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Learning Objectives
1. Specify a joint distribution for a collection of uncertain hypotheses using

– A graph to represent conditional dependence relationships
– Local probability distributions to represent strength of relationships

2. Given a graphical model, identify 
– The probability of any configuration of hypotheses (exact if directed graphical model; up 

to normalization constant if undirected graphical model)
– Whether a set of hypotheses is independent of another set given a third set

3. Use within-distribution structure to simplify specification of local probability 
distributions

4. Understand and use terms defined in this unit: 
- Sample space
- Random variable
- Conditional independence
- d-separation
- Directed graphical model (aka Bayesian network)
- Markov network (undirected graphical model)
- Explaining away and intercausal dependence
- Local probability distribution
- Context-specific independence
- Independence of causal influence (ICI)
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Unit 2 Outline

• Graphical Probability Models: Overview 

• Graph Theory Basics

• Graphical Probability Models: Formal 
Definitions

• Node-level Independence
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Graphical Representation of Dependence

• Graphical models exploit conditional independence to construct tractable 

and parsimonious statistical models

• Graphs are a useful tool for specifying and visualizing dependencies 

between random variables

– Random variables (RVs) are represented by nodes

– Direct dependencies are represented by edges connecting nodes

– Absence of an edge between 2 RVs means no direct dependence

• Joint distribution is obtained as product of local distributions involving small 

numbers of RVs

A

B

D

C

E

H

F

G

Trip to Asia

Tuberculosis

Lung
cancer

Smoking

Positive
chest X-ray

BronchitisTuberculosis or
Lung cancer

Dyspnea (shortness
of breath)

Example: Chest Clinic

• Direct dependence (e.g., trip to Asia and 

tuberculosis)

• Indirect dependence (e.g shortness of 

breath depends on smoking through 

bronchitis

• Probability distribution factorizes:

P(a,b,c,d,e,f,g,h)  
=  P(a)P(b|a)P(c|b,e)P(d|c)P(e|f)P(f)P(g|f)P(h|c,g)

Notation convention: Uppercase letters denote random 
variables; lowercase letters denote values
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Independence Simplifies Specification and Inference
• General probability distribution for 8 random variables with 2 values each:

– 28 = 256 possible values for (A,B,C,D,E,F,G,H)
– 255 probabilities need to be specified
– Marginal probability example:

»

» 127 addition operations
– Conditional probability example:

»

» 127 additions (63 + 63+1); 1 division

• Network with structure of Chest Clinic example:
– 256 possible values for (A,B,C,D,E,F,G,H)
– P(a,b,c,d,e,f,g,h)  =  P(a)P(b|a)P(c|b,e)P(d|c)P(e|f)P(f)P(g|f)P(h|c,g)

» 18 = (1 + 2 + 4 + 2 + 2 + 1 + 2 + 4) probabilities to be specified [14 with deterministic influence at C]
– Marginal probability example:

» P(b2)  =  P(b2|a1)P(a1) + P(b2|a2)P(a2) = (1-P(b1|a1))P(a1) + (1-P(b1|a2))(1-P(a1)) 
» 1 addition, 3 subtractions, and 2 multiplications

– Conditional probability example:
»

» 1 addition, 3 subtractions, and 2 multiplications for P(b2), 3 multiplications, 1 addition, 1 division

P(b2 ) = P(a,b2 ,c,d,e, f ,g,h)
a,c,d ,e, f ,g,h
∑
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Specification and inference scale exponentially in 
general probability models,  linearly in Bayesian 

networks with simple structure, and in between for 
more complex Bayesian networks

• What if each node had 10 states?

• What if the network had 50 nodes, 5 
states per node, 3 parents per node?

! "# $% = !("#, $%)
!($%)

= ∑+,,,-,.,/,0 !(1, 2, 3, 4, 5, "#, $%, ℎ)
∑+,,,-,.,/,0 !(1, 2, 3, 4, 5, "%, $%, ℎ) + ∑+,,,-,.,/,0 !(1, 2, 3, 4, 5, "#, $%, ℎ)

! "# $% = ! $% "# !("#)
! $% "% ! "% + ! $% "# !("#)
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Types of Graphical Probability Model (1 of 2)

• Bayesian Network
– Directed acyclic graph represents direct dependence relationships
– Each RV is independent of its nondescendents given its parents
– Joint distribution over RVs factorizes as:

» "#(%) are parents of %

• Markov Network
– Undirected graph represents dependencies among propositions
– Each variable is independent of the rest of the graph given its neighbors

– Joint distribution over RVs factorizes as:

» C runs over maximal complete subgraphs (called cliques)
» y'((') is called a clique potential
» ) is a normalization constant known as the partition function 

• This term comes from statistical physics, where " ( represents a probability distribution 
over microstates of a physical system in thermal equilibrium at a given temperature, and 
Z is a function of temperature.

Reference: Cowell, et al, 1999

" ( =+
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Types of Graphical Probability Model (2 of 2)

• Graphical Model on Chain Graph (generalizes BNs and MNs)

– Graph with no directed edges represents dependence relationships

– Each RV is independent of its nondescendents given its parents and neighbors

– Joint distribution over RVs factorizes as:
» "($) are disjoint sets of nodes forming a dependence chain. Nodes in "($) are connected 

by undirected arcs; all directed arcs go from lower to higher $
» Parents and neighbors of a node & are called the boundary of &

• Factor graph
– Bipartite graph: 2 kinds of nodes

» Random variables (circles)
» Factors (rectangles)

– Joint distribution over RVs factorizes as:

» "($) are random variable nodes connected to factor i
– Bayesian networks, Markove fields and graphical 

models on chain graphs can all be represented as 
factor graphs

Reference: Cowell, et al, 1999

' & =)
*
'(&+ * |&-.(+ * ))

' & = 1
0)

*
1*(&+(*))

Reference: Kschischang, et al, 2003
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• Graphical Probability Models: Formal 
Definitions
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Relations and Graphs
• D2.1: A binary relation ! on a set " is a set of ordered pairs of elements ($, $′), where 

$Î" and $′�".  
– The relatives Rel(x) are those x' for which (x,x')ÎR.

» [Note:  x' Î Rel(x) does not necessarily imply xÎ Rel(x')]
– A binary relation is reflexive if xÎR Þ xÎRel(x).
– A binary relation is irreflexive if xÎR Þ xÏRel(x).
– A binary relation is symmetric if for all $, $′�", xÎRel(x') implies x'ÎRel(x).

• Relations are used to express knowledge about relationships
– E.g., Children and their mothers:

» R = {(Sarah Laskey, Kathryn Laskey), (Rob Laskey, Kathryn Laskey), (Kathryn Laskey, Frances 
Blackmond), (Frances Blackmond, Jane Newell…}

• D2.2: A directed graph (digraph) ( = (*, +) consists of a finite set * of vertices 
(nodes) and a binary relation + on *.  

