1 Energy: Fossil Fuels - Coal

EVPP 111 Lecture

Dr. Largen

- + Renewable vs. Non-Renewable Energy
- + Fossil fuels general
 - + formation
 - + resources vs. reserves
- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patters
 - + use issues

- + Renewable vs. Non-Renewable Energy
- + Fossil fuels general
 - + formation
 - + resources vs. reserves
- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patterns
 - + use issues

⁴ Nonrenewable vs. renewable energy sources

• Nonrenewable resources

- available in finite, limited quantities
- depleted by use
 - natural processes do not replenish within reasonable period of time

 on human time scale

5 Nonrenewable vs. renewable energy sources

Nonrenewable resources

- include
 - minerals

- copper, tin, aluminum, radioactive ores
- fossil fuels
 - coal
 - oil
 - natural gas

6 🗖 Nonrenewable vs. renewable energy sources

Renewable resources

- available in potentially unlimited quantities
 - term is not used exclusively to describe energy resources
- replaced by natural processes fairly rapidly
 - on a scale of days to decades
- can be used forever
 - as long as they are not overexploited in short term
 - must be used in sustainable manner
 - gives them time to replace or replenish themselves

7 Nonrenewable vs. renewable energy sources

- Renewable resources
 - include
 - non-energy
 - trees
 - fishes
 - fertile agricultural soil, fresh water
 - energy
 - solar
 - wind
 - geothermal
 - hydroelectric

⁸ Nonrenewable energy: resources vs. reserves

Nonrenewable resources

- must differentiate between deposits that can be extracted and those that cannot
 - resource
 - reserve

• Nonrenewable energy: resources vs. reserves

- Nonrenewable resources
 - resource
 - naturally occurring substance
 - of potential use to humans
 - · can potentially be extracted using current technology
 - reserve
 - · known deposits that can be extracted profitably with existing technology
 - under certain economic conditions

¹⁰ Nonrenewable energy: resources vs. reserves

- Nonrenewable resources
 - resource
 - · total amount changes only by amount that is used each year
 - reserve
 - · an economic concept
 - · amount changes as
 - technology advances
 - as new deposits are discovered
 - as economic conditions vary
 - reserves are smaller than resources

11 🗷

12 DUTLINE

- + Renewable vs. Non-Renewable Energy
- + Fossil fuels general
 - + formation
 - + resources vs. reserves
- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patterns
 - + use issues

¹³ Fossil fuels

- general
 - definition
 - formation
- · specific types
 - formation
 - resources and reserves
 - use patterns
 - use issues

¹⁴ Fossil fuels

- General definition
 - partially decayed remains of plants, animals and microorganisms that lived millions of years ago

15 - Fossil fuels

General formation

- ~300 million years ago
 - · much of earth's climate was mild and warm
 - plants grew year round in vast swamps
 - · as swamp plants and aquatic microorganisms died
 - fell into or sunk in water
 - » decomposed very little due to lack of oxygen
 - covered by layers of sediment

¹⁶ Fossil fuels

- General formation
 - over great periods of time
 - · heat and pressure that accompanied burial of organic material by sediments
 - converted non-decomposed organic material into carbon-rich materials we now call fossil fuels

17 🗷 OUTLINE

- + Renewable vs. Non-Renewable Energy
- + Fossil fuels general
 - + formation
 - + resources vs. reserves
- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patterns
 - + use issues

18 J Fossil fuels

- Types
 - coal
 - oil
 - natural gas

¹⁹ • Fossil fuels

- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patterns
 - + use issues

20 J Fossil fuels

+ Coal

- + formation
- + types
- + reserves
- + extraction
- + use patterns
- + use issues

²¹ Fossil fuels

- Coal
 - formation
 - ~300 million years ago
 - tropical freshwater swamps covered many regions of earth
 - · conditions in swamps favored extremely rapid plant growth
 - resulting in accumulations of dead plant material under water
 » decay was inhibited due to low oxygen concentrations

