Communities: Community Ecology

EVPP 111 Lecture

Dr. Largen

Spring 2004

² Sections

- ✓ definitions
- ✓ properties
- ✓ organism interactions
 - competition
 - predation
 - symbiotic relationships
- ✓ disturbances
 - succession

3 ■ Sections

- ✓ definitions
- ✓ properties
- ✓ organism interactions
 - competition
 - predation
 - symbiotic relationships
- ✓ disturbances
 - succession

4 Communities:

Community Ecology

- ✓ definitions
 - population
 - · all individuals of particular species living in same place at same time
 - community
 - all populations of organisms that live together & potentially interact in particular area at particular time
 - ecosystem
 - all communities of area & their interactions with each other & physical environment
- 5 Figure: Lion with kill in a grassland community

6 🗷

7 Sections

- ✓ definitions
- ✓ properties
- ✓ organism interactions
 - competition
 - predation

- symbiotic relationships
- ✓ disturbances
 - succession

Community Ecology

- ✓ Community properties
 - community has own set of properties
 - · diversity
 - · prevalent forms of vegetation
 - stability
 - · trophic structure

9 **☑** Communities:

Community Ecology

- ✓ Community properties
 - community has own set of properties
 - diversity
 - · prevalent forms of vegetation
 - · stability
 - · trophic structure

10 Communities:

Community Ecology

- ✓ Community properties
 - Diversity
 - · variety of organism that make up a community
 - · has two components
 - species richness
 - relative abundance of different species

11 Communities:

Community Ecology

- ✓ Community properties
 - Diversity
 - · species richness
 - total number of different species in community
 - · relative abundance of different species
 - number of individuals of each of different species

12 Communities:

- ✓ Community properties
 - Diversity
 - · consider two communities, each made of up 4 species, A, B, C, D
 - community 1 has 25A, 25B, 25C, 25D
 - community 2 has 97A, 1B, 1C, 1D
 - · species richness

- same for both communities, each made up of 4 species
- · relative abundance of different species
 - relative abundance is very different

Community Ecology

- ✓ Community properties
 - community has its own set of properties
 - · diversity
 - · prevalent form of vegetation
 - stability
 - · trophic structure

14 Communities:

Community Ecology

- ✓ Community properties
 - Prevalent form of vegetation
 - · applies mainly to terrestrial communities
 - · two components
 - types of dominant plants
 - structure of dominant plants
 - largely determines types of animals that will live in a community

15 Communities:

Community Ecology

- ✓ Community properties
 - Prevalent form of vegetation
 - for example, consider deciduous trees of temperate deciduous forest versus coniferous trees of northern coniferous forest
 - types of dominant plants
 - » are different
 - structure of dominant plants
 - » vertical structure of forests is different

16 🗷

17 Communities:

Community Ecology

- ✓ Community properties
 - community has its own set of properties
 - diversity
 - · prevalent forms of vegetation
 - stability
 - · trophic structure

18 Communities:

✓ Community properties

- Stability
 - · community's ability to resist change
 - return to its original species composition after being disturbed
 - · depends on
 - type of community
 - nature of disturbance

19 Communities:

Community Ecology

- ✓ Community properties
 - community has its own set of properties
 - · diversity
 - · prevalent forms of vegetation
 - stability
 - · trophic structure

20 Communities:

Community Ecology

- ✓ Community properties
 - Trophic structure
 - · feeding relationships among various species in community
 - determines passage of energy and nutrients from autotrophs to heterotrophs

21 Sections

- ✓ definitions
- ✓ properties
- ✓ organism interactions
 - competition
 - predation
 - symbiotic relationships
- ✓ disturbances
 - succession

22 Communities:

Community Ecology

- ✓ Organism interactions
 - populations of community are linked via
 - · interspecific interactions
 - relationships between populations of different species of community
 - can be considered based on
 - » affect interaction has on each species involved

23 Communities: Community Ecology

✓ Organism interactions

- interspecific interactions

- · types include
 - competition
 - predation/parasitism
 - mutualism
 - commensalism

24 Communities:

Community Ecology

- ✓ Organism interactions
 - interspecific interactions
 - some types also considered "symbiotic"
 - relationships between organisms of two different species that live together in relative permanent, close relationship
 - parasitism
 - mutualism
 - commensalism

25 Communities: Community Ecology

- ✓ Organism interactions
 - interspecific interactions
 - competition
 - detrimental to both species involved
 - · predation/parasitism
 - beneficial to one species, detrimental to other species
 - mutualism
 - beneficial to both species
 - · commensalism
 - beneficial to one species, other species unaffected

