¹□ Unit 2:

Terrestrial Ecosystems

EVSC 111

² Four Units of Course

- ✓ Global Environments
- √ Terrestrial Ecosystems
- ✓ Aquatic Ecosystems
- ✓ Environmental management

₃□ Ecosystems

√ Ecosystem

- a concept in which the physical and biological components of the environment are considered as a single, interactive system
- two main categories
 - terrestrial (unit 2)
 - aquatic (unit 3)

⁴ Ecosystems & Biomes

√ Ecosystem

- similar physical environments lead to
 - the evolution of organisms similar in form and function
 - · similar ecosystems
- this is known as the rule of climatic similarity
 - leads to the concept of the biome
 - which is a kind of ecosystem

⁵ □ Ecosystems & Biomes

✓ Biomes

- major communities of organisms that
 - have a characteristic appearance
 - are distributed over a wide land area
 - defined largely by regional variations in climate

6☐ Ecosystems & Biomes

√ Biomes

- the strong relationship between climate and life suggests that
 - · if we know the climate of an area
 - we can predict what biome will be found there
 - » approximate biomass
 - » approximate productivity
 - » dominant types of organisms

⁷ Ecosystems and biomes

- ✓ distribution of biomes results from interaction of
 - physical features of the earth
 - two key physical factors
 - · amount of solar heat
 - · global atmospheric circulation
- ✓ together these factors dictate local climate
 - two most important climatic factors are
 - · precipitation
 - temperature

8 Climate shapes the character of ecosystems

- ✓ why are there variations in the earth's climate?
 - different parts of the earth receive different amounts of energy from the sun
 - · variations in the amount of energy received from the sun
 - responsible for
 - » many of the major climatic differences on the earth
 - » and, indirectly, for much of the diversity in the earth's biomes

□ Climate shapes the character of ecosystems

- ✓ why the tropics are warmer?
 - since the earth is a sphere, some parts receive more energy from the sun than others on a per unit area basis
 - tropics are warmer than temperate regions
 - because they receive more sun energy per unit area
 - · poles are colder than other areas
 - because they receive less sun energy per unit area

10 Climate shapes the character of ecosystems

- ✓ key natural and physical elements
 - precipitation
 - · all organisms require water
 - · on land, water is often scarce
 - · important aspects
 - total amount per year
 - form in which it arrives
 - seasonal distribution
 - ecosystem productivity increase with increased precipitation

11 👨

¹² Climate shapes the character of ecosystems

- √ key natural and physical elements
 - precipitation

- generally low near 30° N & S latitude
 - where air is descending & warming
- partly as a result of this, all the great deserts of world lie near 30° N or S latitude
- · other major deserts are formed in the interiors of large continents
 - where precipitation is limited because of the great distance from the sea, the ultimate source of most moisture

13 Climate shapes the character of ecosystems

- ✓ key natural and physical elements
 - precipitation
 - precipitation is generally higher near equator and 60° north and south latitude
 - where air is rising & cooling
 - » releasing moisture it contains as its ability to hold the moisture decreases as temperature decreases

14 🔼

¹⁵ Climate shapes the character of ecosystems

- √ key natural and physical elements
 - precipitation
 - · rain shadow effect can produce deserts
 - some mountains intercept moist winds from the sea
 - » air encounters mountains & then rises
 - » as air rises, its ability to hold moisture decreases
 - results in increased precipitation on the windward side of mountains (the side from which the wind is blowing)

16 Climate shapes the character of ecosystems

- √ key natural and physical elements
 - precipitation
 - · rain shadow effect can produce deserts
 - air descends the other side of the mountains (the leeward side)
 - » is warmed & moisture-holding capacity increases
 - » which tends to inhibit precipitation
 - example, Sierra Nevada Mountains of CA
 - » eastern sides much drier than western sides & vegetation often very different

17 👨

18 👼

19 Climate shapes the character of ecosystems

- ✓ key natural and physical elements
 - temperature
 - most organisms are adapted to live within a relatively narrow range of temperatures
 - won't survive if temperatures are significantly warmer or colder
 - » ex., growing season of plants is influenced by temperature
 - ecosystem productivity increases with increased temperature