22 - Fossil fuels

Coal

- formation

- partially decayed accumulated plant material was covered by sediments
 - especially when geologic changes in earth caused some swamps to be submerged by seas
 - over vast periods of time, heat and pressure that accompanied burial
 - » converted non-decomposed plant material into carbon-rich rock called coal

23 J Fossil fuels

- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patterns
 - + use issues

²⁴ Fossil fuels

- Coal
 - types
 - occurs in different types, or grades, dependent on
 - varying amounts of heat and pressure to which it was exposed during formation

²⁵ Fossil fuels

- Coal
 - types
 - exposed during formation to
 - higher heat and pressure
 - » drier (lower water content)
 - » more compact (harder)
 - » higher heating value (=higher energy content)
 - lower heat and pressure
 - » wetter (higher water content)
 - » less compact (softer)
 - » lower heating value (=lower energy content)

²⁶ Fossil fuels

- Coal
 - types
 - three most common grades
 - lignite
 - bituminous
 - anthracite

²⁷ • Fossil fuels

- Coal
 - types
 - lignite
 - characteristics
 - » moist, water content of ~45%
 - » soft, woody texture
 - » produces little heat compared to other types
 - » heat value of 7000 BTU/pound
 - » dark brown in color
 - » contains ~20 noncombustible compounds
 - » contains ~35% carbon

28 G Fossil fuels

Coal

types

- lignite
 - uses
 - » often used to fuel electric power plants
 - deposits
 - » sizable deposits found in western US
 - » largest US producer is North Dakota
 - » cost to mine (1997) \$10.91/2000 pounds

²⁹ Fossil fuels

- Coal
 - types
 - bituminous
 - characteristics

- moderately dry, water content of 5-15%
- moderately hard
 - » although its also called a soft coal
- produces nearly twice the amount of heat as lignite
 - » heat value of 12,000 BTU/pound
- dull to bright black with dull bands
- contains ~20-30 noncombustible compounds
- contains ~55-75% carbon

³⁰ Fossil fuels

- Coal
 - types
 - bituminous
 - uses
 - extensively by electric power plants
 - » produces a lot of heat
 - · deposits
 - found in US in Appalachian region, near Great Lakes, in Mississippi Valley, in central Texas
 - cost to mine (1997) \$24.64/2000 pounds

³¹ Fossil fuels

- Coal
 - types
 - anthracite
 - · highest grade of coal
 - characteristics
 - very dry, water content of 4%
 - very compact
 - » called hard coal
 - produces twice the heat of lignite
 - » heat value of 14,000 BTU/pound
 - dark, brilliant black in color
 - contains ~1 noncombustible compound
 - contains ~95% carbon

32 G Fossil fuels

- Coal
 - types
 - anthracite
 - uses
 - electric power generation and other industrial uses such as production of steel
 - deposits
 - in US, most is located east of Mississippi River, particularly in PA

³⁴ Fossil fuels

- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patterns
 - + use issues

35 G Fossil Fuels

- Coal
 - deposits and reserves
 - · coal is most abundant fossil fuel in world
 - found mostly in Northern Hemisphere
 - · found in seams or veins
 - underground layers that vary in thickness from 2.5cm to >30m in thickness
 - · easily located
 - geologists believe most (if not all) major deposits have been located

36 G Fossil Fuels

- Coal
 - deposits and reserves
 - known, proven world reserves
 - location
 - ~66% located in US, Russia, China, India
 - » with US accounting for 24% of those
 - could last
 - ~200 years at present rate of consumption
 - ~65 years if rate of consumption increases by 2% per year
- ³⁷ Figure 10.4: Distribution of coal deposits, Raven & Berg
- 38 💵

39 G Fossil Fuels

- Coal
 - deposits and reserves
 - known <u>US</u> reserves
 - location
 - » throughout US
 - » more in eastern 1/2 of continental US
 - could last US
 - » ~300 years at present rate of consumption

