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Learning Objectives \

« Describe the elements of a graphical model learning
algorithm, and the main methods for each

« Given a Beta or Dirichlet prior distribution and a sample of
cases, compute the posterior distribution for a local
distribution for a Bayesian network

« Compute the relative posterior probability for two structures
for a Bayesian network when the prior distribution is a Beta
or Dirichlet mixture distribution

* Describe methods for learning graphical models with missing
observations and latent/hidden variables

m
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j> * Overview of Learning in Graphical Models

« Parameter Learning in Directed Graphical
Models

« Structure Learning in Directed Graphical
Models

* Learning in Undirected Graphical Models

 Statistical Relational Learning
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Learning Graphical Models from Data \

A graphical model is defined by:
— Structure
— Parameters
Structure
— Nodes and states
— Arcs

— Functional form of local distributions (noisy-OR; context-
specific independence; parameterized distributions; etc.)

Parameters
— Probabilities in a conditional probability table
— Parameters of a parameterized local distribution
The learning task can be decomposed into two parts:

— Learning unknown parameters conditional on structure
— Learning unknown structure
» This is usually taken to mean learning conditional dependence

relationships with random variables taken as given /
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Raw Material: The Observations

 Easiest case:

— Random sample (iid observations) of cases from the network to be learned
— Each case contains an observed value for all variables in the network

A B C D E
a0 | bl cl d2 | e0

@ al b1 c0 dl el

al b1 cl di el

/®\ / al | bl | c1 | a1 | el

9 a0 b0 c0 do el

* \ a0 b1 c0 dz e0

\A@/ ® >0 a0 | bl cO [ dI el

al b0 | coO dz | el

al b0 cl dz el

« Complexities: at [0 [et [an]el

— Missing observations: Some variables are not observed in some cases
— Hidden or latent variables: Some variables are not observed in any cases

— Non-random sampling: Sampled cases are not representative of the
population for which the graphical model is being learned

— Relational learning: the model to be learned has relational structure

— Need to combine expert knowledge & data A [ B [ C (:) E
al ? cl 2 | el

® a0 ? cl dz 7

al 7 cl dl el

/®\ y a0 | 7 | c0 | do | el
9 a0 7 | co | dl | el

\ @{?9 : \ al 7 cl 7 el
al 7 cl di el

@/ ® © al 7 [ o1 | dz | eo0

a0 7 c0 dz el

a0 ? cO | do | el
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* Overview of Learning in Graphical Models

j> « Parameter Learning in Directed Graphical
Models

« Structure Learning in Directed Graphical
Models

* Learning in Undirected Graphical Models

 Statistical Relational Learning
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Parameter Learning

» The distribution of a node X is a function of the parents of X and a
set of parameters

— For a CPT, the parameters are the entries in the CPT

— We may be able to construct the CPT from fewer parameters, e.g.:
» Noisy-or: a probability for each trigger and a leak probability
» Partitions: a probability for each partition element

— In general, a local distribution can be any parameterized function that
maps parent configurations to probability distributions

* A local distribution is a regression model

— A regression model expresses the probability distribution for a
dependent variable as a function of independent variables and
parameters

— The local distribution for X is a regression model in which X is the
dependent variable and pa(X) are the independent variables

— Sometimes we write Pr(X|pa(X),0) to emphasize that the local
distribution depends on both the parents of X and the parameter ¢

— Parameter learning uses data to estimate &

« Parameter learning can be recast as inference in a larger graphical
probability model (data and parameters)
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Parameter Learning: Starting Simple

« Simplest case of learning:
— Bayesian network with one random variable
— Two states, X=1 or X=0
— Unknown probability &= P(X=1)
— Independent and identically distributed observations X;, ..., X,
« A natural idea is to estimate 0 by the frequency of 1’ s in our sample
— If there are k 1's out of n observations, estimate is 8 = k / n

— This estimator has some nice properties

» Maximizes the likelihood function
(i.e., we choose 0 to make the data

e Likelihood Function

as probable as possible) 0.06 7 k Successes in 10 Trials
» Consistent (i.e., k/n converges to 0.05
0 with probability 1 as n—> o 0.04 - k=0
—r=1
» Other nice theoretical properties 0.03 - —

« But what if there are no 1’s in the 0.02
sample? Do we want 6=0 ? 0.01 -
The likelihood function is P(data | parameter) "o 02 04 06 08 ! /

viewed as a function of the parameter ——
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Learning a Parameter 6: Graphical Model Formulation

A Bayesian network for (8, X1, ..., Xn): Plate notation:

Th|s Bayesian network represents conditional
independence but does not represent that
local distributions are same for all x;

MFrag notation: G

Given 6, the X’ s are independent and have the same distribution
The model specifies a prior distribution for 8 and one distribution P(Xi| 8) (same for all X;)
Note: 6 is a continuous random variable taking on values in the unit interval

Observations on the X's can be used to estimate 6
— Common approaches: maximum likelihood, maximum a posteriori, full Bayes

O,

- "Plate" stands for n copies of X
- Plate notation is widely used in
Bayesian machine learning
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Density and Cumulative Distribution

Functions: Review
Density Function f(q)
3.5
3
2.5 dF (6) Each individual value of a
: f(0) = —= continuous random variable
3 do has probability zero
1
0.5
b
0
0 0.2 4 0.6 0-8 ! Cumulative Distribution Function F(q)
1.2
1
Area under f(6) between a and b B
is equal to difference 08 f(0) = f F(6)d6
F(b)-F(a) — 06 uso
and is probability that value of random -
variable lies between a and b o4 ﬁ{
0.2

0 ]
0 0.2 0.4 0.6 0.8 1 /

S
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« Convenient family of prior distributions for an unknown prooability 6
— Possible values are real numbers between 0 and 1
— Closed under Binomial sampling: posterior distribution for 9 is also Beta

— Uniform distribution (all probabilities equally likely) is a member of the
Beta family

« The density function for the Beta distribution with integer parameters
a and fis:

m

<

f(0la,B) = (a(f‘ff(;_)i)! 9911 —0)5-1 for0<B<1  (1a)

« The density function for the Beta distribution with arbitrary
parameters ¢ >0 and > 0 is:

f(0la,B) = :(“;;fﬁ)) a-1(1 - )51 for0 <0 < 1 (1b)

IN'o)= J.x“'le'x dx
0
I'(ar)=(x—1)! for integer &
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Density Functions for Various Beta Distributions

['(a+ )

@R 6%~ 1(1—-6)! for0<06<1

f(@la,b) =

I'(er) 1s the Gamma function

[}

L(e)=[x*"e™ dx
=+ 7 0
I'(a)=(ax—1)! for integer o

(04

E[Hla,ﬂ]=a+ﬁ

VIOla,B]= op

o (a+B) (a+B+1)
\ 0 0.2 0.4 0.6 0.8 1 /
\
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« The prior density function (for integer a, B):
f6lap) = G0 A =6 (1a)
« Data likelihood for k 1’'s and n-k O’s:
P((X,,.. X )=(x;,...x ) 8) = OK(1- 6)* (Bernoulli distribution)

* Prior times likelihood:

P((XI,..XH):(xI,...,xn)I 9) f(@la, b) — (a(f;f(;i)i)! 0a+k—1(1 _ 8)B+n—k—1 (2)

Note: (2) is proportional to the density function of the Beta distribution
with parameters a+k and [+n-Kk.