20 👼

21 Climate shapes the character of ecosystems

- √ key natural and physical elements
 - temperature is affected by latitude
 - · tropical latitudes
 - temperatures higher in tropics
 - » more sunlight falls per unit area
 - highest mean global temperatures occur near equator
 - there are no seasons in the tropics
 - » there is little variation in mean monthly temperature in tropical ecosystems

22 Climate shapes the character of ecosystems

- √ key natural and physical elements
 - temperature is affected by latitude
 - · temperate latitudes
 - temperatures decrease as you move from the equator toward temperate latitudes
 - » less sunlight strikes earth per unit area
 - temperature variations increase because of increasingly marked seasons

23 👨

²⁴ Climate shapes the character of ecosystems

- ✓ key natural and physical elements
 - temperature is affected by elevation
 - · higher altitudes become progressively colder
 - at a given latitude, air temperature falls about 6°C/1000m increase in elevation
 - ecological consequences of temp varying w/elevation = temp varying w/ latitude

25 Climate shapes the character of ecosystems

- √ key natural and physical elements
 - temperature is affected by elevation
 - higher altitudes become progressively colder
 - in North America, a 1000m increase in elevation results in a temp drop ~ to that of an 800 km increase in latitude
 - this is reason "timberline" (the elevation above which trees do not grow) occurs at progressively lower elevations as one moves farther from the equator

26 🔊

²⁷ Figure: Vegetation, Latitude, Altitude

28 Figure: Temperature and latitude

²⁹ Succession

√ Succession

- concept that communities proceed through a series of regular, predictable changes in structure over time
 - · results in a climax community
 - a stable, long lasting community

- type that results depends largely on climate
- occurs because activities of organisms cause changes in their surroundings
 - that make local environment suitable for other kinds of organisms

30 Succession

√ Succession

- pace and direction affected by several factors
- two different kinds are recognized
 - · primary succession
 - · secondary succession

31 Succession

√ Succession

- two different kinds are recognized
 - · primary succession
 - begins with
 - » total lack of organisms
 - » bare mineral surfaces, or water
 - less frequently observed
 - usually takes a very long time
 - » because of lack of soil and few nutrients for plants
 - · secondary succession

32 Succession

√ Succession

- two different kinds are recognized
 - · primary succession
 - · secondary succession
 - more commonly observed
 - proceeds more rapidly
 - begins with destruction or disturbance of existing ecosystem
 - » some soil present
 - » some seeds or roots from which plants can begin growing

33 Succession

√ Succession

- terrestrial primary succession
 - · factors affecting rate and direction
 - substrate type
 - » will affect soil type that develops
 - availability of reproductive structures
 - » will determine species available to colonize the area
 - regional climate

34 Succession

- √ terrestrial primary succession
 - pioneer community
 - · collection of organisms that first colonizes bare rock
 - · dominant organism is the lichen
 - a mutualistic relationship between
 - » a fungus
 - » an alga OR a photosynthetic bacterium

35 Succession

- √ terrestrial primary succession
 - pioneer community
 - lichens
 - develop slowly
 - accumulate debris
 - photosynthetic portion serves as a producer
 - » tiny consumer organisms live on them
 - acids produced by fungus
 - » cause breakdown of rock
 - contributes to accumulation of soil

36 Succession

- √ terrestrial primary succession
 - pioneer community
 - · thin layer of soil
 - can support variety of organisms
 - » bacteria
 - » protozoa
 - » fungi
 - » small worms, insects
 - » small annual plants
 - as these organisms grow, reproduce, die
 - » they contribute additional organic matter for soil building process

37 Succession

- √ terrestrial primary succession
 - pioneer community
 - · thicker layer of soil
 - can support more organisms that are a little longer lived
 - » perennial herbs and grasses
 - intermediate stages
 - · grasses, larger perennials, woody shrubs, shade intolerant trees