⁴¹ Fossil Fuels

- Coal
 - deposits and reserves

• unknown, unproven world reserves

- additional coal reserves that are currently too expensive to develop
 - » for example, deposits at depths >5000 feet would cost more to extract than would be offset by current price of coal

⁴² Fossil Fuels

- Coal
 - deposits and reserves

• unknown, unproven world reserves

- location
 - » ~85% are located in US
- could last
 - » ~1000 years at present rate of consumption
 - » ~149 years if rate of consumption increases by 2% per year

⁴³ Fossil Fuels

- Coal
 - deposits and reserves
 - unknown, unproven US reserves
 - could last US
 - » ~400years at present rate of consumption

⁴⁴ Fossil Fuels

- Coal
 - deposits and reserves
 - known AND unknown world reserves
 - could last
 - » ~200-1000 years depending on rate of consumption

45 S Fossil fuels

- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patterns
 - + use issues

⁴⁶ Fossil Fuels

- Coal extraction
 - two basic types of coal mines
 - surface mines

subsurface mines

⁴⁷ Fossil Fuels

Coal extraction

surface mines

- also called strip mining
- used when overburden is 30-100 meters thick
 - overburden = rock/earthen material on top of vein/seam of coal
- · results in best utilization of coal reserves
 - it removes most of coal in a vein
 - can be profitably used in a vein as thin as 1/2 meter

48 G Fossil Fuels

Coal extraction

surface mines

- have increased globally
 - in US, from 30% of coal extracted in 1970 to 60% of coal extracted currently
- advantages over subsurface mining
 - less expensive
 - safer for miners
 - allows more complete removal of coal
- · disadvantage over subsurface mining
 - disrupts land more extensively
 - » adverse environmental impacts

49 🗷

50 C Fossil Fuels

Coal extraction

- subsurface mines

- employed when overburden is thick, >~30-100 meters
- account for ~40% of current coal extraction
- advantage over surface mining
 - · disrupts land less extensively
 - less potential for adverse environmental impacts
- disadvantages over surface mining
 - more expensive
 - · less safe for miners
 - · less complete removal of coal

51 S Fossil fuels

- + Coal
 - + formation
 - + types
 - + reserves
 - + extraction
 - + use patterns
 - + use issues

52 G Fossil Fuels

Coal use patterns

- provides
 - ~21% of world's commercial energy
 - ~22% of US's commercial energy
- used to
 - generate
 - ~62% of world's electricity
 - ~53% of US's electricity
 - make
 - ~75% of world's steel

53 🗷

54 🗷 Figure 10.9: World commercial energy sources, 1997, Raven & Berg

55 🗷

56 G Fossil Fuels

Coal use patterns

- many analysts project a decline in coal use over next 40-50 years because of

- its high CO₂ emissions
- harmful human health effects
- · availability of less environmentally harmful ways to produce electricity

57 🗷

58 J Fossil fuels

+ Coal

- + formation
- + types
- + reserves
- + extraction
- + use patters
- + use issues

59 - Fossil Fuels

Coal use issues

- coal contains
 - · small amounts of sulfur

- which is released into atmosphere as SO₂ when coal is burned
 - » SO₂ is a greenhouse gas
- trace amount of mercury and radioactive materials
 - which are released into atmosphere when coal is burned

60 C Fossil Fuels

Coal use issues

- most abundant fossil fuel
- produces highest environmental impact from
 - land disturbance
 - · air pollution
 - greenhouse gas emissions (SO₂ CO₂)
 - · release of toxic mercury particles
 - release of thousands of times more radioactive particles into atmosphere per unit energy produced than does a normally operating nuclear power plant
 - water pollution

61 C Fossil Fuels

- Coal use issues
 - human health impacts
 - occupational
 - coal mining is one of most dangerous jobs in world
 - during 20th century, ~90,000 American coal miners died in mining accidents
 » though death rates declined in latter part of century
 - between 1870 and 1950, 30,000 miners died in PA alone
 - » equivalent of one man per day for 80 years

