□ Ozone Depletion in the Stratosphere

EVPP 111 Lecture

Dr. Largen

2 Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- · Thinning of ozone layer
- · What causes ozone depletion
 - chlorofluorocarbons
 - other ozone depleting compounds
- · Seasonal thinning over the poles
- Why should we care about ozone depletion
- solutions: protecting the ozone layer

3 Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- · Thinning of ozone layer
- · What causes ozone depletion
 - chlorofluorocarbons
 - other ozone depleting compounds
- · Seasonal thinning over the poles
- Why should we care about ozone depletion
- · solutions: protecting the ozone layer

4 Ozone and ozone layer

- Ozone (O₃)
 - structure
 - forms and breaks down naturally in stratosphere
 - via reaction of O₂ with UV radiation
 - breaks O₂ into O which react with O₂ to reform O₃
 - » process absorbs ~99% of UV
 - · creates layer in lower stratosphere
 - altitude of ~10-16 miles

5 Ozone and ozone layer

- Ozone (O₃)
 - "good" ozone
 - · stratospheric ozone
 - "bad" ozone
 - tropospheric ozone, "ground level" ozone
 - · secondary air pollutant
 - component of photochemical smog
 - » irritates respiratory tissue
 - » causes permanent lung damage
 - » damages plants

» reduces agricultural yields

6 Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- · Thinning of ozone layer
- · What causes ozone depletion
 - chlorofluorocarbons
 - other ozone depleting compounds
- Seasonal thinning over the poles
- Why should we care about ozone depletion
- · solutions: protecting the ozone layer

¬□ Thinning of the ozone layer

- Ozone concentration in stratosphere
 - determination
 - · balloons, aircraft, satellites

B Thinning of the ozone layer

- · Ozone concentration in stratosphere
 - depleted seasonally over
 - Antarctica and Arctic
 - lower overall thinning of layer
 - · everywhere except over tropics

¬□ Thinning of the ozone layer

- · Ozone depletion in stratosphere
 - considered a
 - · serious long-term threat
 - humans
 - many other animals
 - primary producers

¹⁰ Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- · Thinning of ozone layer
- · What causes ozone depletion
 - chlorofluorocarbons
 - other ozone depleting compounds
- · Seasonal thinning over the poles
- Why should we care about ozone depletion
- · solutions: protecting the ozone layer

11 2 Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- · Thinning of ozone layer
- · What causes ozone depletion
 - chlorofluorocarbons

- other ozone depleting compounds
- · Seasonal thinning over the poles
- Why should we care about ozone depletion
- · solutions: protecting the ozone layer

12 What causes ozone depletion

- · Certain chemicals
 - destroy ozone in stratosphere
 - primarily
 - chlorofluorocarbons (CFCs)
 - other chlorine-containing compounds

™ What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - discovered in 1930
 - General Motors chemist, Thomas Midgley
 - other chemists
 - · made similar compounds
 - creating family of highly useful CFCs

14 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - two most widely used
 - · known by trade name Freons
 - CFC-11 (trichloromethane, CCl₃F)
 - CFC-12 (dichlorodifluoromethane, CCl₂F₂)

15 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - originally considered "dream chemicals"
 - because of characteristics
 - chemically stable (nonreactive)
 - odorless
 - nonflammable
 - nontoxic
 - noncorrosive
 - became popular for many uses

16 ☐ What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - uses included
 - · coolants in air conditioners and refrigerators
 - replacing toxic sulfur dioxide and ammonia
 - · propellants in aerosol spray cans
 - cleaners for electronic parts (computer chips)
 - · sterilants for hospital instruments
 - fumigants for granaries and ship cargo holds

· bubbles in plastic foam used for insulation and packaging

17 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - production rose sharply between 1960 and early 1990's

18 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - in 1974
 - research by two University of California-Irvine chemists, Sherwood Rowland and Mario Molina
 - indicated that
 - » CFCs were lowering average concentration of ozone in stratosphere