26 Table: Interspecific Interactions

27 Sections

- ✓ definitions
- ✓ properties
- ✓ organism interactions
 - competition
 - predation
 - symbiotic relationships
- ✓ disturbances

- succession

28 Communities:

Community Ecology

- ✓ Interspecific interactions
 - Competition
 - · may occur
 - when a shared resource is limited
 - between any 2 species that need same
 - » limiting resource or limiting factor
 - » shortage of which restricts success of species
 - » may be biotic or abiotic
 - » differ from species to species

29 Communities:

Community Ecology

- ✓ Interspecific interactions
 - Competition
 - types
 - interspecific competition
 - » between populations of two species
 - intraspecific competition
 - » between members of same species

30 Communities:

Community Ecology

- ✓ Interspecific interactions
 - Competition
 - · between populations may result in
 - reduction in density of one or both species
 - local elimination of one of competitors
 - · is considered detrimental to both species involved
 - though one will "win"
 - neither will do as well as in absence of competitor

31 Communities:

Community Ecology

- ✓ Interspecific competition
 - restated
 - struggle between two populations to utilize same resources
 - when there is not enough of that resource to satisfy both

32 Communities:

- ✓ Interspecific competition
 - studied by Russian ecologist G.F. Gause in 1934
 - based on experiments in lab with 2 species of protists from genus Paramecium

- Paramecium aurelia
- Paramecium caudatum

Community Ecology

- ✓ Interspecific competition
 - experiments by Gause
 - · lab experiments
 - P. aurelia and P. caudatum were grown separately, in same conditions
 - » each grew rapidly, leveled off at carrying capacity
 - when P. aurelia and P. caudatum were grown together
 - » P. caudatum was driven to extinction
- 34 🗷
- 35 🗷
- 36 🗷
- 37 🗷
- 38 ☐ Communities:

Community Ecology

- ✓ Interspecific competition
 - Gause concluded
 - if two species are so similar that they compete for the same limiting resources
 - then they can't coexist in the same place
 - one species will use resource more efficiently, gain competitive advantage
 - » eventually leading to local extinction of inferior competitor

39 Communities:

Community Ecology

- ✓ Interspecific competition
 - Gause restated his ideas as the
 - · competitive exclusion principle
 - no two species can occupy the same ecological **niche** in the same place at the same time

40 Communities:

Community Ecology

- ✓ Competition and niche
 - niche
 - functional role of an organism in its surroundings
 - · sum total of organism's use of resources of its habitat
 - can be thought of as organism's role in its community, its profession

41 Communities:

Community Ecology

✓ Competition and niche

- niche of an organism
 - can be described in terms of a number of factors, such as
 - space utilization
 - food consumption
 - temperature range
 - moisture requirements

Community Ecology

- ✓ Competition and niche
 - niche
 - is **not** synonymous with
 - habitat
 - » space that organism inhabits
 - · is a pattern of living
 - sometimes an organism cannot occupy its entire niche because someone else is using it

43 Communities:

Community Ecology

- ✓ Competition and niche
 - competitive exclusion principle can be restated incorporating concept of niche:
 - two species cannot exist in a community if their niches are identical
 - ecologically similar species can coexist in a community if there are one or more significant differences in their niches

44 Communities:

Community Ecology

- ✓ Competition and niche
 - classic test of competitive exclusion in field
 - involved two species of barnacles attached to intertidal rocks on North Atlantic coast
 - Balanus
 - Chthalamus

45 Communities:

Community Ecology

- ✓ Competition and niche
 - classic test of competitive exclusion
 - natural situation
 - Balanus lived on lower rocks, rarely exposed to atmosphere
 - » here, Balanus could always outcompete Chthalamus, crowding it off rocks
 - Chthalamus lived higher up on rocks in shallower water that was frequently exposed to air due to tides

46 Communities:

- ✓ Competition and niche
 - classic test of competitive exclusion
 - · manipulated situation
 - Balanus was removed from lower rocks
 - » Chthalamus could easily occupy the deeper zone

» indicating there was no physiological obstacle to it living in that zone

47 Communities:

Community Ecology

- ✓ Competition and niche
 - classic test of competitive exclusion
 - · manipulated situation
 - Balanus was physically placed in upper zone (where Chthalamus usually lived)
 - » it couldn't survive
 - » apparently due to drying out in the air

