Nonrenewable vs. renewable energy sources
• Nonrenewable resources
 – available in finite, limited quantities
 – depleted by use
 • natural processes do not replenish within reasonable period of time
 – on human time scale

Nonrenewable vs. renewable energy sources
• Nonrenewable resources
 – include
 • minerals
- copper, tin, aluminum, radioactive ores
 - fossil fuels
 - coal
 - oil
 - natural gas

6 Nonrenewable vs. renewable energy sources
 - Renewable resources
 - available in potentially unlimited quantities
 - term is not used exclusively to describe energy resources
 - replaced by natural processes fairly rapidly
 - on a scale of days to decades
 - can be used forever
 - as long as they are not overexploited in short term
 - must be used in sustainable manner
 - gives them time to replace or replenish themselves

7 Nonrenewable vs. renewable energy sources
 - Renewable resources
 - include
 - non-energy
 - trees
 - fishes
 - fertile agricultural soil, fresh water
 - energy
 - solar
 - wind
 - geothermal
 - hydroelectric

8 Nonrenewable energy: resources vs. reserves
 - Nonrenewable resources
 - must differentiate between deposits that can be extracted and those that cannot
 - resource
 - reserve

9 Nonrenewable energy: resources vs. reserves
 - Nonrenewable resources
 - resource
 - naturally occurring substance
 - of potential use to humans
 - can potentially be extracted using current technology
 - reserve
 - known deposits that can be extracted profitably with existing technology
 - under certain economic conditions
10 Nonrenewable energy: resources vs. reserves

- Nonrenewable resources
 - resource
 - total amount changes only by amount that is used each year
 - reserve
 - an economic concept
 - amount changes as
 - technology advances
 - as new deposits are discovered
 - as economic conditions vary
 - reserves are smaller than resources

12 OUTLINE

- Renewable vs. Non-Renewable Energy
- Fossil fuels - general
 - formation
 - resources vs. reserves
- Coal
 - formation
 - types
 - reserves
 - extraction
 - use patterns
 - use issues

13 Fossil fuels

- general
 - definition
 - formation
- specific types
 - formation
 - resources and reserves
 - use patterns
 - use issues

14 Fossil fuels

- General definition
 - partially decayed remains of plants, animals and microorganisms that lived millions of years ago

15 Fossil fuels

- General formation
~300 million years ago
 • much of earth’s climate was mild and warm
 – plants grew year round in vast swamps
 • as swamp plants and aquatic microorganisms died
 – fell into or sunk in water
 » decomposed very little due to lack of oxygen
 – covered by layers of sediment

16 Fossil fuels
 • General formation
 – over great periods of time
 • heat and pressure that accompanied burial of organic material by sediments
 – converted non-decomposed organic material into carbon-rich materials we now call fossil fuels

17 OUTLINE
 ♦ Renewable vs. Non-Renewable Energy
 ♦ Fossil fuels - general
 ♦ formation
 ♦ resources vs. reserves
 ♦ Coal
 ♦ formation
 ♦ types
 ♦ reserves
 ♦ extraction
 ♦ use patterns
 ♦ use issues

18 Fossil fuels
 ♦ Types
 – coal
 – oil
 – natural gas

19 Fossil fuels
 ♦ Coal
 ♦ formation
 ♦ types
 ♦ reserves
 ♦ extraction
 ♦ use patterns
 ♦ use issues
Fossil fuels
• Coal
 + formation
 + types
 + reserves
 + extraction
 + use patterns
 + use issues

Coal
 – formation
 • ~300 million years ago
 – tropical freshwater swamps covered many regions of earth
 • conditions in swamps favored extremely rapid plant growth
 – resulting in accumulations of dead plant material under water
 » decay was inhibited due to low oxygen concentrations

Coal
 – formation
 • partially decayed accumulated plant material was covered by sediments
 – especially when geologic changes in earth caused some swamps to be submerged by seas
 – over vast periods of time, heat and pressure that accompanied burial
 » converted non-decomposed plant material into carbon-rich rock called coal

Coal
 – types
 • occurs in different types, or grades, dependent on
 – varying amounts of heat and pressure to which it was exposed during formation
Fossil fuels
- Coal
 - types
 - exposed during formation to
 - higher heat and pressure
 » drier (lower water content)
 » more compact (harder)
 » higher heating value (=higher energy content)
 - lower heat and pressure
 » wetter (higher water content)
 » less compact (softer)
 » lower heating value (=lower energy content)

Fossil fuels
- Coal
 - types
 - three most common grades
 - lignite
 - bituminous
 - anthracite

Fossil fuels
- Coal
 - lignite
 - characteristics
 » moist, water content of ~45%
 » soft, woody texture
 » produces little heat compared to other types
 » heat value of 7000 BTU/pound
 » dark brown in color
 » contains ~20 noncombustible compounds
 » contains ~35% carbon