38 Succession

- √ terrestrial primary succession
 - climax community
 - · relatively stable, long lasting
 - · complex and interrelated community

- · bacteria, protista, fungi, plants, animals
 - shade tolerant trees
- · specific types that occurs depends on climate, soil type
- successional stage (seral stage)
 - · each step in process
- a sere is the entire sequence of stages

39 Figure 6.2: Primary succession on land

40 ☐ Succession

✓ aquatic primary succession

- main concepts of terrestrial primary succession can be applied to aquatic ecosystems
- except for oceans, over time, most aquatic ecosystems are replaced by terrestrial ecosystems
 - · aquatic ecosystems receive continuous input of soil particles and organic matter
 - · as sediment increases, water depth decreases
 - types of organisms change

⁴¹ Figure 6.3: Primary succession from a pond to a wet meadow

42 Succession

✓ Secondary succession

- driven by same processes as primary succession
- occurs when an existing community is destroyed
 - · by forest fire, flood, conversion to agriculture
- but the destruction doesn't usually return the ecosystem to bare rock
 - · much soil may remain, with its nutrients
 - · some plants and other organisms may survive
- proceeds more rapidly than primary succession
- some communities exist only as successional stages
 - · continually re-established after disturbances

43 Figure 6.5: Secondary succession on land

44 Figure 6.6: Secondary succession from a beaver pond

45 Succession

√ Climax communities

- show certain characteristics when compared to successional communities
 - maintain their mix of species for a long time
 - · are in energy balance
 - · tend to have more types of organisms and types of interactions
 - · trend is toward more complexity, energy efficiency

46 Succession

✓ Climax communities

- there doesn't appear to be a pre-ordained climax community for a given area
- specific community that develops depends on
 - climate
 - · types of seeds present

- differentiated from a successional community by the time scale over which change occurs
 - · climax communities do not change as rapidly as successional ones

47 Diomes

✓ Biomes

- are terrestrial climax communities with wide geographic distribution
- concept is useful for describing in broad terms
 - · the general structure of the ecosystem
 - · the types of niches present
- of the same type from different areas will exhibit variations in the exact species present
- affected by two nonbiological factors
 - temperature
 - · precipitation

48 Diomes

√ Biomes

- major biomes of the world
 - desert
 - · grassland
 - savanna
 - · tropical rainforest
 - · temperate deciduous forest
 - · taiga or boreal forest
 - tundra

49 🔼

50 Biomes

√ deserts

- dry places where rainfall is <25 cm/yr
 - so little that vegetation is sparse and survival depends on water conservation
 - · world's great deserts are located in the interiors of continents
 - Sahara in Africa
 - Gobi in Asia
 - Great Sandy Desert in Australia

51 Biomes

√ deserts

- organisms have evolved adaptations to help them survive
 - · restricting activity to times of the year when water is present
 - avoiding high temperatures by living in deep, cool, & moist (sometimes) burrows
 - · emerging only at night when temperatures are lower, especially if active year round
 - drinking large quantities of water when it is available (camels) &then survive long, dry periods

- 52 🔼
- 53 Figure 6.10a: Climagraph for Cairo
- ⁵⁴ Figure: Desert biome and climagraphs
- 55 🔼
- 56 Biomes

✓ Grasslands

- also known as temperate grasslands, prairies, steppes
- widely distributed throughout temperate regions
 - ~ halfway between equator & poles
- rainfall is ~ 25cm -75cm per year
- tend to be windy with hot summers, cold to mild winters
- grasses make up 60%-90% of the vegetation

57 Biomes

✓ Grasslands

- once covered much of interior North America, were widespread in Eurasia & South America
 - · often highly productive when converted to agricultural use
 - many of the agricultural lands of the US & Canada were originally occupied by grasslands (prairies)
 - » roots of perennial grasses characteristically penetrate far into soil
 - » grassland soils, therefore, tend to be deep and fertile