– The relation + is called the adjacency relation
– The elements (,, -) of + are called the edges of G.

• D2.3: An undirected graph ( = (*, +) is 
an irreflexive graph in which the 
adjacency relation is symmetric.  
That is, if (,, -)Î+ then (-, ,)Î+.

• D2.4: A bipartite graph ( = (*1, *2, +) is 
a graph whose vertices consist of two
disjoint sets *1 and *2, such that every 
edge connects a vertex in *1 to a 
vertex in *2.

In Bayesian networks and Markov networks:
• A node or vertex (plural vertices)  represents a random 

variable
• An arc or edge represents a dependence relation
In factor graphs:
• A variable node represents a random variable and a factor 

node represents a factor of the conditional distribution
• An arc represents a dependence relation
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Examples
Directed graph

– V = {A, B, C, D, E, F}       
– E = {(A,D), (B,D), (B,E), 

(C,E), (E,F), (F,D)}

Undirected graph
– V={A, B, C, D, E, F}
– E = {(A,D), (D A), (B,D), (D,B), 

(B,E), (E,B), (C,E), (E,C), 
(D,F), (F,D), (E,F), (F,E)}

A B C

D E

F

A B C

D E

F

General graph
– V={A, B, C, D, E, F}
– ,E = {(A,D), (B,D), (B,E), 

(C,E), (E,C), (D,F), (F,D), 
(E,F)}

A B C

D E

F

Bipartite graph
– V1={A, B, C, D, E, F}
– V2={f1, f2, f3, f4, f5, f6}
– E = {(A,f1), (B,f2), (B,f3), (C,f4), 

(D,f1), (D,f2), (D,f5), (E,f3), 
(E,f4), (E,f6), (F,f5), (F,f6)}

A B C

D E

F

f1

f5

f4f2 f3

f6
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Chains, Paths and Cycles
• D2.5: Let G = (V,E) be a graph.

– A chain between vertices v0 and vm is a sequence of vertices [v1, …, vm] such that either 
(vi-1, vi)ÎE or (vi,vi-1)ÎE for each i. Chains do not take arc direction into account.

– A path between vertices v0 and vm is a sequence of vertices [v1, …, vm] such that (vi-1, vi)ÎE for 
each i. Paths take arc direction into account.

– A (directed) cycle is a path from v0 to v0.

• D2.6: A chain graph is a graph with no cycles (no directed paths from a node to itself).

• D2.7: A directed acyclic graph (DAG) is a chain graph with no undirected edges.

– Technically we should say acyclic directed graph but DAG is the common term
• D2.8: Let G=(V,E) be a directed graph.  

a. The parents (predecessors) pa(v) of v are the vertices u such that (u,v)ÎE.  

b. The children (successors) ch(v) of v are the vertices u such that (v,u)ÎE.  

c. The ancestors of v are the vertices u such that there is a path from u to v.  

d. The descendents of v are the vertices u such that there is a path from v to u.

e. An ancestral ordering of the vertices in the graph is an ordering in which all the ancestors of a 
vertex v are ordered before v.

• Theorem 2.1:  An ancestral ordering of the vertices in a digraph exists only if the 
digraph is a DAG.

• Theorem 2.2:  If v is a vertex in the DAG G=(V,E), it is always possible to obtain an 
ancestral ordering of the vertices in G so that only the descendents of the vertices v 
are labeled after v.

– This theorem will be important in junction tree construction
The theorems are from Neapolitan, 1991



Unit 2 (v2b) - 12 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Singly Connected Graphs and Trees

• D2.9: Let G=(V,E) be a DAG.
– A directed graph G is singly connected if there is at most one 

chain between any two vertices.
– G is a forest if every vertex has at most one parent.
– G is a tree if it is a forest and there is only one vertex with no 

parent.

Multiply Connected DAG Singly Connected DAG
Forest Containing Two Trees

Terminology: A node is the 
same as a vertex

Inference is most efficient in singly connected networks
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Active and Inactive Chains

• Active chains carry information; inactive
chains do not carry information

• Observations at tail-to-tail or head-to-
tail links break a chain

– The following chains are active when 
there is no evidence at P:

» S ¾ P ¾ H
» S ¾ P ¾ F
» R ¾ P ¾ H
» R ¾ P ¾ F
» F ¾ P ¾ H

– Adding evidence at P inactivates these 
chains

• Observations at or below head-to-head 
links activate a chain

– The chain S ¾ P ¾ R is inactive when 
there is no evidence at or below P

– Adding evidence at P, F, and/or H 
activates the chain

Sprinkler Rain

Pavement

Fall Shoes

S R

P

F H

• R and S are independent, but are dependent 
conditional on P

• F and H are dependent (if fall is more likely, 
then so are wet shoes) but are independent 
given P

• S and F are dependent, but are independent 
given P
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Active and Inactive Chains: Formal Definitions
• D2.10:  Let G=(V,E) be a DAG with u,v,wÎV.

– If (w,u) ÎE and (w,v)ÎE, then the arcs (w,u) and (w,v) are 
diverging or meet tail-to-tail at w.

– If (u,w)ÎE and (w,v)ÎE, then the arcs (u,w) and (w,v) are serial or 
meet head-to-tail at w.

– If (u,w)ÎE and (v,w)ÎE, then the arcs (u,w) and (v,w) are 
converging or meet head-to-head at w.

• D2.11:  Let G=(V,E) be a DAG, and let ZÌV, and let x and y 
be vertices not in Z.  Then a chain between xÎV and yÎV is 
not active given Z if one of the following is true:

– There is a vertex zÎZ on the chain such that the connection at z 
is diverging or serial;

– There is an intermediate vertex xÎV such that the connection at s 
is converging and neither s nor any of its descendents is in Z.

All other chains are active.

u v

w
Diverging
Tail-to-tail

u v

w

Head-to-tail
Serial

u v

w

Head-to-head
Converging

x

y

z
rZ={z}

Chain from x to y is inactive
due to serial link at z

x y

z

s

Z={z}

Chain from x to y is active
due to converging link at s 
with descendent in Z

x y

z

sZ={z}

Chain from x to y is inactive
because Z does not contain 
s or any of its descendents
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d-Separation
• D2.12:  Let G=(V,E) be a DAG, and let X, Y, and Z be disjoint 

subsets of vertices in V.  Then X and Y are d-separated by Z if 
every chain between a node in X and a node in Y is not active 
given Z.

• In words: Two sets of vertices are d-separated by a third set of 
vertices if there are no active chains between a node in the first 
set and a node in the second set given the third set

d-separation is a powerful concept 
– d-separation of vertices in a graph corresponds to conditional 

independence of the associated random variables
– If X and Y are d-separated by Z in G then X and Y are 

conditionally independent given Z in any directed graphical 
probability model associated with G

– d-separation is the mathematical basis for efficient inference 
algorithms for Bayesian networks
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d-Separation Examples

Does Z d-separate X from Y?

