Aquatic biomes

• Aquatic biomes
 – occupy largest part of biosphere
 – two major categories of aquatic biomes
 • Freshwater
 – salt concentration of <1%
 • Marine
 – salt concentration of ~ 3%
 – many exhibit pronounced vertical stratification

Aquatic biomes

• vertical stratification
 – based on physical and chemical variables, such as
 • light
 • temperature

Aquatic biomes

• vertical stratification
 – light
 • is absorbed by organisms and the water
 – intensity decreases rapidly with depth
 • ecologists distinguish between 2 zones based on light penetration
 – photic zone
 » zone through which light penetrates
 » light is sufficient for photosynthesis
 – aphotic zone (profundal)
 » very little light can penetrate
 » insufficient for photosynthesis

Aquatic biomes

• vertical stratification
 – temperature
 • light-penetrated layer
 – warmed by heat energy from sunlight
• **thermocline**
 – narrow stratum of rapid temperature change
 – separates a more uniformly warm upper layer from more uniformly cold deeper waters

• **deep waters**
 – beyond penetration of light
 – are uniformly cold

8

Aquatic biomes

• **vertical stratification**
 – **benthic zone**
 • bottom of any aquatic biome
 – the substrate, made up of
 » sand
 » organic and inorganic sediments
 • contains **detritus**
 – dead organic matter
 • occupied by communities of organisms collectively called **benthos**
 – for whom a major source of food is detritus
 » rains down from waters of photic zone

9

Major aquatic biomes

• **Freshwater biomes**
• **Marine biomes**

10

Major aquatic biomes

• **Freshwater biomes**
• **Marine biomes**

11

Freshwater biomes

• **Freshwater biomes**
 • salt concentration of <1%
 • closely linked to soils and biotic components of terrestrial biomes through which they pass
 • characteristics are influenced by
 – patterns and speed of water flow
 – climate of area in which its located

12

Freshwater biomes

• **Freshwater biomes**
 • two categories
 • **standing** (lentic) bodies of water
- lakes
- ponds
- inland wetlands
• **moving** (lotic) bodies of water
 - rivers
 - streams

13

Freshwater biomes

- **Freshwater biomes**
 - two categories
 - **standing** (lentic) bodies of water
 - lakes
 - ponds
 - inland wetlands
 - **moving** (lotic) bodies of water
 - rivers
 - streams

14

Freshwater biomes

- Freshwater biomes
 - lakes
 - large, natural bodies of standing fresh water
 - formed when precipitation, runoff, groundwater seepage fills depressions in earth’s surface
 - depressions can be formed by
 » glaciation (Great Lakes, NA)
 » crustal displacement (Lake Nyasa, East Africa)
 » volcanic activity (Crater Lake, Oregon)
 - large lakes may have many of same characteristics as oceans

15

Freshwater biomes

- Freshwater biomes
 - lakes
 - consist of 4 zones, defined by depth and distance from shore
 - littoral zone
 - limnetic zone
 - profundal zone
 - benthic zone

16

Freshwater biomes

- Freshwater biomes
- lakes
 - littoral zone
 - shallow, well-lit, close to shore.
 - rooted and floating plants flourish
 - limnetic zone
 - well-lit, open surface water, farther from shore, extending to depth penetrated by light
 - occupied by phytoplankton, zooplankton, higher animals
 - produces food and oxygen that supports most of lake’s consumers

Freshwater biomes

- Freshwater biomes
 - lakes
 - profundal zone
 - consists of deep, aphotic regions
 - too dark for photosynthesis
 - oxygen levels are low
 - inhabited by fish adapted to cool dark waters
 - benthic zone
 - bottom of lake
 - inhabited by organisms that can tolerate cool temperatures and low oxygen levels

Freshwater biomes

- Freshwater biomes
 - lakes
 - productivity
 - determined by several factors
 » temperature
 » depth
 » nutrient content
 » dissolved oxygen content

Freshwater biomes

- Freshwater biomes
 - lakes
 - dissolved oxygen content
 - aquatic organisms must have molecule oxygen (O₂)
 - enters water from
 » air
 » released as result of photosynthesis
 » mixing from wave action
determines types of organisms that can inhabit a lake