* Applying Bayes Rule:

P(OI(X1, o, Xp) = (X1, 00, X)) = P&y, 0 Xn) = (K, -0, X0)10)f (B, )

[y P((X1, e X)) = (X1, o, %) 10)f (Bla, B)d6

grriTi(1 —gyfrnlt (a+p+n—1)! gatk=1(1 — g)F+tn-k-1
[T a1l —gypmi-igg @+ k-DIB+n—k—1) (1-96) (3)
6=0

Note: (3) is the density function of the Beta distribution with
parameters a+k and f+n-k.

©Kathryn Blackmond Laskey Spring 2019 Unit 5 (vda) - 13 -




~ George Mason University Department of Systems Engineering and Operations Research

n1 GEORGN
Beta — Bernoulli Conjugate Pair \

 |F prior density function is Beta(a, §):

m

-1)! — -
F6la,B) = ¢ g 07 (1 = ) (1a)

* AND likelihood function is Bernoulli(6):
P((X,,.. X,)=(x;,...x )| 0) = Ok 1- 6 )
« THEN posterior density function is Beta(a + k, 8 + n — k):

(a+p+n—-1)!
(x+k-D!(f+n—k—-1)!

f@la+kp+n—k) = grtk=1(1 — g)B+n-k-1 (3)

The Beta family of prior distributions and the
Bernoulli family of likelihoods are a
conjugate pair

\_ _/
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- A conjugate pairis a pair g(6|a) / f(x|0)of prior/likelihood
families that is closed under sampling:

IF Observations Xj, ..., X, are a random sample from
f(x|6) and prior distribution for 8 is g(6|a)

THEN Posterior distribution for 8 is g(68|a*), another
member of the conjugate family

- Example: The Beta and Binomial families of distributions are a
conjugate pair:

IF Observations Xj, ..., X, are a random sample from
Binomial(#) and prior distribution for 6 is Beta(a, )

THEN Posterior distribution for 6 is Beta(a+k, /+n-k),
another member of the conjugate family

- Conjugate pairs simplify Bayesian inference
— Posterior distribution can be found exactly
— There is a simple updating rule to find the parameters of the

posterior distribution from parameters of the prior distribution
and data summaries
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Beta Conjugate Updating \

 Inference from prior to posterior
— Prior distribution is Beta (a,3) with expected value E[0] = o/(a+[3)
— Data: n observations with k 1’s
— Posterior distribution is Beta (at+k, f+n-k) with expected value
E[6 |X] = (at+k)/(at f+n)
 Interpretation of Beta prior distribution:

— Prior information is “like” a previous sample of a+/ observations with « 1’s

— After n observations with k 1’s, posterior information is “like” a previous sample of
o+ +n observations with otk 1’s.

— The “hyperparameters” « and g are called “virtual counts” or “pseudo counts”
* Precision of estimate increases as sample size gets larger

— Variance of the prior distribution
Vigl= of _ k610 - E[6))
(a+ B (+B+1)  (a+B+])

— Variance of the posterior distribution
\ (ax+k)B+n—k) E[6]1 X](1-E[6O]1X]) /
VIOl X]= > =
(a+B+n)y(x+B+n+1) (ax+B+n+1)
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Uniform Prior Distribution \

Uniform distribution is Beta(1,1)

If prior distribution for 8 is uniform then posterior distribution
for 6 is Beta(k+1, n-k+1)

Posterior expected value of 6 is
E[0 [X] = (k+1)/(n+2) (This formula is called Laplace’s rule of succession)
Posterior variance of 6 is
(k+D)(n—k+1)
(n+2)(n+3)
A posterior credible interval can be obtained from quantiles
of the Beta distribution

— Lower bound of 90% interval is 0.05 quantile of the Beta
distribution, gbeta (0.05, k+1, n-k+1) inR

— Upper bound of 90% interval is 0.95 quantile of the Beta
distribution, gbeta (0.95, k+1, n-k+1) inR

VIOl X]=

_/
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« Parameter learning can be represented as Bayesian network
« Assumptions:

« Data: the number of observations in each category:

» Posterior distributions for Beta (1,1) (uniform) prior:

George Mason University Department of Systems Engineering and Operations Research
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Learning Unknown Probabilities
in a Binary Bayesian Network

— Local independence: 03,1 is independent of B,

— Global independence: g, and 8z, are independent of 8,

— All parameters 0g51 , O5120, and B, have Beta distributions

— We will assume a=1 and p=1 (uniform prior distribution) for all 8’ s

al,b1 N1

a1,b0 N1 °
20.,b1 No; -
20,b0 Nog

el_

n,+n,+1
0, ~ Beta(n,, +n,,+1,n, +ny +1) E[0, |data) = 1 7o
n, +n,+n, +n,+2
n,+1
OBIal ~ Beta(n“ + 1,1’110 + 1) E[93|a1 | data) = 11
n,+n,+2
n, +1
0,., ~ Beta(n, +1,1,+1) E[6,,, |data) = —2
Noy + 1My, +2
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Beta(1,1) (uniform) prior distribution for 6, 8551 and O

UNIVERSIT

<

 The data:
al,b1 10 Ny
al,b0 6 N1
a0,b1 2 N
a0,b0 7 Noo

Posterior distribution for 04
— Beta distribution with parameters 17 = 1+10+6 and 10 = 1+2+7
— Mean: 17/(17+10) = 0.63
— Standard deviation: ((0.63)(0.37)/(28))"2 = 0.09
Posterior distribution for 6,
— Beta distribution with parameters 11 =1+10and 7 = 1+6
— Mean: 11/(11+7) = 0.61
— Standard deviation: ((0.61)(0.39)/(19))"2 = 0.11
Posterior distribution for 6,59
— Beta distribution with parameters 3 = 1+2 and 8 = 1+7

— Mean: 3/(3+8) = 0.27
— Standard deviation: ((0.27)(0.73)/(12))"2 = 0.13
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Nodes with More than 2 States \

For nodes with more than 2 states we can use a Dirichlet prior distribution for
the local distributions
Dirichlet distribution is a multivariate generalization of the Beta distribution

— If a p-dimensional random variable (64, ..., 8,) has a Dirichlet(a, ..., o)
distribution then:

» Only values 0 < ;< 1 and X, 8, = 1 have positive probability density
Q, E[6.](1- E[6.
> E6]=—% R G (2 Y
o+t o+t +1

— Dirichlet(1,...,1) puts equal density on all probability distributions (uniform
distribution)

— If 8 has a Beta(a,[) distribution then (8,1- 8) has a Dirichlet(a.,p) distribution

— If (84, ..., 8,) has a Dirichlet(a, ..., a,) distribution then 6, has a
Beta(aq, apt...+ ay) distribution

If the prior distribution is Dirichlet(a., ..., a,,) and n; observations are
observed in each state, then:

— Posterior distribution is Dirichlet(n+ o.q,...,n,+ o)
n+ao,

— E[6;|data] =
\ o+t toteta, /

©Kathryn Blackmond Laskey Spring 2019 Unit 5 (v4a) - 20 -




~ George Mason University Department of Systems Engineering and Operations Research

Pl GEORGN

UNIVERSITY

m

Uniform Prior Distribution with Many States \

Uniform prior distribution Dirichlet(1, ..., 1) corresponds to
assigning one “virtual observation” per state

— A uniform distribution on k probabilities is not a uniform
distribution on each probability if k>2!