U1

U2

Z2

Z1

X1

Y1

U1

U2

Z2

Z1

X1

Y1

U1

U2

Z2

Y1

Z1

X1

U1

U2

Z1

X1

Z2

Y1
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How to Tell Whether Sets of Nodes are d-Separated
• To find out whether Z d-separates X from Y, follow these steps.  

1. Find all chains connecting random variables in X to variables in Y.  
2. Do for all chains until an active chain is found: 

a) Is there a node in Z on the chain at which connection is diverging or serial?  If yes, 
chain is not active.

b) Is there a node on the chain at which connection is converging?  If yes, for each 
such node:

• Check whether the node or any of its descendents is in Z.  If no, chain is not active.
c) If you have followed steps a and b and have not declared the chain inactive, then 

the chain is active.
3. If an active chain was found in step 2, then X and Y are not d-separated by 

Z.  If no active chain was found, X and Y are d-separated by Z.
• IMPORTANT:

– To declare sets not d-separated you only have to find one active chain 
– To declare sets d-separated you have to show that all chains are inactive

• The easiest way to tell whether nodes in a Bayesian network are 
conditionally independent is to check d-separation:

– If Z d-separates X and Y in the graph of the Bayesian network, then 
X and Y are conditionally independent given Z in the joint 
distribution represented by the Bayesian network
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Markov Blanket
• D2.13: The Markov blanket of a node consists of: 

– its parents, children, and other parents of its 
children (co-parents) if graph is a DAG;

– its neighbors if graph is undirected.

The Markov blanket of a node consists of all 
nodes whose local distributions mention it, along 
with all nodes their local distributions mention

• Theorem 2.3: A node�s Markov blanket d-
separates it from all other nodes

– A node is conditionally independent of all 
other nodes given its Markov blanket

• Example: Markov blanket of B is A,C,D
P(b1 | a,c,d,e, f ,g,h)
P(b2 | a,c,d,e, f ,g,h)

=
P(b1,a,c,d,e, f ,g,h)
P(b2 ,a,c,d,e, f ,g,h)

=
P(b1 | a)P(d | b1,c)
P(b2 | a)P(d | b2 ,c)

The ratio of probabilities of two 
possible values of B depends only 

on the values of B�s Markov 
blanket, and does not change if we 
change nodes outside the Markov 

blanket of B

B

D

C

G

E F

A

H
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Hidden Markov Model

• A hidden Markov model is a kind of directed graphical model 
used often in applications such as speech recognition and 
protein sequencing

• The hidden states Ht represent unobservable system states
• The observations Ot represent observations (also called 

emissions) that depend on the hidden system state
• The Markov blanket of Ht is {Ht-1, Ht+1, Ot}
• HMMs have the memoryless property – given the 

immediately preceding state Ht-1, the present and future (Ht, 
Ot, Ht+1, Ot+1, …) is independent of all other information 
about the past 

O1

H1 H2

O2 O3

H3 H4

O4 Ot

Ht Ht+1

Ot+1 O7

H7 Hn

On

… …
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Graph Separation in Undirected Graphs

• D2.14:  Let G=(V,E) be an undirected graph, let ZÌV, and let 
x and y be vertices not in Z.  Then a chain (path) between 
xÎV and yÎV is not active given Z if there is a vertex zÎZ on 
the chain.

x y

z1

u1

z2

u2

Which chains between x and 
y are active given Z={z1, z2}?
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Undirected Graph: Cliques

• D2.15: In an undirected graph G, a clique C is a maximally 
connected subgraph. That is, C Ì V is a clique if every pair 
of nodes in C is connected by an arc and C is the largest 
such subset of V. That is, if C Ì W Ì V and every pair of 
nodes in W is connected by an arc, then C=W.

F C

E

A

B

D

What are the cliques 
in this graph?
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Probability Spaces
• D2.16: A sample space W is a set containing mutually exclusive and 

exhaustive outcomes for some trial or experiment.  
– Exclusive:  only one element of W will occur
– Exhaustive: at least one element of W will occur

» Example: Sample space for coin flip is  {H,T}; for 2 tosses it is  {HH,HT,TH,TT}

• D2.17: A field (also called an algebra) F is a set of subsets of W such that:
a. WÎ F
b. If !1 and !2 Î F then  !1È!2 Î F.
c. EÎ F implies !$ Î F.  (!$ is the complement of !)

» a. and c. imply that Æ Î F
» A field is a s-field if           whenever !1, !2, … Î ℱ

• D2.18: A probability space is a triple (W, F,P), where W is a sample space, 
F is a field over W, and P is a probability measure on F.

a. P(E) ≥ 0
b. P(W) = 1
c. If E1 Ç E2 = Æ then  P(E1ÈE2)  =  P(E1) + P(E2)
Note:  If F is a s-field we say ( is countably additive if             

when !) Ç !* = Æ for all i≠k

+
,-.

/
!, ∈ ℱ

( +
,-.

/

!, = 2
,-.

/

((!,)
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Random Variable: Formal Definition
• D2.19: Let (W, F,P) be a probability space. A random variable (RV) is 

a function mapping W to a set called the possible values
• Sprinkler example (sprinkler or rain could cause wet pavement; wet 

pavement could cause fall and wet shoes)
– The sample space consists of situations in which it is or is not raining, 

the sprinkler is or is not on, etc.
» W = {(s,r,p,f,h,…)}

– Random variables map situations to features:
» Sprinkler: S maps (s,r,p,f,h,…) to s.
» Rain: R maps (s,r,p,f,h,…) to r.
» Pavement: P maps (s,r,p,f,h,…) to p.
» Fall: F maps (s,r,p,f,h,…) to f.
» Shoes: H maps (s,r,p,f,h,…) to h.

• We will often use uppercase letters (e.g., S, R) to refer to a random 
variable and lowercase letters (e.g., s, r) to refer to possible values

– For example, we say S=s to mean the random variable S takes on the 
value s.

Sprinkler Rain

Pavement

Fall Shoes

S R

P

F H
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Graphical Models and Local Specification

• Traditionally probability distributions are defined �top down�
– We assume a sample space, a probability measure on the sample 

space, and a set of random variables mapping elements of the 
sample space to possible outcomes

– Joint and marginal probability distributions for the random variables 
are derived from the global joint distribution

• In practice, joint distributions of any complexity are almost always 
built up from elements that interact directly with only a few other 
elements

• Powerful innovation: graphical models
– Define random variables in terms of local distributions involving only a 

few other random variables
– Provide conditions under which this process uniquely specifies a 

global joint distribution
– Graph theory provides a powerful language for specifying 

dependence relationships and subsets of RVs on which local 
distributions are defined
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Conditional, Marginal and Joint Distributions
• D2.20: Let (W, F,P)  be a probability space, where W = W1´ W2 ´ …´ Wn. We 

call W the joint sample space and the elements ("1, … , "&) where "(Î Wi the 
configurations on the joint sample space.  Let )( be the random variable 
mapping a configuration to its ith coordinate.  We call the probability 
distribution P the joint distribution for ()1, … , )&).