19 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - Rowland and Molina
 - shocked scientific community and \$28 billion per year CFC industry
 - called for immediate ban on CFCs in spray cans

20 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - Rowland and Molina
 - · concluded that
 - large quantities of CFCs were being released into troposphere
 - mostly from
 - » use of CFCs as propellants in spray cans
 - » leaks from refrigeration and air conditioning equipment
 - » production and burning of plastic foam products

21 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - Rowland and Molina
 - concluded that
 - CFCs remain in troposphere due to
 - » insolubility in water
 - » chemical unreactivity
 - over period of 11-20 years, CFCs rise into stratosphere through
 - » convection
 - » random drift
 - » turbulent mixing in troposphere

22 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - Rowland and Molina
 - · concluded that
 - in stratosphere, CFC molecules break down

- » under influence of high-energy UV radiation
- » releasing highly reactive chlorine atoms

23 🗷

²⁴ What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - Rowland and Molina
 - · concluded that
 - each CFC can last in stratosphere for 65-385 years (most widely used, 75-111 years), depending on its type
 - » each chlorine atom released from CFC molecule can convert up to 100,000 molecules of ozone to oxygen

25 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - Rowland and Molina
 - concluded that
 - "dream molecules" (CFCs) had turned into global ozone destroyers

²⁶ What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - CFC industry, led by Dupont Company
 - attacked Rowland and Molina's conclusion
 - was powerful, well-funded with lots of profits and jobs at stake

²⁷ What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - Rowland and Molina held their ground against industry
 - · explaining their calculations to other scientists, elected officials, media
 - in 1988, 14 years after Rowland and Molina's study
 - DuPont officials acknowledged that CFCs were depleting ozone layer
 - agreed to stop producing them once they found substitutes

28 What causes ozone depletion

- Chlorofluorocarbons (CFCs)
 - in 1995
 - · Rowland and Molina won Nobel Prize in Chemistry for work on CFCs and ozone layer

²⁹ Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- · Thinning of ozone layer
- · What causes ozone depletion
 - chlorofluorocarbons
 - other ozone depleting compounds
- · Seasonal thinning over the poles
- Why should we care about ozone depletion
- solutions: protecting the ozone layer

30 What causes ozone depletion

- Other ozone depleting compounds (ODC)
 - include
 - · halons and HBFCs
 - used in fire extinguishers
 - methyl bromide(CH₃Br)
 - widely used fumigant
 - carbon tetrachloride (CCl₄)
 - cheap, highly toxic solvent

31 What causes ozone depletion

- Other ozone depleting compounds (ODC)
 - include
 - methyl chloroform (C₂H₃Cl₃)
 - cleaning solvent
 - propellant
 - hydrogen chloride (HCI)
 - emitted into stratosphere by US space shuttles

32 What causes ozone depletion

- · other ozone depleting compounds
 - natural sources of
 - · oceans and volcanic eruptions
 - release chlorine and bromine

33 Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- Thinning of ozone layer
- What causes ozone depletion
 - chlorofluorocarbons
 - other ozone depleting compounds
- · Seasonal thinning over the poles
- Why should we care about ozone depletion
- · solutions: protecting the ozone layer

34 Ozone depletion

- Of observed ozone losses in stratosphere since 1976
 - ~75-85% are attributed to compounds released into atmosphere by human activities beginning in 1950s
- 35 Figure: Erosion of Earth's ozone shield: Thickness of the ozone layer

36 ☐ Seasonal ozone thinning over poles

- In mid-1980s
 - researchers discovered that ~40-50% of ozone over Antarctica was being destroyed during

- Antarctic spring and summer (September-December)
- 37 Figure: Erosion of Earth's ozone shield: The ozone hole over the Antarctic
- 38 🗷