21 Freshwater biomes

• Freshwater biomes
 – lakes
 • dissolved oxygen content
 – decomposition of organic matter by bacteria and fungi requires oxygen (as they perform respiration)
 • biochemical oxygen demand (BOD)
 » amount of oxygen used by decomposers to break down a specific amount of organic matter
 » greater amount of organic matter (or influx of nutrients) increases BOD and decreases amount of O₂ available in water

22 Freshwater biomes

• Freshwater biomes
 – lakes
 • often classified according to their production of organic matter
 – three general categories
 » oligotrophic
 » eutrophic
 » mesotrophic

23 Freshwater biomes

• Freshwater biomes
 – lakes
 • oligotrophic
 – deep
 – cold
 – small surface area relative to depth
 – nutrient-poor
 – phytoplankton are sparse, not very productive
 – don’t contain much life
 – waters often very clear
 – sediments low in decomposable organic matter
 – example: Lake Baikal, Siberia
Freshwater biomes

- Freshwater biomes
 - lakes
 - eutrophic
 - shallow
 - warm
 - large surface area relative to depth
 - nutrient-rich
 - phytoplankton more plentiful and productive
 - waters often murky
 - high organic matter content in benthos
 » leads to high decomposition rates and potentially low oxygen

- Freshwater biomes
 - lakes
 - mesotrophic
 - moderate nutrient content
 - moderate amount of phytoplankton, reasonably productive.

- Freshwater biomes
 - lakes
 - eutrophication
 - process in which some oligotrophic lakes become eutrophic
 » occurs over long periods of time
 » lakes pass from oligotrophic to mesotrophic to eutrophic
 » occurs as runoff brings in nutrients and silt
 » pollution from fertilizers can cause explosions in algae population and cause a
decrease in oxygen content
Freshwater biomes

• Freshwater biomes
 – two categories
 • standing (lentic) bodies of water
 – lakes
 – ponds
 – inland wetlands
 • moving (lotic) bodies of water
 – rivers
 – streams

Freshwater biomes

• Freshwater biomes
 – wetlands
 • an area covered with water at some point in year that supports aquatic plants
 – range from periodically flooded regions to soil that is permanently saturated
 » conditions favor specially adapted plants called hydrophytes
 • can be freshwater or saltwater

Freshwater biomes

• Freshwater biomes
 – wetlands
 • many types, including
 – marshes
 » usually covered with water year-round
 » dominant plants are emergent (stems and leaves extending above surface
 – swamps
 » dominated by woody plants
 – bogs
 » dominated by sphagnum mosses
 – seasonal pools

Freshwater biomes

• Freshwater biomes
 – wetlands
 • generally develop in three topographic situations
 – basin wetlands
 – riverine wetlands
Freshwater biomes

- **Freshwater biomes**
 - **wetlands**
 - **basin wetlands**
 - develop in shallow basins
 » ranging from upland depressions to filled-in lakes and ponds
 - **riverine wetlands**
 - develop along shallow, periodically flooded banks of rivers and streams
 - **fringe wetlands**
 - occur along coasts of large lakes and seas
 - water flows back and forth due to changing lake levels or tidal action

Freshwater biomes

- **Freshwater biomes**
 - **wetlands**
 - are among richest biomes
 - contain diverse communities
 - provide important services
 - water-storage basins
 » help reduce intensity of flooding
 » improve water quality by filtering pollutants
 - frequently destroyed or degraded by human activity
 - filled for agriculture and development
 - now protected in many areas

Freshwater biomes

- **Freshwater biomes**
 - two categories
 - **standing** (lentic) bodies of water
 - lakes
 - ponds
 - inland wetlands
 - **moving** (lotic) bodies of water
 - rivers
 - streams
• Freshwater biomes
 – rivers and streams
 • bodies of water moving continuously in one direction
 • downward flow of surface water and groundwater from mountain highland to sea can be separated into
 – three zones
 » source zone
 » transition zone
 » floodplain zone

Freshwater biomes

• Freshwater biomes
 – rivers and streams
 • source zone
 – contains headwaters (headwater streams)
 » often begins as springs or snowmelt
 » cold
 » clear
 » carries little sediment
 » contains relatively few nutrients
 » channels usually narrow
 » current is swift
 » substrate is rocky