– The marginal distribution of a subset of random variables ()*+ , … , )*,) is:

– (Note that P(Xi) represents a set of numbers - "( , one for each possible 
value of the random variable )()

– The conditional distribution of()*+ , … , )*,) given().+, … , )./) is given by:

• D2.21: We say that a random variable ) is conditionally independent of 0
given 1 if  -()|0, 1) = -()|1). If this is the case, we write ℐ-(), 1, 0).

=
… …

… …
…

1 1
1 1

1

( , , , , )
( , , | , )

( , )
i ir j js

i ir j js
j js

P X X X X
P X X X X

P X X

  

€ 

P(Xi1
,…,Xir

) = P(X1,…,Xn
X j , j∉{i1 ,…,ir }
∑ ) Note: for continuous variables 

this sum becomes an integral.
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Example
• Joint distribution on B,V,H:

– Pr(B,V,H) = Pr(B)Pr(V|B)Pr(H|B)

– Pr(B=s,V=s,H=d) = 0.80x0.90x0.10

– Pr(B=w,V=s,H=b) = 0.20x0.05x0.05

• Marginal distribution for V

– Pr(V=s) = 0.73; Pr(V=w) = 0.27

• Conditional distributions

– Pr(V=s | B=w) = 0.05

– Pr(B=w | V=s) = 0.014

• V is conditionally independent of H given B

– This can be read directly from the graph

Netica™ http://norsys.com/
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A Venn Diagram to Illustrate Dependence

Which area represents the range of the random variable
- P(Pavement | Shoes=Wet)?

Which ratio of areas gives:
- P(Pavement=Wet| Shoes=Wet)?
- P(Pavement=Dry| Shoes=Dry)?

What would this picture look like if Pavement and Shoes were 
independent?

Pavement
wet Pavement

dry

Shoes
wet

Shoes
dry
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Bayesian Network:  Formal Definition
• D2.22: Let ! = ($, &) be a a directed graph. Let {)*: *Î$} be a set of RVs, one 

for each *Î$. Let (W,F,+) be a joint probability distribution on the )*. Let ,-(*)
and ./(*) be the RVs associated with the parents and non-descendants of *, 
respectively.  Then 0 = ($, &, +) is a Bayesian network (BN) for the probability 
model (W,F,+) if for each RV)*, ℐ+()*, ,- * , ./ * )

– Note:  this implies ℐ+(), ,-(*),2) for each subset 2 of the random variables in 
./(*).  (from Graphoid Axioms presented later)

• Theorem 2.4:  If 0 = ($, &, +) is a Bayesian network, then +(){3∈5}) is:

– If a DAG and a joint probability distribution form a BN, then we can compute the joint 
probabilities from the conditional distributions of RVs given their parents.

• Theorem 2.5: Given an arbitrary DAG and a set of conditional distributions of 
nodes given their parents, they together determine a Bayesian network. 

» There exists a joint probability distribution consistent with the probability assignments
» The distribution is unique
» The joint probability distribution yields the specified conditional distributions
» The independence assumptions encoded by the DAG are satisfied by the joint probability 

distribution

+(){3∈5}) =7
3∈5

+()3|,- )3 )
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Undirected Graphical Models: 
The Misconception Example

• Professor L had a typographical error in her vugraphs which could 
give rise to a misconception.

• Each student may resolve the misconception on his or her own
• The students in Professor L’s class work in pairs

– Alice works with Bob
– Bob works with Charles
– Charles works with Debbie
– Debbie works with Alice
– Alice and Charles do not work together (dislike each other)
– Bob and Debbie do not work together (had a messy breakup)

• A student who resolves the misconception may enlighten his or 
her study partner

B D

A

C

• Each node in this Markov network 
represents whether the student (Alice, 
Bob, Charles, Debbie) has the 
misconception. 

• The graph represents the dependence 
structure for this problem.

• No Bayesian network can represent 
this dependence structure.
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Misconception Example: Joint Distribution
• In general, exact joint probability distribution for 

undirected graphical model is intractable
• Misconception example is small enough to calculate 

joint probabilities of all possible states 
– 0 means has misconception; 1 means does not

A B C D !(A,B) !(A,D) !(B,C) !(C,D) Product Joint Prob
0 0 0 0 0.7 0.7 0.7 0.7 0.2401 0.2466
1 0 0 0 0.1 0.1 0.7 0.7 0.0049 0.0050
0 1 0 0 0.1 0.7 0.1 0.7 0.0049 0.0050
1 1 0 0 0.9 0.1 0.1 0.7 0.0063 0.0065
0 0 1 0 0.7 0.7 0.1 0.1 0.0049 0.0050
1 0 1 0 0.1 0.1 0.1 0.1 0.0001 0.0001
0 1 1 0 0.1 0.7 0.9 0.1 0.0063 0.0065
1 1 1 0 0.9 0.1 0.9 0.1 0.0081 0.0083
0 0 0 1 0.7 0.1 0.7 0.1 0.0049 0.0050
1 0 0 1 0.1 0.9 0.7 0.1 0.0063 0.0065
0 1 0 1 0.1 0.1 0.1 0.1 0.0001 0.0001
1 1 0 1 0.9 0.9 0.1 0.1 0.0081 0.0083
0 0 1 1 0.7 0.1 0.1 0.9 0.0063 0.0065
1 0 1 1 0.1 0.9 0.1 0.9 0.0081 0.0083
0 1 1 1 0.1 0.1 0.9 0.9 0.0081 0.0083
1 1 1 1 0.9 0.9 0.9 0.9 0.6561 0.6739

Z = 0.9736



Unit 2 (v2b) - 32 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Other Graphical Models: Formal Definitions
• D2.23: Let ! = ($, &) be a an undirected graph. Let {)*: *Î$} be a set of RVs, 

one for each *Î$. Let (W,F,+) be a joint probability distribution on the )*. Let 
,-(*) be the RVs for neighbors of * (nodes connected to ) by an arc), and let 
,.(*) be the RVs for all nodes other than * and ,-(*). Then / = ($, &, +) is a 
Markov network for the probability model (W,F,+) if: ℐ+(), ,-()), ,.())).

• D2.24: Let ! = ($, &) be a an undirected graph. Let {)*: *Î$} be a set of RVs, 
one for each *Î$. Let (W,F,+) be a joint probability distribution on the )*. Let 
12(*) be RVs for the boundary (parents and neighbors) of * and let ,2(*) be 
the RVs for non-descendents of *. Then 3 = ($, &, +) is a chain network for 
the probability model (W,F,+) if: ℐ+(), 12()), ,2())).