39 Seasonal ozone thinning over poles

- seasonal loss of ozone over Antarctica was incorrectly dubbed ozone hole
 - actually ozone thinning
 - · degree of depletion varies with altitude and location
- total area of atmosphere above Antarctica that suffers from ozone thinning varies from year to vear
 - in 2000, seasonal thinning above Antarctica was largest ever

40 Seasonal ozone thinning over poles

- · Why is loss of ozone over Antarctica seasonal
 - during winter
 - · its sunless
 - · steady winds blow in circular pattern over earth's poles
 - creates polar vortex
 - swirling mass of very cold air that is isolated from rest of atmosphere
 - » until sun returns a few months later

41 Seasonal ozone thinning over poles

- · Why is loss of ozone over Antarctica seasonal
 - during winter
 - water droplets in clouds enter polar vortex
 - form tiny ice crystals which collect CFCs and other ODCs on their surfaces
 - » serve as catalysts for speeding up chemical reactions that release CI & CIO
 - » CI and CIO react with each other to form Cl₂O₂
 - » in dark of winter Cl₂O₂ molecules can't react with ozone so they accumulate in polar vortex

42 Seasonal ozone thinning over the poles

- Why is loss of ozone over Antarctica seasonal
 - during spring
 - when sunlight returns (October)
 - Cl₂O₂ molecules are broken apart by UV light
 - releasing large numbers of CI atoms
 - » which begin reacting with ozone
 - sunlight
 - gradually melts ice crystals
 - breaks up vortex of trapped polar air
 - allows trapped air to begin mixing with rest of atmosphere

43 Seasonal ozone thinning over poles

- · Why is loss of ozone over Antarctica seasonal
 - during spring
 - · within weeks

- 40-50% of ozone above Antarctica is destroyed

44 Seasonal ozone thinning over poles

- · Why is loss of ozone over Antarctica seasonal
 - during spring
 - · when vortex breaks up
 - huge masses of ozone depleted air above Antarctica flows northward
 - » lingers for few weeks over Australia, New Zealand, South America, South Africa
 - » resulting in increases of 3-20% levels of biologically damaging UV-B radiation

⁴⁵ Seasonal ozone thinning over poles

- Ozone thinning over the Arctic
 - in 1988
 - · scientists discovered similar but less severe ozone thinning over Arctic
 - during Arctic spring/summer (February-June)
 - » producing a seasonal loss of 11-38% (compared with ~50% loss in Antarctic)

46 🔽

⁴⁷ Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- · Thinning of ozone layer
- · What causes ozone depletion
 - chlorofluorocarbons
 - other ozone depleting compounds
- · Seasonal thinning over the poles
- Why should we care about ozone depletion
- · solutions: protecting the ozone layer

48 Why should we care about ozone loss

- · Less ozone in stratosphere
 - results in more biologically damaging UV-A and UV-B radiation reaching surface
 - · impact on humans
 - worse sunburns
 - more eve cataracts
 - more skin cancers

49 Why should we care about ozone loss

- · According to UNEP estimates
 - additional UV-B radiation reaching surface would cause 10% annual loss of global ozone leading to
 - 300,000 aditional cases of squamous cell and basal cell cancer
 - 4500-9000 additional cases of potentially fatal malignant melanoma
 - 1.5 million new cases of cataracts

50 Why should we care about ozone loss

- · Other effects of increased UV exposure include
 - immune system suppression
 - increase in acid deposition

- increase in photochemical smog
- lower yields of key crops (corn, rice, soybeans, wheat, etc.)
 - estimated losses totaling ~2.5 billion/ year
- decline in forest productivity
- increased degradation and breakdown of materials such as plastics, paints

51 Why should we care about ozone loss

- · Other effects of increased UV exposure include
 - reduction in productivity of surface-dwelling phytoplankton resulting in
 - · disruption of aquatic food chains
 - · decrease in yields of seafood eaten by humans
 - · possible acceleration of global warming by decreasing oceanic uptake of carbon dioxide
- 52 🗷
- 53 🗷