58 Biomes

√ Grasslands

- temperate grasslands are often populated by herds of grazing mammals
 - in North America, huge herds of bison and pronghorns once inhabited the prairies
 - herds are almost all gone now
 - most of the prairies have been converted into the richest agricultural region on earth
- 59 🔽
- 60 ☐ Figure 6.11a: Climagraph for Tehran
- 61 Figure: Temperate grassland biome and climagraph
- 62 Biomes

√ Savanna

- great grasslands located in dry climates that border the tropics
- transitional between tropical rainforest and desert (on global scale)
- rainfall is 50cm-150cm /yr & occurs seasonally
 - · period of heavy rainfall followed by prolonged drought
- predominant plants are grasses
 - · with widely spaced, drought resistant trees
- landscape is open

63 Diomes

√ Savanna

- many of its animals and plants are active only during the rainy season
- fire is common and trees tend to be fire-resistant
- savannas are increasingly being converted to agricultural use
 - · causing the inhabitants of savannas to struggle to survive

64 🔽

- 65 Figure 6.12a: Climagraph for Rangoon
- 66 Figure: Savanna biome and climagraph
- 67 Biomes

√ Tropical rainforest

- rainfall is >200cm/yr
- temperatures are warm and relatively constant, no frost
- richest ecosystems on earth
 - contain ~ half of all species of terrestrial plants and animals
 - in 1sq mi of tropical forest in Rondonia, Brazil there are 1200 species of butterflies
 - » which is twice the number found in the U.S. and Canada combined

68 Diomes

√ Tropical rainforest

- communities are diverse
 - · each kind of organism is often represented in a given area by only a few individuals
- located near the equator
 - · South America, Africa, southeast Asia
- are being destroyed
 - · many of the species in rainforests have never been seen by humans
 - during our lifetime, a quarter of the world's species will disappear with the rainforests

69 🔽

- ⁷⁰ Figure 6.13a: Climagraph for Singapore
- 71 Figure: Tropical rain forest biome and climagraphs
- 72 Biomes

√ temperate deciduous forests

- rainfall is 75cm-100cm per year
- in areas with warm climates (warm summers and cool winters)
 - plants grow actively for ~1/2 year
- found in northeastern US, eastern Canada, Eurasia
- often populated by deer, beaver, bear, raccoon
- generally have a lower number of species but a higher number of individuals per species
- trees are the major producers

73 👨

⁷⁴ Figure 6.14: Climagraph for Chicago

75 Figure: Temperate deciduous forest

76 Biomes

√ Taiga

- rainfall is 25cm-100cm per year
 - · climate is humid due to low evaporation resulting from generally low temperatures
- winters are long and cold
 - · soil freezes in winter
- northern forests of coniferous trees such as hemlock, spruce, fir
 - · needle-shaped leaves limit moisture loss
 - · pyramid shapes accommodate snow
- is one of the largest ecosystems on earth

77 D Biomes

√ Taiga

- has very short growing season for farming so few people live there
- populated by many types of large mammals and carnivores such as moose, elf, deer, wolves, bear, lynx
- has been used for fur trapping and lumber production
- located in a ring that extends across vast areas of Asia and North America
- also known as boreal forest, northern coniferous forest

78 🗔

79 Figure 6.15a: Climagraph for Moscow

80 Tigure: Taiga biome and climagraphs

81 Biomes

√ tundra

- located in the far north of the taiga and south of the polar ice
- rainfall is <25cm/yr
- soil layer is known as permafrost
 - · it is permanently frozen
- extremely cold and windy
- open, grassland that is often boggy
- enormous ecosystem that covers 1/5th of the earth's land area

82 Biomes

√ tundra

- no trees grow in the area
- herbs are perennials that grow rapidly during the brief summer
- populated by large grazing mammals such as musk-oxen, caribou, reindeer and carnivores such as wolves, foxes, lynx

- 83 🐱
- ⁸⁴ Figure 6.16a: Climagraph for Fairbanks
- 85 Figure: Tundra biome and climagraphs
- 86 Figure: World Biomes
- 87 🗷 Figure 6.8: Influence of precipitation and temperature on vegetation
- 88 The End