Freshwater biomes

• Freshwater biomes
 – rivers and streams
 • transition zone
 – contains wider, lower elevation streams
 – streams join to form tributaries
 – warmer
 – less clear
 – carries more sediment
 – contains more nutrients
 – channels usually wider
 – current is slower
 – substrate begins to accumulate silt

Freshwater biomes
• Freshwater biomes
 – rivers and streams
 • floodplain zone
 – tributaries join to form rivers
 » which empty into oceans at estuaries
 – warmer still
 – murky
 – carries substantially more sediment
 – contains substantially more nutrients
 – channels wider, wide mouth
 – current relatively slow
 – substrate silty from deposition of sediment

Freshwater biomes

• Freshwater biomes
 – rivers and streams
 • nutrient content
 – largely determined by the terrain & vegetation of the area through which it flows
 – input via
 » adjacent and overhanging vegetation
 » weathering of rock
 » soil erosion
 » human activities

Freshwater biomes

• Freshwater biomes
 – rivers and streams
 • estuaries
 – areas where freshwater (stream or river) merges with ocean
 » freshwater meets salt water
 – salinity varies
 » from that of fresh water to that of ocean water
 » spatially (based on location)
 » temporally (due to tidal activity)
• **Estuaries**
 – one of most productive biomes on earth due to nutrients delivered by rivers
 » major producers are salt marsh grasses, algae, phytoplankton
 – support diverse communities
 – are crucial feeding areas for many types of water fowl
 – threatened by same types of activities as wetlands

Major aquatic biomes

• **Freshwater biomes**
• **Marine biomes**

Marine biomes

• **Marine biomes**
 – salt concentration of ~ 3%
 – cover ~ 75% of the earth’s surface
 – have enormous impact on planet’s climate
 • evaporation of seawater provides most rainfall
 • ocean temperatures affect wind patterns, distribution of energy to land via currents
 – supply substantial portion of world’s oxygen
 • photosynthesis by marine algae & photosynthetic bacteria
 – consume huge amounts of atmospheric carbon dioxide
 • result of photosynthesis by marine algae and photosynthetic bacteria

Marine biomes

• **Marine biomes**
 – communities are distributed through several zones
 • based on
 – depth of water
 – degree of light penetration
 – distance from shore
 – open water versus bottom

Marine biomes

• **Marine biomes**
 – zonation in marine communities
 • 5 general zones
 – intertidal zone
 – neritic zone
 – oceanic pelagic zone
 – benthic zone
 – abyssal zone
Marine biomes
- Marine biomes
 - zonation in marine communities
 - 5 general zones
 - intertidal zone
 - neritic zone
 - oceanic pelagic zone
 - benthic zone
 - abyssal zone

Marine biomes
- Marine biomes
 - intertidal zone
 - where land meets water
 - is alternately submerged and exposed twice daily due to tides
 - communities are subjected to huge daily variations in
 - availability of saltwater
 - temperature
 - organisms are subject to mechanical forces of wave action

Marine biomes
- Marine biomes
 - intertidal zone
 - can be rocky or sandy
 - are often destroyed by pollution and human activity

Marine biomes
- Marine biomes
 - intertidal zone
 - vertical zonation
 - based on percentage of time spent submerged
 » uppermost zone
 » middle zone
 » bottom zone

Marine biomes
- Marine biomes
 - intertidal zone
 - vertical zonation
Marine biomes

• Marine biomes
 – intertidal zone
 • vertical zonation
 – middle zone
 » submerged at high tide
 » exposed at low tide
 » inhabited by array of algae, sponges, sea anemones, mollusks, crustaceans, echinoderms, small fishes

Marine biomes

• Marine biomes
 – intertidal zone
 • vertical zonation
 – bottom zone
 » exposed only during lowest tides
 » inhabited dense cover of seaweeds, diver community of invertebrates and fishes

Marine biomes

• Marine biomes
 – zonation in marine communities
 • 5 general zones
 – intertidal zone
 – neritic zone
 – oceanic pelagic zone
 – benthic zone
 – abyssal zone

Marine biomes

• Marine biomes
– neritic zone
 • beyond intertidal
 • includes shallow regions over the continental shelves
 • in warm tropical waters, this region contains
 – coral reefs

Marine biomes
• Marine biomes
 – neritic zone
 • coral reefs
 – dominated by structure of coral itself
 » formed by diverse group of cnidarians that secrete hard external skeletons made of calcium carbonate
 » cerates a substrate upon which other corals, sponges, algae grow
 – include a very diverse assortment of vertebrates and invertebrates