• D2.25: Let ! = ($,4, &) be a bipartite graph. Let {)*: *Î$} be a set of RVs, 
one for each *Î$. For each 5Î4, let )5 = {)*: (*, 5) ∈ &} be the subset of 
RVs with an edge connecting them to 5. Let (W,F,+) be a joint probability 
distribution on the )*. Then 7 = ($, &, +) is a factor graph for the probability 
model (W,F,+) if there are non-negative real-valued functions 89(:9) and a 
real number Z such that for every ::

; : = 1
=>

?
89(:9)
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• In this simple model, the intensity of each pixel depends on the intensities of 
the neighboring pixels

• A more complex model might have 3 kinds of nodes:  pixels, lines, and 
observations

– Observation nodes depend on node being observed (in �blur� models 
observations also depend on neighboring observations)

– A line between two pixels breaks the dependence between them
– Lines tend to be continuous and not to bend

Example: Pairwise Markov Network for Image Analysis

X1 X2 X3

X4 X5 X6

X7 X8 X9

X5 is independent of 
the rest of the graph 
given X2, X4, X6 and X8

See work of S. and D. Geman 
at Brown University
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Notes on Directed and Undirected Graphical Models
1. In a Bayesian network, a node's parents shield it from the influence of its non-

descendents.  (If you know the values of the node's parents, the node's distribution 
remains unchanged no matter what the value of other non-descendents.)

2. In a Markov network, a node's neighbors shield it from the influence of all other nodes.  
(If you know the values of the node's neighbors, the node's distribution remains 
unchanged no matter what the value of any other nodes in the network.)

3. We will learn how to transform a Bayesian network into a Markov network that 
represents the same probability distribution.

4. Graphical models on chain graphs generalize both Bayesian networks and Markov 
networks. 

5. Markov networks can represent problems (e.g., image analysis) in which there is no 
natural direction of influence.  Chain networks can be used when there is a natural 
direction of influence for some RVs but not others.

6. Can read conditional independence from the graph structure.  
a. In an undirected graphical model, if no path from A to B exists except through Z, then I(A,Z,B).  

b. Reading independence from directed graphs is more complex: if Z d-separates A from B then 
I(A,Z,B)
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d-Separation and Conditional Independence
• Theorem 2.6:  Let ! = ($, &, ') be a Bayesian network with ) =
($, &) the DAG.  Suppose that * and + are d-separated by ,. 
Then ℐ'(*, ,, +).

– Recall: ℐ'(*, ,, +) means * is independent of + given ,, i.e.,     
'(*, + | ,) = '(* | ,) '(+ | ,)

If two sets of nodes are d-separated by the evidence then:
– They are conditionally independent of each other given the 

evidence
– Given the evidence, learning the value of any nodes in the first set 

will not change the probability distribution of the nodes in the 
second set

This mathematical property is the basis of:
– Computationally efficient inference in Bayesian networks
– Parsimonious knowledge representation 
– Statistically efficient parameter and structure learning methods for 

Bayesian networks
– Feasible knowledge elicitation in Bayesian networks
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Relevance and Dependence
• Conditional independence is a basic concept in building graphical models.  It is 

important to develop your intuitions about conditional independence through practice 
with building models and exploring their behavior.

• We say one random variable is relevant to another in a given context if learning the 
value of the first influences beliefs about the other

– Conditional independence models irrelevance given the conditioning variables
• A hierarchy of difficulty of judgment:

– Is the truth of A relevant to the truth of B in context K?
– What is the direction of the influence (does A make B more or less likely?)
– By how much does a change in the certainty of A affect the certainty of B?

• We can specify a Bayesian network by:
– DAG to encode relevance (conditional dependence) relationships
– Local belief tables to express direction and strength of relationships 

• Pearl sees DAGs as a model for human knowledge representation:
– "...the notions of dependence and conditional independence are more basic to human 

reasoning than are the numerical values attached to probability judgments�
– "... these graphical metaphors suggest that the fundamental structure of human knowledge 

can be represented by dependency graphs and that mental tracing of links in these graphs 
are the basic steps in querying and updating that knowledge.�

• Bayesian models of cognition are becoming increasingly popular
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Relevance and Causality
• Pearl sees causation as fundamental to our ability to process information

– "Causal claims are much bolder than those made by probability statements; not only 
do they summarize relationships underlying the data, but they also predict 
relationships that should hold when the distribution changes…a stable dependence 
between X and Y…that cannot be attributed to some prior cause common to 
both…[and is] preserved when an exogenous control is applied to X."

– "The asymmetry conveyed by causal directionality is viewed as a notational device for 
encoding still more intricate patterns of relevance relationships…  Two events do not 
become relevant to each other merely by virtue of predicting a common consequence, 
but they do become relevant when the consequence is actually observed.  The 
opposite is true for two consequences of a common cause."

» Rain and Sprinkler are independent until wet pavement is observed; then they become 
negatively related.

» Shoes and Fall are dependent until Pavement is observed; then they become independent.
– Causality functions to facilitate communication, reduce computation (by creating 

sparse networks), and simplify specification (by creating networks with fewer links)
• When A is relevant to B in context K we tend to look for a causal explanation:

– Does A cause B in context K?
– Does B cause A in context K?
– Does some other variable C cause A and B? 
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Causation and Explaining Away
• Alternate causes of an event E are often (approximately) unconditionally

independent given some generally understood context.  They become 
dependent when E is observed.  (Knowing that cause A is true "explains 
away" other potential causes of E)

• Learning about an effect that could be caused by either of two variables 
introduces an informational dependence between them

– This type of dependence is called intercausal dependence
• Informational dependence is different from causal dependence

BatteryOK StarterOK

CarStarts

– We can change an effect by intervening to change the cause 
» We can make the car start if the battery is dead by putting

in a new battery

– We cannot change the state of a variable by changing 
one on which it depends informationally

» If the car won�t start and we learn that the starter is bad 
we infer that the battery is probably OK (intercausal dependence)

» But we cannot make the battery OK by destroying the starter
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Causality and Arc Direction

• In Bayesian networks arc direction encodes information about conditional 
independence:

– A node is conditionally independent of its non-descendents given the 
values of its parents

– This property of conditional independence is the only requirement that 
a DAG must satisfy in a Bayesian network.  There need be no 
relationship between arc direction and

» direction of inference
» causality

• In a BN, the predecessors of a node need not be its causes -- but they 
must shield it from influence of its non-descendents.