— If there are k states each state has a Beta(1, k-1) distribution with
expected value 1/k

» Accurate estimation from data requires the sample size to be
large relative to the number of

“virtual observations” Single-State Marginal Density for

« When there are manv states and Uniform Dirichlet Distribution
few observations theyuniform e
prior distribution results in a S R
posterior distribution that is § i —
very “flat.” 5,

« This can happen even with £ <\

,

large sample sizes when a e
Qode haS many parents 0 01 02 03 04 05 06 07 08 08 1
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Effect of Many States: Example \

Consider a distribution for a node A which has p states
— Observations: 40 cases in state a; 10 cases in state a,
— Uniform prior distribution

Case 1: Node A has 2 states: a; and a,

— Posterior distribution for 6, is Beta(41, 11)
— Posterior Mean for 6, is 0.79
— Posterior 90% interval for 6 is (0.69, 0.87)

Case 2: Node A has 20 states: a4, a,, ..., ay
— Posterior distribution for (84, 85, ..., 85) is Dirichlet (41, 11,1, ..., 1)
— Posterior distribution for 6, is Beta(41, 29)

— Posterior Mean for 64 is 0.59
— Posterior 90% interval is (0.49, 0.68)

Uniform prior for node with p states assigns p virtual observations
uniformly (one to each state)

— This can give problematic results when the number of virtual
observations is large relative to the number of actual observations
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AR Curse of Dimensionality
ATrue BTrue Alearn BLearn Alearn BLearn
<0 3.00 <0 5.00 pm <0 330m <0 519 mm
o] S 01003 B850 01003 550 01003 549 jm 01003 660 mm
e e Do 031006 200 fm 031006 500 mm 031006 193 031006 502
ool 031008 973 061009 255 mm 061009 155 061009 245 TR m——
091012 205 091012 166 — 09t012 180m 091012 155 09t01.2 17.5 09t01.2 151 p—
121015 130 191015 16— 121015 16.0m 1210 1.5 17.0 p— 121015 156 m—m 121015 165 fmm—m—m
151018 567 m 151018 135 — 151018 BO0R 15t018 105 15t018 613/ 15t01.8 104 jm—m
LR SR 181521 300 181021 5,00 181021 330m 18t021 B.02 jmm
SHEah e SN ] 211024 0+ 511024 500 21t024 047 211024 519pm
e e e 41027 0+ 541927 350m 241027 047 241027 377 m
2703 0w 27103 115 2713 0+ 27103 050 clEl cfOe e
= o = it =3 0+ =3 10 >=3 0.47 >=3 1.42p
-
- Comparison of actual
<0 252h <0 280 @ <0 6.77 ju— erm . m .
O0to0.3 495 m 0to0.3 711 p—m
geas, s 25ate 12w T probabilities with
061009 17.6 j—mm 061009 157 061008 113
091012 21.3 p— 091t01.2 23.3 pe— ?g:o}é 132— ey
- ’ 121015 155 pummm 2to1: — I t I d f
R = S — probabilities learned from
181021 6 E0 18t021 275m 18t021 6.80
sz sl a sample of size 200
241027 067
el 57103 072 27103 5.42 p
>=3 046 >=3 067 >=3 5.41 jumm
ATrue BTrue Alearn BLearn Alearn BLearn
<0 0 <0 0 <0 0 S 5103 5 5103 o
01003 0 01003 0 Din. a e 03t006 O 031006 100
03106 D 03t006 100 9y O e 06t003 0 06t003 0
06t03 0 06103 0 DEtg 1l Dbt0g 08t012 0 09112 0
?Zg:g]:g 1033 ?3313 g 15211031151 (V) — 121015 131018 D 13018 ©
15t018 0 15t018 0 }gmé-? 0 15t0 1.8 181021 0 181021 0
181021 O 181021 D e g ;-?“’2-1 211024 0 211024 0
21024 0 211024 D 102, 1t02.4 241027 0 241027 0
241027 0 241027 0 241027 0 241027 27t03 i 27103 0
27t03 0 27103 il 27103 0 27103 »=3 0 >=3 0
- 0 ¥, 0 - D \ 7 \ /
Crue CLeam e « There are no
<0 0+ B
o031 Doa ot B5nas 155 observations for many
03006 261 fum p3tDe 3 061009 6657 mm . .
Dotts oM 091012 657 mmm . combinations of A and B
12t015 125 13}313 8: 151018 667 pum . M d t b t.
121021 or 181027 0+ 251034 oorm any aistrioutions are
Hteol 211024 0+ S
Y27 04 24027 0+ 2427 oo based on very small
27103 0+ 27103 0+ >=3 6.67 jum .
=3 os =3 o+ sample sizes
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ATrue

0to03
03t006
061008
09t01.2
12t015 1
15t018
18t021
21t024
241027
27103
>

=]
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Modeling Local Distributions

Posterior Expected Value
with Uniform Prior

Regression Estimate

] ez i BLearl;l ARegression BRegression

0t003 0 0t003 0 <0 0 <0

03t006 O 03t006 100 D@ 0 ptolies

aomns o et 03t006 O 03t006 10

aats et 8 tae 3 saed

121015 100 m— 1Z2o1e D 121015 100 — 12t015

181021 0 181021 0 1ol aig i

211024 0 211024 0 Bl i Bl aa

241027 O 241027 0 2 sl D

27t03 0 27t03 0 Sy O e

>=3 0 >=3 0 201 z 27
\ / \ Regression model:

g :
CLoam . » C is normally distributed given
<0 5 CRegression
01003 657 m Soen G A & B
031006 13.3 e
061009 BE7
091012 200 DE1n0S " 400y * Mean WAA+WBB+W0
12015 667 mm ?g} }g 2343- St d d d - t.
151018 667 jum o
e 151018 04t anaar eviation s
211024 BE7 m .
241027 67 m 202 O * Four parameters. Wa Wpg, Wp, S
27t03  6.67 mm 241027 0+ ’
=3 6.67 jum Y

« Parameterized models can increase efficiency of learning
— Context-specific independence

» Same child distribution for different combinations of parents
» This is a special type of parameterized distribution

— General parameterized distribution
» e.g., child node has normal distribution with parameters depending on parent

If we can model the relationship well with a parameterized model,
regression dramatically out-performs unconstrained Dirichlet learning
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Cigarette data set http://www.mste.uiuc.edu/regression/cig.html consists of

measurements of weight, tar, nicotine, and CO content of 25 cigarette brand
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http://www.mste.uiuc.edu/regression/cig.html
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Graphical Model for Cigarette Data
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 Assume a graphical model in which all RVs have normal
distribution with mean a linear function of parents:
C ~ N(Bc, oc)
N ~ N(Bon + B1NC , ON)
T ~N(Bor + B17C + BN, o7)
W ~ N(Bow * BiwT , ow)
(statistical tests indicate W conditionally independent of C & N given T
« Parameters of this model can be estimated by estimating a linear
regression model using statistical software
_ Maximum likelihood C (N
— Maximum a posteriori
— Fully Bayesian

_/
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Representing Regression Model in a BN Package

* To represent this model in Netica:

— Enter equations using scripting language
P (C | ) = NormalDist(C,12.5,4.74)
P (N | C) = NormalDist(N, 0.01+0.069*C,0.137)
P (T |N, C) = NormalDist(T, -2.22 + 10.1*N + 0.446*C, 0.96)
P (W | T) = NormalDist(W, 0.877+0.0076*T, 0.078)

— Discretize all nodes

C N

— Oto25 1.34 0to0.21 2.80
Convert all equations to tables Q25 131 D021~ 780
to 7.5 8.97 0.42t0 063 145

