate learning problem for each clique

• With complete data, parameter learning problem by MAP or MLE is a 
convex optimization problem

– Solve by iterative gradient ascent or by Monte Carlo

– EM for missing data (no longer convex)

• Structure learning
– Algorithms based on conditional independence tests

– Algorithms based on scores
» Use approximations to marginal likelihood 
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Unit 5 Outline

• Overview of Learning in Graphical Models

• Parameter Learning in Directed Graphical 
Models

• Structure Learning in Directed Graphical 
Models

• Learning in Undirected Graphical Models

• Statistical Relational Learning
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Relational Learning

• In Unit 3 we learned about expressive representations for 
knowledge 

• Relational probabilistic languages (PRM, OOBN, MEBN, 
etc.) represents probabilistic knowledge about entities, 
attributes, relationships

– Fragments of BN can be repeatedly instantiated for different 
entities

• Learning relational models requires methods for 
appropriately treating the repeated structure

– Pool data for learning identical CPTs (parameter tying)
– Learn parameters of combining functions for CPTs with many 

instantiations of a parent
– Avoid “double counting” errors of naïve learning approaches

• Relational learning is an active research area
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Case 1: 
Single Report for Object 

Case 2: 
Two Reports for Object

Some Complexities for Relational Learning
• Cases have different numbers of random variables

– Case 1 has two random variables
– Case 2 has three random variables

• Object relationships may have different cardinalities
– obj1 is related to rep1 (one relationship)
– obj2 is related to rep2 and rep3 (two relationships)

• Learning algorithms will give incorrect results if 
repeated structure is not handled properly

– Naïve “database join” approach is to make a single 
table with columns for TargetType and ObjectType
and a row for each object/report pair

– If reports are not evenly distributed across object 
types this can result in poor estimate of TargetType
distribution

– For example: If most friendly objects have only one 
report and most enemy objects have several reports 
then this approach will overestimate the frequency of 
enemy objects

• Relational models may have parameterized 
combining rules that must be learned

TargetType ReportedType
Enemy Enemy
Friendly Friendly
Enemy Enemy
Enemy Friendly
Friendly Friendly
Enemy Enemy
… …
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MEBN-RM: Map Relational Database 
to MEBN Elements for MEBN Learning

MEBN-RM Mapping Rules:
1. Entity Mapping
2. Predicate resident node Mapping
3. Function resident node Mapping
4. Relation Schema and MFrag Mapping
5. Relational Database Schema and MTheory Mapping

Time entity
in MEBN Region entity

in MEBN

Vehicle entity
in MEBN

Primary Key: bold and inclined letters e.g., TID
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Rule 2: causal(VehicleType, ThreatLevel) 

+

2. MEBN  Parameter Learning 
(Automated)

Joined Relational Data

Causal Relationship Information

1. Structure 
Constructing

(Manual)

Dirichlet (Discrete)
Conditional Gaussian 

(Continuous) Class Local Distribution

MEBN Parameter Learning 
from Relational Database
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Tutorials on Statistical Relational Learning

• http://people.cs.kuleuven.be/~luc.deraedt/iclp2009.pdf
• http://www.cs.umd.edu/~getoor/cmsc828g/Slides/SRL-
Tutorial-05-08.pdf

http://people.cs.kuleuven.be/~luc.deraedt/iclp2009.pdf
http://www.cs.umd.edu/~getoor/cmsc828g/Slides/SRL-Tutorial-05-08.pdf
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Summary and Synthesis
• Elements of a typical learning algorithm

– Inference about parameters given structure
– Inferring structure

» Score based and independence test based approaches
• Learning can be treated as Bayesian inference

– Directed graphical model relates BN structure & parameters to observations
– Simplest case:  observations are independent realizations from the BN to be learned

• K2 Algorithm (simplest case)
– Complete data
– Parameter prior is uniform
– Evaluation function is marginal likelihood of data
– Search is greedy; node ordering is assumed given
– Select single best structure

• Extensions we treated
– Informative Beta or Dirichlet parameter prior 
– Missing data and hidden variables
– Stochastic search
– Multiple structures versus single good structure

• Undirected models introduce complexity due to partition function
• Relational learning introduces complexities due to repeated structure
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Markov blanket detection algorithms
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For further references browse the reference sources on the course web site.