• Several authors (especially Pearl) have noted that when causal 
information is available and arcs are drawn according to causality the 
resulting independence relationships seem to match our intuitions about 
how causal relationships behave

– Drawing arcs in the causal direction can reduce the number of arcs 
that need to be drawn

– When available, causal information can be useful for building 
Bayesian network models, but a causal interpretation is not required.
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Causal Bayesian Network
• A causal Bayesian network is a Bayesian network in which the arcs 

represent causal links
• A causal Bayesian network represents stable local probabilistic 

relationships that persist when we intervene to change the world
– Do(RV=value) represents an external intervention to set a random 

variable to a given value
– Intervention performs �surgery� to break links 

from a random variable�s parents 
– Intervention leaves links to children intact
– Intervention leaves all probability tables

intact except for the �Do� RV
• Causation, evidence and interventions

– An intervention causes a change in a random 
variable�s state by a mechanism different 
from the influence of its other parents

– Evidence is information about the state of a RV
• A causal Bayesian network represents a 

family of probability distributions
– �Unperturbed� natural distribution
– Distributions given interventions

that could be performed

BatteryOK StarterOK

CarStarts

OnTime

Do
(StarterOK

= No)

Evidence:
CarStarts 

= No

External 
information

External
intervention
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Unit 2 Outline

• Graphical Probability Models: Overview 

• Graph Theory Basics

• Graphical Probability Models: Formal 
Definitions

• Node-level Independence
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Node-Level Independence
• Independence assumptions are an important tool for simplifying knowledge 

elicitation and inference
– We have seen how Bayesian networks use independence to reduce the number 

of parameters required to specify a probability distribution
– We will see how the independence assumptions encoded in Bayesian networks 

reduce the computational complexity of inference
• Bayesian networks are not expressive enough to encode all independence 

assumptions that can be exploited to:
– simplify knowledge elicitation
– reduce computations for inference

• Additional types of independence which can simplify knowledge elicitation 
and inference:

– Independence of causal influence (ICI)
» The mechanism by which one parent variable causes child variable is independent of 

(1) values of other parent variables and (2) mechanism by which they cause the child
– Context-specific independence (CSI)

» Variables may be independent of other variables for some but not all their values
• These kinds of independence act within the local distribution and are not 

apparent from the graph
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Example of ICI:  Noisy-OR
• Problem:  When there are multiple causes probability distributions are 

burdensome to specify and hard to learn

• To specify !(#|%1, %2, %3, %4, %5) we need to elicit or learn

– 25 = 32 probabilities (5 causes with 2 values each)

– If there were 10 causes this would be 210 = 1024 probabilities to assess

– If there were 20 causes, it is 220, or over 1M probabilities  !

• When applicable, the noisy-OR can simplify assessment & allow learning 
with much smaller sample sizes

– Noisy-OR applies when # can be caused by any one of a set of causes 
which "operate independently" of each other

C1

C2 C3 C4

C5

E

» The mechanism by which %1
causes E does not depend on 
the values of %2,… , %5 or the 
mechanism by which they 
cause #

» Does not mean %1 is independent 
of %2, etc.  (noisy-OR model has 
nothing to do with whether there 
are arcs between the %'s)



Unit 2 (v2b) - 44 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

An Equivalent Model

• Define auxillary "trigger" variables !" (!" is true if #" is true and triggers $)
• The #'s, !'s and $ are related by the following Bayesian network:

• In this model, the conditional distribution of $
given the #’s is the same as the noisy-OR model 

– Independence relationships are now apparent from the graph

• Any ICI model can be reformulated in a similar way

C1

C2 C3 C4

C5

Q1

Q2
Q3

Q4

Q5

E

• The probability distributions:
– &($ = 1 | !1,… , !-) = 1 if at 

least one of the !" = 1 and 0 
otherwise ($ is true if and 
only if it is caused by one of 
the #'s)

– &(!" = 1 | #") = /" if #" = 1
and 0 if #" = 0 ($ can be 
caused by #" only if #" is true; 
if #" is true it causes $ with 
probability /")
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Example of Noisy-OR
• Sneezing can be caused by an allergy (A) , a cold 

(C), or dust (D) in the air
• The Noisy-OR model:

– Each cause may or may not "trigger" the effect.  
» Only causes that are true can trigger the effect
» Causes operate "noisily" - if true, they may or

may not trigger the effect 
– There is a "trigger probability" associated with each 

cause.
» Allergy triggers sneezing with probability pA = .6
» Cold triggers sneezing with probability pC = .9
» Dust triggers sneezing with probability pD = .3

– Basic assumptions of the "noisy-OR" model:
» Effect occurs if one or more of its causes has triggered it
» Whether one cause has triggered the effect is 

independent of whether another cause has triggered the 
effect

CA D

S



Unit 2 (v2b) - 46 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

From Noisy-OR to Local Belief Table
• Noisy-OR simplifies elicitation

– General model:  The distribution P(S|A,C,D) requires 8 probabilities to be elicited 
(the other 8 can be obtained from the sum-to-1 constraint)

– Noisy-OR model:  The distribution P(S|A,C,D) can be obtained from 3 numbers:

» "What is the probability that Effect occurs given Cause i occurs and none of 
the other causes occur?"

• The ICI assumptions can be used to fill in the probability table  [it is more 
convenient to compute probabilities of S=f; probabilities of S=t can be filled 
in by using the sum-to-1 constraint]:

– P(S=f | A=f, C=f, D=f)  =  1
– P(S=f | A=t, C=f, D=f)  =  (1-.6) = .4
– P(S=f | A=f, C=t, D=f)  =  (1-.9) = .1
– P(S=f | A=f, C=t, D=t)  =  (1-.3) = .7
– P(S=f | A=t, C=t, D=f)  =  (1-.6)(1-.9) = .04
– P(S=f | A=t, C=f, D=t)  =  (1-.6)(1-.3) = .28
– P(S=f | A=f, C=t, D=t)  =  (1-.9)(1-.3) = .07
– P(S=f | A=t, C=t, D=t)  =  (1-.6)(1-.9)(1-.3) = .028

• Many BN packages have native ability to specify noisy-OR
– Usually specified with a scripting language not a graphical interface
– In Netica:    P(S | A, C, D) = NoisyOrDist(S,0,A,0.6,C,0.9,D,0.3)

CA D

S
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ICI is NOT Independence of Causes!
• Some literature uses the term �causal independence� instead of 

ICI, which can generate confusion
– ICI is a model of the local distribution of a child node given its 

parents
– It is the causal influence that is independent in ICI, not the 

causes themselves
– ICI can apply whether or not there are arcs between parent 

nodes
• Example:  Suppose living in an area with a high 

particulate count caused people to develop 
allergies

– There is an arc from D to A in the 
Bayesian network

– If the ICI assumption holds, the distribution 
of S given A, C, and E may still be modeled 
by a Noisy-OR

• There are no commonly accepted graphical 
representations for ICI

A

C

D

S
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• Given:
– n binary "causal events" C1, …, Cn