⁵⁴ Ozone Depletion in the Stratosphere

- · Ozone and ozone layer
- · Thinning of ozone layer
- · What causes ozone depletion
 - chlorofluorocarbons
 - other ozone depleting compounds
- · Seasonal thinning over the poles
- Why should we care about ozone depletion
- · Solutions: protecting the ozone layer

55 Solutions: Protecting the ozone layer

- · scientific consensus of researchers
 - immediately stop producing all ozone-depleting chemicals
 - · substitutes available for most CFCs
 - · additional substitutes are being developed

56 Solutions: Protecting the ozone layer

- Is there a possibility of a quick fix from technology that would allow us to keep using CFCs?
 - Some strange proposals have been floated
 - blimps
 - lasers

⁵⁷ Solutions: Protecting the ozone layer

- · strange "technofix" proposals
 - blimps
 - · inject electrons into stratosphere
 - which would react with and remove chlorine atoms

58 Solutions: Protecting the ozone layer

- · strange "technofix" proposals
 - lasers
 - "blast" CFCs out of atmosphere before they could reach stratosphere

59 Solutions: Protecting the ozone layer

- Efforts to reduce ozone depletion
 - Montreal Protocol, a treaty
 - developed in 1987
 - cut emissions of CFCs by ~35% -50% between 1989 and 2000

60 Solutions: Protecting the ozone layer

- · Efforts to reduce ozone depletion
 - new protocol was adopted following meetings in 1990 & 1992 of representative from 93 countries
 - in response to news in 1989 about seasonal thinning of ozone layer over Antarctica

61 Solutions: Protecting the ozone layer

- Efforts to reduce ozone depletion
 - to date, landmark international agreements
 - signed by 175 nations
 - illustrate global response to a serious global environmental problem

62 Solutions: Protecting the ozone layer

- Efforts to reduce ozone depletion
 - according to 1998 study by World Meteorological Organization (WMO)
 - ozone layer
 - will continue to be depleted for several decades
 - will return to 1980 levels by ~2050 and to 1950 level by ~2100 if certain assumptions hold
 - depletion has resulted in cooling of troposphere

63 Solutions: Protecting the ozone layer

- · Efforts to reduce ozone depletion
 - according to 1998 WMO study, ozone layer
 - will continue to be depleted for several decades because
 - 11-20 year time lag between release of ODCs and their arrival in stratosphere
 - ODCs persist in stratosphere for decades

64 Solutions: Protecting the ozone layer

- Efforts to reduce ozone depletion
 - according to 1998 WMO study, ozone layer
 - will return to 1980 levels by ~2050 and to 1950 levels by ~2100, assuming
 - international agreements are followed
 - no major volcanic eruptions

- or, to rephrase
 - if all ozone use was stopped today, it would take ~47 years for concentrations to return to 1980 levels and ~97 years to return to "safe" levels of 1950s

65 Solutions: Protecting the ozone layer

- Efforts to reduce ozone depletion
 - according to 1998 WMO study
 - · depletion of ozone in stratosphere has resulted in
 - cooling of troposphere
 - » possibly offset or disguised as much as 30% of global warming caused by greenhouse gas emissions
 - restoration of ozone layer could lead to an increase in global warming

66 Solutions: Protecting the ozone layer

- As result of Montreal Protocol and other international agreements
 - CFC emissions dropped ~87% from their peak in 1988
- in 1991
 - DuPont announced development of new refrigerants that don't harm ozone layer
- in 1996
 - US stopped producing CFCs

67 🗷

68 Solutions: Protecting the ozone layer

- Some substitutes/replacements include
 - new coolant for air conditioners
 - soapy water and hot air for circuit boards
 - sound waves for cooling
 - helium gas for refrigeration
 - liquid nitrogen (-196°C) and supercooled CO2 (-60°C; dry ice) for shipping

69 The End