75t010 15.4 063to084 215

10t0125 203 084t01.06 229

125t015 203 1.05t01.26 169

150175 154 1.26t01.47 932

175t020 897 1.47t01.68 3.69

20t0 225 3.97 168t01.89 0584

225t025 1.34 1.89t0 2.1 068

125+ 4.7 0.874 + 0.36

T W
Dto3 5.48 0.75t00.795 1.84
3tob 8.84 0.795t0 0.84 4.89
Gto9 14.4 0.84t00.885 10.0
9to12 200 0.885t0083 159
12t015 204 o| 0.93t00.975 197
15018 151 | 0.975t01.02 191
18t021 9.55 1.02t01.065 145 /

21t024 438 1.065t01.11  8.60
241027 1.48 1.111t01.155 3.98
27t030 025 1.155101.2 1.44

122+£57 0.97 £ 0.087
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Parameter Estimation in High Dimensions \

« Parameter learning in graphical models is a problem of statistical
estimation in high-dimensional parameter spaces

« Statistical estimates perform poorly when the number of
parameters being estimated is large relative to the number of
observations

 When expert knowledge is available it can be used to
— Specify prior distributions for parameters

— Find models that capture essential aspects of the problem and have
fewer parameters

« Both these uses of expert knowledge involve application of expert
judgment

« (Good modeling practice includes many practical tools for coping
with the “large k small n” problem

« Bayesian analysis is a formal, theory-based approach to combining
expert judgment with empirical observations

 Most methods that work well in practice can be given a Bayesian
justification
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Parameterized Models for Local Distributions

« Context-specific independence:
— Probabilities are identical for a subset of configurations of the parent variables

— Example: Sensor A and B have the same detection probability in the daytime
in clear weather

— We can group the cases for Sensor A and Sensor B under these conditions
and estimate a single probability

— This is called “parameter tying” (parameters for grouped cases are “tied” to
each other

* |Independence of causal influence
— ICl models have fewer parameters than general local distribution

— There is no closed-form solution for parameter learning with common ICI
models such as noisy-OR

— Can be handled with methods for hidden variables (auxiliary variables are
treated as hidden)

e Numeric and continuous random variables

— A RV’s distribution given its parents can be specified using any parameterized
statistical model

— Parameters can be estimated by regression methods

— Conjugate priors are often used for continuous distributions to simplify
computation
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' Conjugate Families and Virtual Sufficient Statistics

« Conjugate families of distributions are very useful in Bayesian modeling

« Many commonly applied distributions have conjugate families

— We have already discussed the Beta/Bernoulli (or Beta/Binomial) conjugate
pair and its generalization to the Dirichlet/Multinomial conjugate pair

— The Gamma distribution is a conjugate prior for the rate parameter for
Poisson observations (or exponential observations parameterized by rate)

— The Normal distribution is a conjugate prior for mean of a normal
distribution with known covariance

— The Normal / inverse Gamma distribution is conjugate prior for the mean
and precision (inverse covariance) of a normal distribution with unknown
mean and covariance

« Any conjugate prior distribution has an interpretation as a summary of
“virtual prior samples”

« Parameter learning with conjugate priors can be viewed as updating
“virtual sufficient statistics”

— A function of the observations is a sufficient statistic if it captures all the
information needed to obtain the posterior distribution
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Missing Observations

 Many standard learning algorithms discard cases with
missing data

* This can seriously degrade learning algorithms

« There are statistically justified methods for learning with
missing data

 The most common are imputation and EM algorithm
— Imputation inserts educated guess for missing observation

» Random or deterministic

» Heuristic or theory-based
» Single pass or iterative

\_

— EM algorithm is an iterative method for maximum likelihood or
maximum a posteriori estimation in presence of missing data

<

_/
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» General method for statistical parameter estimation in the presence
of missing data

 The method consists of two steps:

— E-step: Given the current estimate of the parameter, compute the
expected value of the “missing data sufficient statistics”

» In the case of learning a belief table this means “filling in” missing values
with probabilities

— M-step: Given the current estimate of the “missing data sufficient
statistics” compute the maximum a posteriori (or maximum likelihood)
estimate of the parameter

» In the case of learning a belief table this means estimating local
probabilities from counts

« Under regularity conditions (data are “missing at random” and the
model is exponential family) the EM algorithm converges to a local
maximum of the posterior distribution

— Missing at random (MAR): no systematic relationship between the
propensity to be missing and the value of the missing data

— Example: missing responses to “Did you cheat on your taxes?” are
probably not MAR
— Note: if uniform prior, then MAP is same as MLE
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Example of EM Algorithm

A B 00 01 10 11 00 01 10 11 00 01 10 11
0 1 0 1 0 0 0 1 0 0 0 1 0 0
? 1 0 0.5 0 0.5 0 0.67 0 0.33 0 0.71 0 0.29
0 0 1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0 0 1
? 1 0 0.5 0 0.33 0 0.71 0 0.29
0 1 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0
? 0 0.5 0 0.5 0 0.58 0 0.43 0
0 0 1 0 0 0 1 0 0 0
1 ? 0 0 . 0.5 . 0.56 0 0 0.46  0.54
1 0 0 0 0 0
0 1 0 1 0 0 ; 0 0
2.5 2 2.56  5.33 %/ ~_2=8 541 1.88 2.3
0.21 (042) 017 (021 0.21 044 ( 0.16) (019 0.21 045 016 0.18
~—~ —~ — S
The Data lteration 1 lteration 2 lteration 3

» Detailed steps:

— Estimate all missing observations

» lteration 1: use uniform probabilities, possible values are all 0.5
» lteration 2, Rows 2& 5: 42/(.42+.21) and .21/(.42+.21)
» lteration 3, Row 10: 16/(.16+.19) and .19/(.16+.19)

— Compute column sums
— Normalize to obtain probabilities for 00, 01, 10, 11
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Independence of Causal Influence
« Example: noisy-OR « Other ICl models can be

model

» P(6; |
» P(E |

» P(E |

Q's are not

— Represent as "trigger variable"

— Estimate P(6, | C; = TRUE)
— All other probabilities are given

C4, ..., C,) =0 if all causes
are false O Q Q

C4, ..., C,) =1ifany C2 C3 o}
cause is true Q ¢ Q
« C’s and E are observed but c1 ’
— No closed form solution
— EM algorithm can be used to

handled in a similar way

— Represent as “trigger variable”
model

— Apply EM to learn parameters

C,=FALSE)=0

» Local distribution for Q; given C; is
estimated via EM E

Q3
Q2 Q4
| - O
estimate parameters Qs
» Local distribution for E given Q’s is
\ specified by the model
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Example: Learning Noisy-Or with EM

« Data: 2000 samples from Noisy-Or

Cc1 c2 C3
wo 90.0 —— wo 90.0 p—— wo 90.0 p——
mOdel f 100 f 100 f 100

« Comparison:

— Model 1: standard parameter learning,
unrestricted model

— Model 2: trigger variable representation f 229
of noisy-or model, learned by EM, then
trigger variables absorbed

Note: 2000 observations contain
only 3 cases with C1=C2=C3=f

C1 C2C3 | w f C1 C2C3 | w f €1 C2 C | w f

wWOW W 39 1 W OW W 99.028 0.972 w oW W 99.096 0.904
w w f 19.8 80.2 w w f 20.112 79.888 w w f 19.628 80.372
w f w 29.7 70.3 w f w 27.907 72.093 w f w 27.841 72.159
w f f 5.94 94.06 w f f 10.526 89.474 w f f 5.514 94.486
foow w 9.9 80.1 fow w 11.25 88.75 foow w 10.77 89.23
foow f 1.98 98.02 fow f 5.263 94,737 foow f 2.133 97.867
ff w 2.97 97.03 fof w 9.091 90.909 fof w 3.026 96.974
f f f 0.594 99.406 f f f 20 g0 f f f 0.559 99.401

Learned via unrestricted
parameter learning

True noisy or distribution Learned by EM
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MASON  How EM Works for Bayesian Dirichlet \
Parameter Learning in Bayesian Networks
1. Initialize table of expected data for each clique in the junction tree
— Rows are cases; columns are configurations of clique variables
—  For each case, assign probability 0 to configurations inconsistent with
observations; uniform probabilities for other configurations
2. Sum over cases and normalize to find expected cligue marginal
distributions
3. Estimate local distributions P(X|pa(X)) from clique marginal
distributions
4. Compute new clique tables in JT using new estimates of P(X|pa(X))
5. For each case with missing data, update expected data tables for
each clique in JT:
— Insert observed data and use JT algorithm to propagate evidence
— Use cligue marginal distribution given observed data to assign
probabilities to configurations consistent with the data (this will assign O
probability to configurations inconsistent with data)

6. If change since last iteration is greater than tolerance, go to Step 2,
else stop
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Parameter Learning — It Can Get Complicated!