– one binary "effect" E
– Ci and E can take on values 0 (false) or 1 (true)

• Assumptions:  
– For E to happen one of the Ci must be true

– When Ci is true there is probability pi that Ci causes E
» This probability does not depend on the other Cj

• D2.26: A local distribution P(E|C1,…,Cn) is a Noisy-OR if:

• Elicitation of Noisy-OR:
– General model for P(E | C1, …, Cn) requires eliciting 2n probabilities (the other 2n can be 

determined from the sum-to-1 constraint)

– Noisy-OR requires n probabilities p1, …, pn from which the others can be computed
– Elicitation of pi:  �What is the probability that E occurs when Ci is true and all other causes are 

false?�

=
∏…
i

i
C 1

P(E=0| C1, Cn) = (1-p )

General Noisy-OR

=

−∏…
i

i
C 1

P(E=1| C1, Cn) =1 (1-p )
(2.26)
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Noisy-OR with Leak
• In the noisy-OR model as defined above, E has probability zero of 

occurring if none of its causes occurs.  
• Often we want to have some "background" probability that E occurs 

in the absence of any of the Ci.  
• The noisy-OR equations can be modified to include a �leak 

probability�:

– The model can be specified by n+1 numbers, p0, p1, …,pn

– It is more convenient to assess the following numbers and 
solve for the pi:

» Leak probability� p0 is the probability that E occurs when none of 
the name causes is true

» Effect probability ai = p0 + (1-p0)pi is the probability that E occurs 
when Ci is the only cause that is true

– This is formally equivalent to a noisy-OR model with n+1 
causes, where "background cause" B is independent of the 
other causes and !0 = $(& = ')$()& = '|& = ')

=

− ∏…
i

0 i
C 1

P(E=0| C1, Cn) = (1 p ) (1-p )

=

− − ∏…
i

0 i
C 1

P(E=1| C1, Cn) =1 (1 p ) (1-p )
(2.26a)
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Sneezing Example

• Sneezing is a deterministic function of its parent nodes:  it is true if 
any of them is true

– P(QA=1|A=1) = pA; P(QA|A=0) = 0
– P(QC=1|C=1) = pC; P(QC|C=0) = 0

– P(QD=1|D=1) = pD; P(QD|D=0) = 0
– P(QO) = pO

A
C

D

QA

QC

QD

S

QO
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What Have We Gained?
• Specification efficiency:  

– We can specify the local distribution for an effect with n causes using n+1 
instead of 2n numbers

» probability that effect occurs in the absence of any of the explicitly represented 
causes (p0)

» probability that each cause is sufficient to cause the effect (pi)
– Fewer questions to ask the expert or learn from data

» Do not ask the expert directly about pi.  Ask about ai = P(E=1|Ci=1, all other Cj=0) and 
solve for pi

» We still haven�t reduced the number of elements needed in the computer to 
represent the local model (there are ways to do this)

• Implementations can exploit ICI to speed up computation
• What good is the model with the auxiliary variables?

– If your software package doesn�t allow direct calculation, the auxiliary variables 
method allows you to specify a noisy-OR

– The auxiliary variable model portrays a �hidden variables� causal mechanism 
that may make it easier for the modeler to understand what the independence 
assumptions mean

– This method can be generalized to other �noisy deterministic function� models 
for which most software packages do not have a direct way to specify
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General ICI Model
• Given n causes Ci and an effect E (not necessarily binary), we can 

specify a model:

– Each Qi represents the independent effect of cause Ci
– E is a deterministic function of the Qi :  E=f(Q1,…,Qn)
– Examples:  

» noisy Boolean functions (OR, AND, XOR)
» noisy adder
» Noisy min/max

C1

C2 C3 C4

C5

Q1

Q2
Q3

Q4

Q5

E
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Example: Noisy-MAX

• All causes Ci and the effect E have the same number of states

• The causes and the effect are ordered from least to most severe 
(e.g., low/medium/high for 3-valued variables).  

– They need not all have the same state spaces, but the same 
number of values must be the same, and they need to be 
ordered lowest to highest.

• We specify a probability distribution for the trigger given each level 
of the cause.  Generally, the trigger distribution will be more severe 
(i.e., have higher probabilities on states with more severity) for 
more severe states of the cause. 

– For example:

• The effect node E is equal with probability 1 to the maximum of the 
trigger nodes Qi.

See Netica documentation for Noisy-OR, Noisy-Max and 
Noisy-Adder (available for download from Blackboard)
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ICI: Formal Definition

• D2.27: A local distribution P(E|C1,…, Cn) exhibits independence of 
causal influence if there are random variables Q1, …, Qn such that:

P(E=e| C1,…Cn ) = 1[e= f (q1,…,qn )] P(Qi = qi |Ci )
k=1

n

∏
"

#
$

%

&
'

q1,...,qn

∑

• 1[e=f] is an “indicator” function that has 
value 1 if e=f and 0 otherwise

• E is a deterministic function 
E=f(Q1, …, Qn) of the random variables 
Q1, …, Qn

• Qi depends on Ci but is independent 
of the other causes

• Conditional on Ci,  Qi is independent of 
Cj and Qj for j≠i

C1

C2 C3 C4

C5

Q1

Q2
Q3

Q4

Q5

E
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Example:  Noisy-Adder

• The model:
– Each Ci is Boolean (value 0 or 1)

– Each Qi can take on values in the 
range [-q, q]

– If Ci = 0 then Qi = 0 with probability 1

– Adjustable parameters:  
P(Qi=k|Ci=1) = rik

– E = Q1 + Q2 + … + Qn

– We can add an additional Q0 to 
represent effect on E of �unmodeled 
causes�

• Example:  Effect of drugs on 
patient�s white blood count

Drug1 Drug2 Drugn

Q1 Q2 Qn

WBC

Q0

Disease

Note: The standard normal linear regression model is an ICI model (effect is 
weighted sum of values of causes plus a normally distributed error term)
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An Alternate Representation for ICI

• We can represent many common ICI models as process in which effects 
of the trigger variables accumulate sequentially

• This representation has computational advantages
– No belief table has more than n2 rows, where n is the number of 

states in the Ci and E
– Inference algorithms can exploit this representation to gain efficiency
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Summary:  Independence of Causal Influence
• ICI means that the impact of a parent variable on the probability distribution of the 

child variable is independent of the values of the other parent variables
– ICI can simplify both specification and inference

• ICI is not the same as independence of the parent variables (causes)
– You can�t see ICI on the graph relating parent to child variables
– Independence of the parent variables is shown by lack of an arc in the graph
– ICI may apply whether or not parent variables are independent of each other

• Some examples of different kinds of independence:
– Not ICI: Causes of sneezing are independent:  Having a cold does not make allergies more 

likely (no arc between cold and allergy in the Bayesian network)
– Not ICI: Causes of sneezing are dependent:  Living in an area with lots of particulates in the 

air causes person to develop allergies (arc should go from dust to allergy in the Bayesian 
network)