Fossil fuels
- Coal
 - types
 - lignite
 - uses
 » often used to fuel electric power plants
 - deposits
 » sizable deposits found in western US
 » largest US producer is North Dakota
 » cost to mine (1997) $10.91/2000 pounds

Fossil fuels
- Coal
 - types
 - bituminous
 - characteristics
– moderately dry, water content of 5-15%
– moderately hard
 » although it's also called a soft coal
– produces nearly twice the amount of heat as lignite
 » heat value of 12,000 BTU/pound
– dull to bright black with dull bands
– contains ~20-30 noncombustible compounds
– contains ~55-75% carbon

30 Fossil fuels

• Coal
 – types
 – bituminous
 • uses
 – extensively by electric power plants
 » produces a lot of heat
 • deposits
 – found in US in Appalachian region, near Great Lakes, in Mississippi Valley, in central Texas
 – cost to mine (1997) $24.64/2000 pounds

31 Fossil fuels

• Coal
 – types
 – anthracite
 • highest grade of coal
 • characteristics
 – very dry, water content of 4%
 – very compact
 » called hard coal
 – produces twice the heat of lignite
 » heat value of 14,000 BTU/pound
 – dark, brilliant black in color
 – contains ~1 noncombustible compound
 – contains ~95% carbon

32 Fossil fuels

• Coal
 – types
 – anthracite
 • uses
 – electric power generation and other industrial uses such as production of steel
 • deposits
 – in US, most is located east of Mississippi River, particularly in PA
Fossil Fuels
- Coal
 - formation
 - types
 - reserves
 - extraction
 - use patterns
 - use issues

Fossil Fuels
- Coal
 - deposits and reserves
 - coal is most abundant fossil fuel in world
 - found mostly in Northern Hemisphere
 - found in seams or veins
 - underground layers that vary in thickness from 2.5cm to >30m in thickness
 - easily located
 - geologists believe most (if not all) major deposits have been located

Fossil Fuels
- Coal
 - deposits and reserves
 - known, proven world reserves
 - location
 - ~66% located in US, Russia, China, India
 » with US accounting for 24% of those
 - could last
 - ~200 years at present rate of consumption
 - ~65 years if rate of consumption increases by 2% per year

Figure 10.4: Distribution of coal deposits, Raven & Berg

Fossil Fuels
- Coal
 - deposits and reserves
 - known US reserves
 - location
 » throughout US
 » more in eastern 1/2 of continental US
 - could last US
 » ~300 years at present rate of consumption
Fossil Fuels

- Coal
 - deposits and reserves
 - unknown, unproven world reserves
 - additional coal reserves that are currently too expensive to develop
 » for example, deposits at depths >5000 feet would cost more to extract than would be offset by current price of coal

Fossil Fuels

- Coal
 - deposits and reserves
 - unknown, unproven world reserves
 - location
 » ~85% are located in US
 - could last
 » ~1000 years at present rate of consumption
 » ~149 years if rate of consumption increases by 2% per year

Fossil Fuels

- Coal
 - deposits and reserves
 - unknown, unproven US reserves
 - could last US
 » ~400 years at present rate of consumption

Fossil Fuels

- Coal
 - deposits and reserves
 - known AND unknown world reserves
 - could last
 » ~200-1000 years depending on rate of consumption

Fossil Fuels

- Coal
 - formation
 - types
 - reserves
 - extraction
 - use patterns
 - use issues

Fossil Fuels

- Coal extraction
 - two basic types of coal mines
 - surface mines
• subsurface mines

47 Fossil Fuels
 • Coal extraction
 – surface mines
 • also called strip mining
 • used when overburden is 30-100 meters thick
 – overburden = rock/earthen material on top of vein/seam of coal
 • results in best utilization of coal reserves
 – it removes most of coal in a vein
 – can be profitably used in a vein as thin as 1/2 meter

48 Fossil Fuels
 • Coal extraction
 – surface mines
 • have increased globally
 – in US, from 30% of coal extracted in 1970 to 60% of coal extracted currently
 • advantages over subsurface mining
 – less expensive
 – safer for miners
 – allows more complete removal of coal
 • disadvantage over subsurface mining
 – disrupts land more extensively
 » adverse environmental impacts

49 Fossil Fuels

50 Fossil Fuels
 • Coal extraction
 – subsurface mines
 • employed when overburden is thick, >-30-100 meters
 • account for ~40% of current coal extraction
 – advantage over surface mining
 • disrupts land less extensively
 – less potential for adverse environmental impacts
 – disadvantages over surface mining
 • more expensive
 • less safe for miners
 • less complete removal of coal

51 Fossil fuels
 ◀ Coal
 + formation
 + types
 + reserves
 + extraction
 + use patterns
 + use issues
Fossil Fuels

Coal use patterns
- provides
 - ~21% of world’s commercial energy
 - ~22% of US’s commercial energy
- used to
 - generate
 - ~62% of world’s electricity
 - ~53% of US’s electricity
 - make
 - ~75% of world’s steel