Marine biomes
• Marine biomes
 – neritic zone
 • coral reefs
 – very productive
 » currents and waves constantly renew nutrients
 » light penetrates to ocean floor allowing photosynthesis
 – easily degraded by
 » pollution
 » development
 » high water temperatures

Marine biomes
• Marine biomes
 – zonation in marine communities
 • 5 general zones
 – intertidal zone
 – neritic zone
 – oceanic pelagic zone
 – benthic zone
 – abyssal zone
Marine biomes

- Marine biomes
 - oceanic pelagic zone
 - extends past continental shelves, can be very deep, is the open water
 - includes most of the ocean's water.
 - water is constantly mixed by ocean currents
 - plankton live in photic zone and are producers for this biome
 - nutrient concentrations generally lower than in coastal areas
 - includes a great variety of free swimming animals (fish, large squid, sea turtles, marine mammals)

Fig. 6.19

Marine biomes

- Marine biomes
 - zonation in marine communities
 - 5 general zones
 - intertidal zone
 - neritic zone
 - oceanic pelagic zone
 - benthic zone
 - abyssal zone

Marine biomes

- Marine biomes
 - benthic zone
 - ocean bottom below neritic and oceanic pelagic zones.
 - Substrate and temperature are very important characteristics in determining community development
 - nutrients “rain” down from above in form of detritus
 - communities consist of bacteria, fungi, seaweed and filamentous algae, numerous invertebrates, and fish.

Figure 50.22 Zonation in the marine environment

Fig. 6.19
– intertidal zone
– neritic zone
– oceanic pelagic zone
– benthic zone
– abyssal zone

Marine biomes

- Marine biomes
 - **abyssal zone**
 - very deep benthic communities
 - organisms are adapted to
 - continuous cold.
 - high pressure
 - low to no light
 - low nutrients
 - **deep-sea hydrothermal vents** of volcanic origin found here.
 - dark, hot, oxygen-deficient environment
 » producers are chemoautotrophs

Figure 50.23c Black smoker

Aquatic biomes

- Primary productivity
 - in aquatic ecosystems, is limited by
 - light
 - nutrients
 - marine ecosystems
 - freshwater ecosystems

Aquatic biomes

- Primary productivity
 - marine ecosystems
 - light
 - is first variable to control primary production in oceans
 » since solar radiation can only penetrate to a certain depth (photic zone)
 - more than 50% of solar radiation is absorbed in first meter of water
 » even in ‘clear’ water, only 5-10% of radiation reaches depth of 20m

Figure 50.22 Zonation in the marine environment

Fig. 6.19
Primary productivity
- marine ecosystems
 - since light is primary variable limiting primary production
 - we would expect production to increase along a gradient from the poles to the equator
 » but that is not the case, there is no such gradient
 » there are parts of the ocean in tropics and subtropics that exhibit low primary production

Aquatic biomes
- Primary productivity
 - marine ecosystems
 - why are tropical and subtropical oceans less productive than we would expect?
 - due to availability of nutrients
 - nutrients more than light limit primary productivity in different geographic regions of the ocean

Aquatic biomes
- Primary productivity
 - marine ecosystems
 - nutrients
 - nitrogen and phosphorus
 » most often limit marine production
 » are examples of limiting nutrients (nutrients that must be added for production to increase)
 » concentrations are low in photic zone where photosynthesis could occur
 » often more available in deep waters where it's too dark for photosynthesis

Aquatic biomes
- freshwater ecosystems
 - limited by solar radiation and temperature
 - nutrient limitations also common
 - phosphorus is usually limiting nutrient (rather than nitrogen as in oceans)
 » hence shift in late 1970's to phosphate-free detergents
 - cultural eutrophication
 - eutrophication of lakes as a result of input of nutrients from
 » sewage and fertilizer pollution

Aquatic biomes
- aquatic primary succession
 - main concepts of terrestrial primary succession can be applied to aquatic ecosystems
 - except for oceans, over time, most aquatic ecosystems are replaced by terrestrial ecosystems
• aquatic ecosystems receive continuous input of soil particles and organic matter
• as sediment increases, water depth decreases
 – types of organisms change

The End