Dimensions
fo €0 Plate notation for a dynamical
topic model**
P N N
<o dy 0 a( ) a3 X \/
[ i
0 () He
53 . s
ag by
z:f.u:.f \) Zli,n e Zrl.n!/' \I
Clients N e N
Measures W ) Wan C) Wan

N N N
D ) D

P P 777N

“'\“/}—.f\“} T e »(‘\“/..

K Bk B2 GrT

Plate notation for a hierarchical
linear regression model*

* https://www.researchgate.net/publication/328878614_Variational_Bayesian_hierarchical_regression_for_data_analysis/figures?lo=1
** https://www.researchgate.net/publication/261424851 Topic_models_and_advanced_algorithms_for_profiling_of knowledge in_scientific_papers/figures?lo=1
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Summary: Learning Local Distributions in BNs \

Beta or Dirichlet conjugate updating is appropriate when:

— A random variable has finitely many states (two states for Beta
distribution; k states for Dirichlet distribution)

— There are no constraints on the probabilities

— Prior information is “like” having observed a previous sample with «;
observations in category i, fori=1, ..., p

When there is context-specific independence:

— Combine all configurations of parent states for which the child node has
the same distribution (this is an example of “parameter tying”)

In general, the local distribution for node X can be any function of the
states of pa(X)

— A node’ s local distribution is a regression model with that node as the
dependent variable and its parents as the independent variables

Missing data can be handled with EM
ICl can be represented as hidden variables and handled with EM
General Bayesian parameter learning is inference on a set of

missing data and latent variables

Bayesian regression problems
\ Difficulty depends on distributions of random variables & pattern of /
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""""""""" Unit 5 Outline \

* Overview of Learning in Graphical Models

« Parameter Learning in Directed Graphical
Models

j> « Structure Learning in Directed Graphical
Models

* Learning in Undirected Graphical Models

 Statistical Relational Learning

\_ _/
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Learning the Structure of a BN

Structure of a BN represents qualitative information
— |Is there an arc between two random variables?
» If so, what is the direction of the arc?
— What are the functional forms of the local distributions?
» Are two rows of the belief table identical (context-specific independence)?

» Is there a parametric equation to represent the relationship between parents and
children?

— Is there a hidden (unobserved, latent) random variable?

Methods for learning structure
— Score based methods

» Method for searching over structures

» Method for scoring how good a structure is
» Bayesian score; description length; BIC or AIC score; others

— Constraint-based methods
» Use conditional independence tests to identify the Markov blanket of all variables

» Find BN structure (or structures) matching the Markov blanket
 Arc orientation may be undetermined for some arcs
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Bayesian Structure Score \

We can represent uncertainty about the structure of a Bayesian
network as a probability distribution over structures

— Assign prior probability to each structure and to local distributions
conditional on structure

— Apply Bayes Rule to obtain posterior distribution for structures and
parameters given data D

Bayes rule for learning structure:

P(DI1S)P(S,) P(S;ID)  P(DIS))P(S,)
P(D) P(S,1D) P(DIS)P(S,)
P(D|S) is the marginal distribution (integrating olit paramieters)
of P(D|S, 6g), where 05 is the structure-specific vector of

parameters

— Note that 64 has different dimension for different structures

The ratio P(D[S))/P(D|S;) is called the Bayes factor for
comparing structure i against structure |

The value In P(D|S) is called the Bayesian score for S /

P(S,1D) =
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Example of Learning Structure \

« Bayesian network with 2 nodes, A and B, each with 2 possible
values

 We are considering two structures, S1 and S2
» Assign prior probabilities P(S1) and P(S2) to the two structures

« Assign independent uniform prior distributions for parameters
given structures

_/
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Computing P(DatalStructure) \

P(DIS,8s) can be written as a product of factors
For structure S1:

P(D|Sy,04,05) = (8,)™17™0(1 — §,)01¥M00 (9, )M1+M01 (1 — §)M 10+ 700
For structure S2:

P(D|S;,60,, 93|a1»93|a0) =

(B4)" 11710 (1 — G,4) 01700 (Bp141) ™12 (1 = Op1q1)™° (O1q0) ™ (1 — Opq0)™°

The local and global independence assumptions allow us to integrate
the 6's out of each factor separately and multiply the results together

— The factor for parameter 6 has the form of an integral:
fglzo 0™ (1—-0)*"f(0|a,B)do f(O]a, B) is the Beta density function

where n,, observations have V=v1 and n,, observations have V=v0

This integral is called the marginal likelihood of D (parameter 9 is
integrated out)
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Marginal Likelihood for the Beta Distribution \

« The marginal likelihood is the likelihood of the data D integrated
over the prior distribution for 6

f,_, 0™ (1 — )™ f(8]a, B)db
= [, 0™1(1 — 0)wo ) ga-1(1 _ g)B-144

F'(a)L(B)
= F(d+ﬁ) 1 ny1+a—1 _ n +'3_1
I'(a)T(B) f9=06 - (1 9) vo do
| T(@+B) [T(@+ny)T(B+nyo) Pf’Of”OQ'I_?"'ﬂZé”%yconsfant
I'(a)T'(B)| T'(a+P+ny+ny0) Posterior normalizing constant

« If ¢ and B are integers:

1 ny 0\ _ (a+B-D)(a+ny; —D!(B+nyo—1)!
f9=08 1(1 9) 0f(9|a,,8)d9 (a—DI(B-D!(a+L+ny1+nye—1)!

* If a=p=1 (uniform distribution):

1 on, ’ _ _(1)!(ny0)!
\ Jg=o 0771 (1 = 0)"0f (8]a, B)do = -~ =2 /
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Example @ (& g
S

The learning problem: o
&)

— Two binary nodes, A and B B
S, S,

— Two possible structures, S1 and S2
The prior distribution:
— Structures have prior probabilities P(S1) = 0.7 and P(S2)=0.3

— Conditional on structure, all local distributions have independent uniform
distributions

The data: Counts in each category

Na1,b1 S Nao,b1 2
Na1,b0 3 Na0,b0 3
The marginal likelihoods: « Structure posterior probabilities:
P(D1S,)= Mo a1ty o _ 81517101 P(S1|D) ec P(S1)P(DIS1)
(n+1D! (n+1)! 14! 14! _07 8131 716! _ 4 an 100
14! 14!