Figure 10.9: World commercial energy sources, 1997, Raven & Berg

Coal use patterns
- many analysts project a decline in coal use over next 40-50 years because of
 - its high CO₂ emissions
 - harmful human health effects
 - availability of less environmentally harmful ways to produce electricity

Fossil fuels
- Coal
 + formation
 + types
 + reserves
 + extraction
 + use patterns
 + use issues

Coal use issues
- coal contains
 - small amounts of sulfur
– which is released into atmosphere as SO_2 when coal is burned
 » SO_2 is a greenhouse gas
• trace amount of mercury and radioactive materials
– which are released into atmosphere when coal is burned

60 Fossil Fuels
• Coal use issues
 – most abundant fossil fuel
 – produces highest environmental impact from
 • land disturbance
 • air pollution
 • greenhouse gas emissions (SO_2, CO_2)
 • release of toxic mercury particles
 • release of thousands of times more radioactive particles into atmosphere per unit energy produced than does a normally operating nuclear power plant
 • water pollution

61 Fossil Fuels
• Coal use issues
 – human health impacts
 • occupational
 – coal mining is one of most dangerous jobs in world
 – during 20th century, ~90,000 American coal miners died in mining accidents
 » though death rates declined in latter part of century
 – between 1870 and 1950, 30,000 miners died in PA alone
 » equivalent of one man per day for 80 years

62 Fossil Fuels
• Coal use issues
 – human health impacts
 • occupational
 – miners have increased risk of black lung disease
 » lungs become coated with inhaled coal dust restricting oxygen exchange, causing ~2000 deaths per year

63 Fossil Fuels
• Coal use issues
 – land disturbance
 • in US, thousands of square kilometers have been disturbed by mining
 – only about 1/2 of that has been reclaimed

64 Fossil Fuels
• Coal use issues
 – land disturbance
 • types
 – open trenches
 – topsoil removal/erosion
 – landslides caused by lack of vegetation
mountaintop removal
land subsidence
trailing dumps

Fossil Fuels

Coal use issues

- land disturbance

- acid mine drainage
 - produced when rainwater seeps through iron sulfide minerals exposed in waste mines
 - carries sulfuric acid to nearby streams and lakes

Coal use issues

- air pollution
 - many elements taken up by ancient plants were concentrated in coal formation process
 - such as uranium, lead, cadmium, mercury, rubidium, thallium, zinc
 - released when coal is burned
 - as gas into atmosphere
 - are concentrated as in fly ash
 - coal is responsible for ~25% of all atmospheric mercury pollution in US

Coal use issues

- air pollution
 - acid deposition
 - both sulfur oxides (SOx) and nitrogen oxides (NOx) form acids when they react with water
 - SOx and NOx emissions react with water in the atmosphere to form
 - an acid which falls from atmosphere to surface, known as acid deposition or acid precipitation

Coal use issues

- greenhouse gases
 - coal contains up to 10% sulfur by weight
 - unless sulfur is removed by washing or flue-gas scrubbing
 - it is released during burning and oxidizes to sulfur dioxide (SO2) or sulfate (SO4)
 - ~18 million metric tons SOx released annually in US (~75% of total US emissions)

Coal use issues

- greenhouse gases
 - high temperatures and rich air mixtures used in coal-fired burners also
 - oxidize nitrogen compounds (mostly from atmosphere) into nitrogen oxides (NOx)
» ~5 metric tons of NOx released annually in US (~30% of total US emissions)

Fossil Fuels
• Coal use issues
 – greenhouse gases
 • combustion of coal produces CO₂
 – ~one trillion metric tons released annually in US (~50% of total US emissions)

Fossil Fuels
• Coal use issues
 – making coal a cleaner fuel
 • desulfurization systems
 – clean power plants’ exhausts
 » chemicals react with pollution and pollution settles out (precipitates)
 » modern “scrubbers” remove ~98% of sulfur
 – expensive, adds to cost of coal energy

Fossil Fuels
• Coal use issues
 – clean coal technologies
 • new methods for burning coal such as fluidized bed combustion
 – mixes crushed coal with particles of limestone in a strong air current during combustion
 – takes place at lower temperatures so there are fewer nitrogen oxides produced
 – sulfur reacts with calcium in limestone and precipitates out

Fossil Fuels
• Coal use issues
 – clean coal technologies
 • new methods for burning coal such as fluidized bed combustion
 – process is more efficient than traditional coal burning
 » produces more heat for a given amount of coal
 » therefore, reduces CO₂ emissions

Figure 10.8: Fluidized-bed combustion of coal, Raven & Berg

Fossil Fuels
• Coal use issues
 – converting coal into gaseous and liquid fuels
 • solid coal can be converted into synfuels
 – synthetic natural gas (SNG)
 » by process of coal gasification
 – liquid fuel such as methanol or synthetic gasoline
 » by process of coal liquefaction
 • most analysts expect synfuels to play only a minor role as an energy resource in the next 30-50 years
76 Figure 10.16: Coal gasification, Raven & Berg

77 The End