62 G Fossil Fuels

Coal use issues

- human health impacts
 - occupational
 - miners have increased risk of black lung disease
 - » lungs become coated with inhaled coal dust restricting oxygen exchange, causing ~2000 deaths per year

63 C Fossil Fuels

Coal use issues

- land disturbance
 - · in US, thousands of square kilometers have been disturbed by mining
 - only about 1/2 of that has been reclaimed

64 G Fossil Fuels

Coal use issues

- land disturbance
 - types
 - open trenches
 - topsoil removal/erosion
 - landslides caused by lack of vegetation

- mountaintop removal
- land subsidence
- trailing dumps

65 G Fossil Fuels

Coal use issues

- land disturbance
 - acid mine drainage
 - produced when rainwater seeps through iron sulfide minerals exposed in waste mines and
 - » carries sulfuric acid to nearby streams and lakes

66 🗆 Fossil Fuels

Coal use issues

- air pollution
 - · many elements taken up by ancient plants were concentrated in coal formation process
 - such as uranium, lead, cadmium, mercury, rubidium, thallium, zinc
 - released when coal is burned
 - » as gas into atmosphere
 - » are concentrated as in fly ash
 - coal is responsible for ~25% of all atmospheric mercury pollution in US

67 G Fossil Fuels

Coal use issues

- air pollution
 - · acid deposition
 - both sulfur oxides (SOx) and nitrogen oxides (NOx) form acids when they react with water
 - SOx and NOx emissions react with water in the atmosphere to form
 - » an acid which falls from atmosphere to surface, known as acid deposition or acid precipitation

68 G Fossil Fuels

Coal use issues

- greenhouse gases
 - coal contains up to 10% sulfur by weight
 - unless sulfur is removed by washing or flue-gas scrubbing
 - » it is released during burning and oxidizes to sulfur dioxide (SO₂) or sulfate (SO₄)
 - » ~18 million metric tons SOx released annually in US (~75% of total US emissions)

69 G Fossil Fuels

- Coal use issues
 - greenhouse gases
 - high temperatures and rich air mixtures used in coal-fired burners also
 - oxidize nitrogen compounds (mostly from atmosphere) into nitrogen oxides (NOx)

» ~5 metric tons of NOx released annually in US (~30% of total US emissions)

70 G Fossil Fuels

Coal use issues

- greenhouse gases
 - combustion of coal produces CO₂
 - ~one trillion metric tons released annually in US (~50% of total US emissions)

71 G Fossil Fuels

Coal use issues

- making coal a cleaner fuel
 - · desulfurization systems
 - clean power plants' exhausts
 - » chemicals react with pollution and pollution settles out (precipitates)
 - » modern "scrubbers" remove ~98% of sulfur
 - expensive, adds to cost of coal energy

72 G Fossil Fuels

Coal use issues

- clean coal technologies
 - new methods for burring coal such as fluidized bed combustion
 - mixes crushed coal with particles of limestone in a strong air current during combustion
 - takes place at lower temperatures so there are fewer nitrogen oxides produced
 - sulfur reacts with calcium in limestone and precipitates out

73 G Fossil Fuels

Coal use issues

- clean coal technologies
 - new methods for burring coal such as fluidized bed combustion
 - process is more efficient than traditional coal burning
 - » produces more heat for a given amount of coal
 - » therefore, reduces CO₂ emissions
- 74 🗷 Figure 10.8: Fluidized-bed combustion of coal, Raven & Berg

75 - Fossil Fuels

Coal use issues

- converting goal into gaseous and liquid fuels
 - solid coal can be converted into synfuels
 - synthetic natural gas (SNG)
 - » by process of coal gasification
 - liquid fuel such as methanol or synthetic gasoline
 - » by process of coal liquefaction
 - most analysts expect synfuels to play only a minor role as a energy resource in the next 30-50 years

⁷⁶ Figure 10.16: Coal gasification, Raven & Berg

77 🗆 The End