1y 1 ' ' ' '
P(DIS,) = Za o=l Moo’ T Potis. p(,|D) o P(S,PDISy)
n+1D)! (n. .+ (n . +1! 151 5131 215!
( !y DI (g +1) =0.3 815 —=5.51 x10-10

_ 81515131213 T4 91 6!
141 91 6! /
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« Usually we compare structures by computing relative posterior
probabilities P(S;|D)/P(S;|D)
'8!5!716!
_07 a4
— P(S4|D)/P(S,|D) = 03 8{5!5!3!2!3! =2.94

14X 9! 6!
— P(S4|D) = 2.94/(1+2.94) = 0.746

m

 If all structures have equal prior probabilities we need only P(D|S)

— Ratio P(D|S,) / P(D|S,) depends only on marginal likelihoods for
nodes with different parents in S; than in S,

— Marginal likelihoods for nodes with same parents cancel out
» For large networks and large numbers of observations:

— The number of structures is astronomical and each has tiny
probability

— We usually work with In P(D|S) to prevent numeric underflow

— In P(D|S) is called the Bayesian Dirichlet (BD) score

\ — The goal is usually to find one or a few good structures, not to /
estimate the posterior probability of any one structure
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How the Posterior Probability
Varies as Counts Vary

 The data: 100 observations divided into categories as follows:

— al,b1 m1
— a1,b0 50-m1
— a0,b1 m2

— a0,b0 50-m2

* Plotof In[ P(S,|D)/P(S4|D) ] a__gainst m; and m, (uniform prior)

Th
B0}
s’
| - \;‘i A
30 .

O
S
()

(&
(&

S, S,

Structure S, with arc from Ato B
becomes more probable as k1
differs more from k2
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[ Marginal Likelihood for the Dirichlet Distribution

* \When a node has more than 2 states we use the Dirichlet
distribution

« The marginal likelihood for the Dirichlet distribution is similar to the
marginal likelihood for the Beta distribution

« The marginal likelihood for n4, n,, ..., n, observations in states 1, 2,
U O [

I'(et, +---+c.) T'(a,+n)--I'(cx. +n,)
I'(e))--1'(x,) I'(t; ++-+¢, +n,+---n)
« If the a; are all integers then the marginal likelihood is:

(o, +--+oa -1 (o, +n —-D!--(ax, +n —1)!
(o, -D!--(ax. =D (o, +-+0, +n, +---n —1)!

* For a uniform prior distribution the marginal likelihood is:
(r—1)! nl--n!

(n,+-n +r—1)!
\Usually take logs to avoid numeric underflows /
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The K2 BN Learning Algorithm

« We have covered the machinery necessary to understand a basic
Bayesian learning algorithm

* Assumptions behind the K2 learning algorithm
— Assume ordering of nodes is given
— All graphs consistent with node ordering are equally likely a priori
— All local distributions of nodes given parents are uniform
» Beta(1,1) for binary nodes
» Dirichlet(1,1,...,1) distribution for nodes with more than 2 states
« K2’ s basic approach to structure learning:
— K2 evaluates structures by P(D|S)
— Under the equal-prior assumption, this is proportional to P(S|D)

— The algorithm uses a greedy search over structures and returns the
structure with the highest P(D|S)

— This is a local optimum of the posterior distribution of structures given
the observations

— In P(D|S) is called the K2 score; the K2 algorithm finds a local optimum
of the K2 score
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. Begin with a network with no arcs
2. Look for the best arc to add

. If best arc from Step 2 does not increase posterior probability of

. Output network with highest posterior probability

Steps in the K2 BN Learning Algorithm \

(Assume a given order of the nodes)

a) Compute score In P(D|S) of network with each new arc

b) This can be computed efficiently because only one term in the
sum changes when an arc is added (the local distribution of the
node at the tail of the arc)

c) Pick highest scoring arc

resulting network, go to Step 4. Else add best-scoring arc to the
network and go to Step 2.

(Cooper and Herskovits, 1992)/
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Some Common Score Functions

« K2 score (o) O

 BD score ()

- BDe (e = likelihood equivalence) (B)
|

— Uses a single global virtual sample size, e.g.:
» ForS;-6,~Beta(1,1),0z~Beta(1,1)

S4

11

» ForS; - 04~Beta(1,1),0p41~Beta (5,5), 0p|a0~Beta (%,%)

» Prior for all structures is “like” 2 total prior observations distributed
evenly across states a,b,, a; by, agb,, agby

— Ensures that any two networks with same likelihood have the
same score

Bayesian Information Criterion (BIC) / Minimum Description
Length (MDL) / Schwartz Information Criterion

Akaike Information Criterion (AIC)
Log-likelihood Score / Entropy

The above score functions are available in the bnlearn R package

O
S
(o)

(®
O

S,

For more information see http://www.Ix.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf
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Structure Learning Using MB Detection:
Basic Method

» Use conditional independence tests to detect the strongly relevant
variables for each node

— Strongly relevant variables carry information that cannot be obtained
from any other variable

— In a causal graph these are the parents, children and co-parents
* Find V-structures (aka “colliders”) and remove co-parent links

— V-structures are independent causes that become dependent when
conditioned on common effect

— Arcs in a V-structure can be oriented
* Propagate orientation constraints

Example Markov Blanket Detection algorithms:

» Grow-shrink algorithm (the original and the simplest)

* Incremental Association Markov Blanket (IAMB) and variants
 Total Conditioning (TC) and variants

Pellet and Elisseeff (2008)
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Grow-Shrink Algorithm

1. For each node X, initialize MBy (Markov Blanket of X) to
empty set

current contents of MBy

independent of rest of network given MBy

variables in MBy independent of X given the rest of MBy
— The shrink phase removes these extra variables from MBy

Kﬁps://www.cs.cmu.edu/~dmarg/Papers/Ph D-Thesis-Margaritis.pdf

2. Grow phase: Add variables to MBy if dependent on X given

— We keep adding new variables to MBy until X is conditionally

3. Shrink phase: Identify and remove any variables from MBy
that are conditionally independent of X given the rest of MBy

— The process of adding nodes to MBy may have rendered other

<

_/
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ecial Structures for Bayesian Network Classifiers\

 Nalve Bayes

— Class node is root

— All features independent given class node

— Simple, robust, commonly used classifier
* Tree-augmented naive Bayes (TAN)

— Class node is root

— All features are children of class node

— When class node is removed, remaining network is a tree

— Often improves on naive Bayes classifier
« Bayes net augmented naive Bayes (BAN)

— Class node is root

— All features are children of class node

— When class node is removed, remaining nodes form arbitrary
Bayesian network

— Sometimes improves on TAN, but requires more search /
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Examples of Free Software for \
Learning Bayesian Network Structure

bnlearn is an R package for learning Bayesian networks from data

— Discrete or continuous variables

» Continuous variables must have Gaussian distribution and may have no discrete children —
this is called a conditional Gaussian network

— Score-based or conditional independence test-based learning algorithms
— Supports blacklist (arcs not allowed) and whitelist (arcs required)
— Inference in learned network
» Approximate inference via likelihood weighting algorithm
» Translate to gRain network for exact inference
— http://www.jstatsoft.org/v35/i03/paper
bnstruct is an R package for learning Bayesian networks with missing data
— https://academic.oup.com/bioinformatics/article/33/8/1250/2730229
SMiLearn (from Bayes Fusion, formerly GeNle/SMILE) is free for academic use
— https://www.bayesfusion.com/academic-users
Weka has several Bayesian network classifiers:
— http://lwww.cs.waikato.ac.nz/~remco/weka.bn.pdf

m

RSITY

« Other packages (last updated June 2014) can be found at
— http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html

©Kathryn Blackmond Laskey Spring 2019 Unit 5 (v4a) - 55 -




George Mason Universi Department of Systems Engineering and Operations Research
8 1y P Y 8

v Efficient Summing over Many Structures \

(Friedman and Koller, 2002)

Most learning algorithms attempt to find a single high-probability structure

There typically are many structures consistent with the data
— The number of structures is super-exponential in the number of nodes

We would like to be able to compute the posterior probability of a feature
(e.g., is A a parent of B?)