– Not ICI: Heredity and dust do not cause allergies independently:   A person with a genetic 
tendency toward allergies is more likely to have allergies triggered by dust than a person with 
no genetic tendency to have allergies (Noisy-OR is not OK for this relationship)

– ICI: Allergies and colds cause sneezing independently:  Having a cold does not make it more 
likely that an allergy will trigger sneezing.  Whether the cold triggers sneezing does not affect 
whether the allergy triggers sneezing.  (Noisy-OR model is OK for relationship between 
allergies, colds, and sneezing)

• Note:  All these relationships can be tested / estimated statistically
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Context-Specific Independence

• An arc from A to B in a Bayesian network means that the probability 
distribution for B depends on the value of A

• Context-specific independence occurs when random variables are 
independent for some but not all of their values

– When weather is sunny detection probability is independent of sensor 
type but when weather is cloudy the radar sensor performs better 
than the optical sensor  

• Like ICI, context-specific independence 
– Cannot be represented by the directed graph structure of a Bayesian 

network
– Can be exploited to simplify elicitation
– Can be exploited to simplify inference
– Can be exploited to make learning from data more efficient
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Example
• A guard of a secured building expects three types of person to 

approach the building�s entrance:  workers in the building, 
approved visitors, and spies.  As a person approaches the building, 
the guard notes the person's gender and whether or not the person 
is wearing a badge.  Spies are mostly men.  Spies always wear 
badges in order to fool the guard.  Visitors don�t wear badges 
because they don�t have one.  Female workers tend to wear 
badges more often than do male workers.  The task of the guard is 
to identify the type of person approaching the building.

– The variables:
T = person type (tW=Worker, tV=Visitor, tS=Spy)
G = gender (gM=Male, gF=Female)
B = badge (bY=Yes, bN=No)

– The Bayesian network does not encode all the 
independence information the story tells us

Type

Badge Gender
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Context-Specific Independence

• We can specify a �local network� to distinguish between visitors and spies:

• The variables B and G are independent given some values (visitor and spy) of their 
parent variable but not others (worker)

– An arc from G to B is necessary in the full network to encode  the dependency of gender on 
badge-wearing for workers

– Full network cannot represent Independence G and B for visitors and spies
– If we restrict attention to visitors and spies we can represent this independence
– This type of independence is called context-specific independence) 
– Context-specific independence can be exploited to reduce elicitation significantly and make 

inference more efficient
– Most software does not support CSI except via scripting languages 

Visitor_Spy

Badge Gender

Type

Badge Gender

Full Network
Visitor/Spy 

Local  Network
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Example Revisited

• The guard of the secured building now expects four types of 
persons to approach the building�s entrance:  executives, regular 
workers, approved visitors, and spies.  The guard notes gender, 
badge-wearing, and whether or not the person arrives in a 
limousine.  We assume that only executives arrive in limousines 
and that male and female executives wear badges just as do 
regular workers.

Type

Badge Gender Limousine

Visitor_Spy

Badge Gender Limousine

Worker_Exec

Badge Gender Limousine
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Using Partitions to Simplify Specification

• When there is context-specific independence, we can specify a 
partition of the state space of a node�s parent configurations:

– Each partition element is a set of configurations of the node�s 
parents

– The partition elements are disjoint
– The union of the partition elements is the entire set of 

configurations
– The conditional distribution of the child node is the same for each 

configuration in a partition element
• We only need to specify one distribution per partition element
• Partitions simplify knowledge elicitation and learning
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Local Decision Trees
• Example network:  

– #A = #C = #E = 2, #B = #D = 3
– To specify distribution for E 

requires 36 probability judgments

• Example local decision tree for 
specifying distribution of E:

– Requires 5 probability judgments

A local decision tree is a simple and 
natural way to specify partitions for 

specifying a random variable�s local 
distribution

Parent configuration P(E|pa(E))
B=b1, A=a1 (0.2, 0.8)

B=b1, A=a2 (0.9, 0.1)

B≠b1, C=c1, D≠d3 (0.3, 0.7)

B≠b1, C=c1, D=d3 (0.5, 0.5)

B≠b1, C=c2 (0.6, 0.4)



Unit 2 (v2b) - 64 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Local Decision Tree for Badge Partition

Type

Badge Gender

Type

Gender

Visitor

(0.01, 0.99)

Worker / Exec

Spy

(0.99, 0.01)

(0.80, 0.20)(0.40, 0.60)

Male Female

Badge

Type Gender

This link 
represents 

logical rules to 
sort parent 

configurations 
into the right 

bin

This link 
represents a 
probabilistic 

influence
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Divorcing

• Divorcing is a trick to express partitions compactly in a general purpose BN 
package that does not directly support partitions

• Example: 
– B has parents A1, A2, A3

– C = {c1, .., cm} is a partition of A1 ´ A2
• We use divorcing when an asymmetry partition is �rectangular�

– Partitioning of A1 and A2 does not depend on value of A3

– For some problems, we can achieve considerable savings in both 
specification and computation

A1
A2 A3

B

A1
A2 A3

B

C
Divorcing
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Divorcing Example

• Partitions and divorcing can dramatically reduce the number of 
probabilities to be specified

• Sometimes approximating a distribution by one with context-specific 
independence is justified by computational or elicitation considerations

• It is important to evaluate the sensitivity of results to approximation error 
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Local Expression Languages

• A Bayesian network must represent a local distribution for each 
combination of parent variables

– A local distribution is a function from configurations of the parent to probability distributions 
for the child

– A belief table lists a conditional probability for each parent-child configuration

– We have examined several more compact representations of local distributions

– Representation languages should provide a means to encode compact representations

• Inference algorithms can be modified to exploit properties of the 
local interaction model, resulting in a speedup of inference

• A local expression language can be used to encode:
– Independence of causal influence models (noisy-OR, noisy adder, etc.)

– Context-specific independence

– General functional relationships within local model

» P(Xi | P(Xi)) = f(Xi, P(Xi), q )

» E.g., parametric models such as normal, log-normal, logistic, exponential, …

• Parameterized models can improve efficiency of learning local 
distributions from data 

• Many BN packages have local expression languages
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Summary and Synthesis

• Graphs provide a parsimonious and understandable language for 
expressing knowledge about uncertain phenomena

– Graph  represents dependence relationships
– Numbers represent strength of relationship

• Graphical probability models have made it feasible to represent 
knowledge about uncertain phenomena in the form of realistically 
complex probability models for general purpose computing applications 

– Feasible knowledge engineering
– Tractable computation
– Tractable learning (to be covered later)

• Along with graph-level independence, additional within-node 
independence constraints further simplify both model specification and 
inference

– Independence of causal influence
– Context-specific  independence
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