— This requires summing over all structures: P(FlD)zEP(FIS)P(SID)

F
Under certain assumptions on the prior distribution, the structure score
decomposes into a product of factors

— Structure modularity: Given a node ordering, the choice of parents for any node is
independent of the choice of parents for other nodes

— Global parameter independence: parameter for one node is independent of
parameters for other nodes

— Parameter modularity: If X has the same parents in two different structures then
the parameter prior is the same for both structures

If the node ordering is fixed and the number of parents per node is bounded,

\the above sum can be computed efficiently by factoring products outsidethe/
sum
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Computing the Posterior Probability of a Feature

« Suppose the ordering of the nodes is fixed and known and the
number of parents of each node is smaller than a bound k

« \We can write:

AD|0) = | | scord X, Pay(X) 1 D) =] | ) scord X, U] D)

SesS, 7 I U,
— O is a fixed node ordering
— S is the set of structures consistent with node ordering O

— U,,o is the set of possible parents of node X; consistent with node ordering
O and the bound on the number of parents

 |f there are n nodes and no more than k parents per node there are
fewer than nk+1 terms to compute in this product of sums

* For certain types of feature (e.g., A>B?) this same trick can be
applied to computing feature probabilities. Then we obtain:

P(F|0,D)=P(ED|0)

AD|0)
« For unknown node ordering use Monte-Carlo sampling to average
over node orderings
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Learning with Local Structure: Partitions \

« Partitions of parent variable

— When there is context-specific independence, local distributions are
the same for some combinations of parent variable

— In a partition model, we need to learn one probability distribution for
each element of a partition of the state space of a parent variable

— We apply exactly the same method for computing P(D|S) except that
we pool all the cases in a given partition element

« Modifications to basic learning algorithm:
— Define a procedure for searching over partitions
— Scoring rule pools cases in same partition element

* Friedman and Goldszmidt (1997 UAI)

— 2 different ways to define partitions: classification tree or
default+exception

— Learning was more efficient
» Richer graph structures with less data

» Better predictive performance with less data

\ Edera et al (2014) — Grow-Shrink algorithm with context-specific/
indpendence
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Recap

We considered methods for parameter learning
— Beta and Dirichlet conjugate prior distributions treated in detail
— EM algorithm can be used when observations are missing
— General regression methods were mentioned briefly

We considered methods for structure learning
— Simple K2 Bayesian search and score method
» Fixed node order is given
» Greedy search over arc presence
» Scoring method based on uniform prior distributions
— Different score functions
— Markov blanket detection algorithms

— Using within-node structure (e.g., ICIl, context-specific independence) to increase
efficiency of learning

— We have not discussed:
» Searching over node orders (stochastic search is commonly used)
» Learning structure with missing observations

We have seen that in fully Bayesian learning parameter and structure learning
are intertwined
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Hard Problems in Learning

Learning with more complex kinds of information
— Missing data / hidden variables
— Non independent and identically distributed data

— Combining observations with other kinds of information (not just Beta or Dirichlet
priors)
— Constraints on the model (partitions are easy; other kinds of constraints can be very
hard)
Combinatorics and search over structures

— There are 2 parts to a learning algorithm: searching for plausible structures and
evaluating structures

— Search for structures is especially important for more complex learning problems
» Missing data and hidden variables
» Local search algorithms get "stuck" at local optima

— We have discussed a Bayesian evaluation method: compare structures by their
relative posterior probabilities

— There is a LARGE number of possible structures when there are many variables

— Open research issue: search methods that quickly focus in on a high probability set
of structures
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* Learning is hard with missing data and hidden variables

« Structural EM (Friedman, 1978) combines greedy search over
structures with the EM algorithm for estimating parameters

— Need to approximate marginal likelihood

— Can get stuck in local minima

— Use random restarts to avoid being stuck in a bad local optimum
— bnstruct R package implements SEM

 Monte Carlo simulation (e.g., Laskey and Myers, 2003) can be used
to learn structure and parameters in presence of missing data and
hidden variables

— Initialize structure and missing/hidden observations

— Make random changes in structure (add/delete arcs) and missing/hidden
observations

— Accept or reject changes according to a probabilistic rule

— Long-run distribution: arcs and missing/hidden observations are
sampled from posterior distribution given the actual observations

— Algorithm generates a sample of structures and missing/hidden
observations -- can make inferences about probability of arc
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h Summary: Bayesian Learning of \
Parameters Given Structure

Given the graph structure, we need to learn a set of probability distributions
for each node, one distribution for each configuration of its parent variables

— If there is local structure in the form of partitions, then one distribution needs to be
learned for each partition element

— Probability of child given parent is a regression model

Conjugate families are mathematically convenient for representing prior
information about the probabilities

— Simple updating formula
— Interpretation as “virtual sample summary”
— Larger virtual prior sample size =» more highly concentrated prior distribution

— Ratio of actual sample size to virtual prior sample size determines relative effects
of prior and likelihood

The Beta (for binary nodes) or Dirichlet (for many-valued nodes) are
conjugate families for unconstrained discrete probabilities

Parameterized models increase efficiency of learning

\EM algorithm can be used when there are missing data /

©Kathryn Blackmond Laskey Spring 2019 Unit 5 (vda) - 62 -




~ George Mason University Department of Systems Engineering and Operations Research

Pl GEORGN

UNIVERSITY

m

Summary: Bayesian Learning of Structures \

« The posterior probability of a structure P(S|D) is proportional to the
marginal likelihood of the observations P(D|S) times the prior
probability of a structure P(S)

« There is an explicit formula for the marginal likelihood when the
prior distributions for the local distributions comes from a conjugate
family

— We examined the case of Beta / Binomial and Dirichlet /
Multinomial conjugate families

— There are other common conjugate pairs
« Generally there are too many structures to enumerate them all
« Approaches:

— Heuristic search

— Stochastic search

— Summing over large number of structures

\_ _/
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Combining Data with Expert Judgment
in Learning Bayesian Networks

 Heckerman et al (1995) suggest the following method for Bayesian
learning to combine expert knowledge with data:

— Expert specifies a Bayesian network (structure and probabilities)

— This expert-specified Bayesian network defines a joint distribution on all
variables in the network

— This joint distribution plus a global virtual sample size defines a BDe prior
distribution on parameters given any structure

— We can search over structures using the BDe score to evaluate structures

— Steck (2008) provided a method to find an optimal virtual sample size from
data

« Expert knowledge about arc existence and orientation can be included

— Many BN learning algorithms allow "blacklists” (arcs not allowed in learned
network) and “whitelists” (arcs that must be in the learned network)

» Expert can say “A cannot cause B,” or “A must be included as a cause of B”
— We can define an informative prior on structures by allowing expert to
assign probabilities for arc existence and orientation
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* Overview of Learning in Graphical Models

« Parameter Learning in Directed Graphical
Models

« Structure Learning in Directed Graphical
Models

j> * Learning in Undirected Graphical Models

 Statistical Relational Learning

\_ _/
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Learning Undirected Graphical Models \

* The problem: learn structure and parameters for undirected graphical
model

1
p(x) = EH% (x. 1)

— Structure: Arcs (implies cliques) and functional form of potential functions
— Parameters: Parameters of parameterized potential functions

« Complicating factor: partition function Z is global normalization and
prevents decomposing into separate learning problem for each clique

* With complete data, parameter learning problem by MAP or MLE is a
convex optimization problem

— Solve by iterative gradient ascent or by Monte Carlo
— EM for missing data (no longer convex)

e Structure learning
— Algorithms based on conditional independence tests

— Algorithms based on scores

\ » Use approximations to marginal likelihood /
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""""""""" Unit 5 Outline \

* Overview of Learning in Graphical Models

« Parameter Learning in Directed Graphical
Models

« Structure Learning in Directed Graphical
Models

* Learning in Undirected Graphical Models
j> « Statistical Relational Learning

\_ _/
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Relational Learning \

In Unit 3 we learned about expressive representations for
knowledge

Relational probabilistic languages (PRM, OOBN, MEBN,
etc.) represents probabilistic knowledge about entities,
attributes, relationships

— Fragments of BN can be repeatedly instantiated for different
entities

Learning relational models requires methods for
appropriately treating the repeated structure

— Pool data for learning identical CPTs (parameter tying)

— Learn parameters of combining functions for CPTs with many
instantiations of a parent

— Avoid “double counting” errors of naive learning approaches
Relational learning is an active research area

_/
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Some Complexities for Relational Learning

Learning algorithms will give incorrect results if

« Cases have different numbers of random variables TargetType(obj1)
— Case 1 has two random variables Eﬁiw ggg
— Case 2 has three random variables l

« Object relationships may have different cardinalities ReportedType(rept)
— obj1 is related to rep1 (one relationship) ikl
— obj2 is related to rep2 and rep3 (two relationships) Case 1:

Single Report for Object

repeated structure is not handled properly

TargetType(ohj2)

— Naive “database join” approach is to make a single tnomy 500 T
table with columns for TargetType and ObjectType / \
and a row for each object/report pair

— If reports are not evenly distributed across object | | e
types this can result in poor estimate of TargetType LEnemy 41.0 ERERE

distribution Case 2

For example: If most friendly objects have only one

report and most enemy objects have several reports TargetType
then this approach will overestimate the frequency of E"_emdvl
i riendly
enemy objects o
» Relational models may have parameterized ::dvly
combining rules that must be learned Enemy

Two Reports for Object

ReportedType
Enemy
Friendly
Enemy
Friendly
Friendly
Enemy
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MEBN-RM: Map Relational Database
to MEBN Elements for MEBN Learning

Ti Regio Vehicle Locatio Situati
T RID VID | VehicleType vidWehicle | ¢Time| |22 | | iyRegion| yTime || ThreatLevel
- - Reg!'on -

tl rgnl vl | Wheeled | vl t1 | rgnl rgnl 1| High
12, rgn2 V2 Tracked v2 2 rgnl rgn2 2 Low

Primary Key: bold and inclined letters e.g., TID

Time entity Vehicle entity
in MEBN . . in MEBN
Region entity
in MEBN
i ) i NN A
Vehicle_MFrag Location_MFrag Situation_MFrag

r&m isA(rid, Region) isAltTime)
W isAt Time)

VehicleType(id

( ThreatLevel(rid, t )

. o7
Location(vid, f) \. o

MEBN-RM Mapping Rules:

1. Entity Mapping
Predicate resident node Mapping
Function resident node Mapping
Relation Schema and MFrag Mapping
Relational Database Schema and MTheory Mapping

o bk~ LD
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MEBN Parameter Learning
from Relational Database

UNIVERSITY

i . A
i o A Situation_MFrag
Situation_MFrag
isA{rid, Region) isAlt Time) 1. Structure isAvid Vehicle) isA(rid,Region)
Co(ll?nstructll)ng
anua
. rid = Locationdvid t isAlt Time
( ThreatLevel(rid, f) ) ( tid.n) g )
e o
VehicleTypedvid)
Rule 2: causal(VehicleType, ThreatLevel) ThreatLevel(rid, t)
&
e J
Causal Relationship Information

cec | ¢ Vehicle. Location.y | Location.t | Location.Location | Situation.

45¢ | VehicleType | Vehicle.VID [ Situations Situation.rgn | DangerLevel

ot | Vo [ Dot | Rt | Hab |2 MEBN Parameter Learning  CLD: ThreatLevel(rid, 1)

3 Tracked Vehiclel?7 Time24 Region8 Low (Automated)

4 Tracked Vehiclel19 Time27 Region9 High - i 7, 7 - —

T = e e 1 CPCi: if some vid have (VehicleType = Tracked) |
CPC 9 Tracked Vehicle2 Time5 Regionl Low . . _
(GC]‘) 11 Tracked Vehicled | TimeS Regionz High 2 CSDu: H g h OW =

12 Tracked Vehicle5 Time8 Region2 High . . .

13 | Tracked | Vehicleg | Timell |  Regiond Low 3 CPC: ] elseif some vid have (VehicleType = Wheeled) |

14 Tracked Vehicle7 Timell Region3 Low

e s e | R | 4 CSDx:  High48,,)Low=[6..]

5 Wheeled Vehicle21 Time30 Regionl0 High

6 Wheeled | Vehicle23 | Time33 Re§i0n11 Logw 5 CPCqy: ] else [
CPC2 7 Wheeled Vehicle0 Time2 Region0 High
(GCy) |_10 Wheeled Vehicle3 Time5 Regionl Low Dirichlet (Discrete - 1 =

17 Wheeled Vehiclel0 Timel7 RegionS High co:-‘éitiona(l (I;aussi;n 6 CSDd ngh 0“’

18 Wheeled Vehiclell Timel7 Region5 High

(Continuous) Class Local Distribution

Joined Relational Data
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Tutorials on Statistical Relational Learning \

o http://people.cs.kuleuven.be/~luc.deraedt/iclp2009.pdf

* http://www.cs.umd.edu/~getoor/cmsc828g/Slides/SRL-
Tutorial-05-08.pdf

\_ _/
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Summary and Synthesis

Elements of a typical learning algorithm
— Inference about parameters given structure
— Inferring structure
» Score based and independence test based approaches
« Learning can be treated as Bayesian inference
— Directed graphical model relates BN structure & parameters to observations
— Simplest case: observations are independent realizations from the BN to be learned
« K2 Algorithm (simplest case)
— Complete data
— Parameter prior is uniform
— Evaluation function is marginal likelihood of data
— Search is greedy; node ordering is assumed given
— Select single best structure
« Extensions we treated
— Informative Beta or Dirichlet parameter prior
— Missing data and hidden variables
— Stochastic search
— Multiple structures versus single good structure
* Undirected models introduce complexity due to partition function

* Relational learning introduces complexities due to repeated structure
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2011.
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— Steck H (2008). Learning the Bayesian Network Structure: Dirichlet Prior versus Data. In Proceedings of the 24th Conference on Uncertainty in
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— Edera, A., Strappa, Y. and Bromberg, F. (2014) The Grow-Shrink strategy for learning Markov network structures constrained by context-specific
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— Friedman, N. and Koller, D. (2002) Being Bayesian About Network Structure: A Bayesian Approach to Structure Discovery in Bayesian
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— Laskey, K.B. and Myers, J. (2001) Population Markov Chain Monte Carlo, Machine Learning, 2001.
— Scutari, M. (2010) Learning Bayesian Networks with the bnlearn R Package, Journal of Statistical Software 35(3).
Markov blanket detection algorithms

— Pellett, J. and Elisseeff, A. Using Markov Blankets for Causal Structure Learning. (2008) Journal of Machine Learning Research.
http://www.jmir.org/papers/volume9/pelletO8a/pellet08a.pdf
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2003

For er references browse the reference sources on the course web site.
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