48 Communities:

Community Ecology

- ✓ Competition and niche
 - classic test of competitive exclusion
 - · conclusion
 - Chthalamus
 - » fundamental niche included both zones
 - » realized niche was only upper zone
 - Balanus
 - » fundamental niche was lower zone only
 - » realized niche was lower zone only

49 Communities:

Community Ecology

- ✓ Competition and niche
 - competitive exclusion principle can be restated
 - no 2 species with same niche can coexist
 - no 2 species can occupy same niche indefinitely

50 🗷

51 Communities:

Community Ecology

- ✓ Competition and niche
 - fundamental niche
 - niche of species in absence of competition
 - as determined by maximum combination of tolerable environmental conditions
 - realized niche
 - portion of species' fundamental niche that it can occupy in presence of competition

52 Communities:

- ✓ Competition and niche
 - fundamental niche versus realized niche
 - examples
 - anole lizards, Anolis sp.
- 53 Figure: Anolis distichus (left) and Anolis insolitus (right)

54 🗷 55 🗷 56 Communities: Community Ecology ✓ Competition and niche - two possible outcomes of competition between species having identical niches • 1) less competitive species will be driven to local extinction - loss of species at local level • 2) one species may evolve to use a different set of resources - known as resource partitioning 57 Communities: Community Ecology ✓ Competition and niche - resource partitioning · differentiation of niches · enables similar species to coexist in a community

58 Communities:

Community Ecology

- ✓ Competition and niche
 - resource partitioning
 - example
 - Anolis lizards in Dominican Republic
 - » 7 species live in close proximity
 - » all feed on insects, other small arthropods
 - » competition is minimized because each species perches in a certain microhabitat
- 59 🗷 Figure: Resource partitioning in a group of lizards
- 61 Communities:

60 🗷

Community Ecology

- ✓ Competition and niche
 - character displacement
 - tendency for characteristics to be more divergent when two species live in same area than when same two species live in different areas

62 Communities:

- ✓ Competition and niche
 - character displacement
 - example is two species of Galapagos finches, Geospiza fulginosa & G. fortis
 - when they occur on different islands
 - » beak sizes are similar because they eat similar size seeds
 - when they occur on same island

- » beak sizes are different
- » they eat different sized seeds to avoid competition
- 63 $\ensuremath{\blacksquare}$ Figure: Character displacement: circumstantial evidence for competition in nature

64 Sections

- ✓ definitions
- ✓ properties
- ✓ organism interactions
 - competition
 - predation
 - symbiotic relationships
- ✓ disturbances
 - succession

65 Communities:

Community Ecology

✓ Predation

- definition & concept
- coevolution
- anti-predator defense mechanisms
- predator-prey interactions
- role in community diversity

66 Communities:

Community Ecology

✓ Predation

- definition & concept
- coevolution
- anti-predator defense mechanisms
- predator-prey interactions
- role in community diversity

67 Communities:

Community Ecology

✓ Predation

- interaction in which one species eats another
 - predator
 - the consumer in such interaction
 - benefits
 - prey
 - the organism in such an interaction that is consumed
 - does not benefit (is harmed)

68 Communities:

Community Ecology

✓ Predation

- concept and terms can be applied to
 - animal-animal interactions

- such as lion killing and eating antelope or other prey
- animal-plant interactions
 - such as when an animal (bison, insect) eats part of a plant
 - » called herbivory
- parasitism

Community Ecology

- ✓ Predation
 - concept and terms can be applied to
 - parsitism
 - one organism (parasite) lives in or on another organism (host), depends on host for nutrition
 - » also typically considered one of three types of symbiotic relationships

70 **Communities:**

Community Ecology

- ✓ Predation
 - definition & concept
 - coevolution
 - anti-predator defense mechanisms
 - predator-prey interactions
 - role in community diversity

71 Communities:

Community Ecology

- ✓ predation
 - predator-prey interactions can illustrate concept of
 - coevolution
 - concept that two or more species can reciprocally influence evolutionary direction of other
 - adaptive responses of two species to one another

72 Communities:

Community Ecology

- ✓ Predation
 - definition & concept
 - coevolution
 - anti-predator defense mechanisms
 - predator-prey interactions
 - role in community diversity

73 Communities:

- ✓ predation
 - anti-predator defense mechanisms
 - needed because no species is entirely free from predation
 - have evolved in every species
 - in response to natural selection
 - examples

74 Communities: **Community Ecology** ✓ predation - anti-predator defense mechanisms types - plant defenses against herbivores - animal defenses against predators 75 Communities: **Community Ecology** ✓ predation - anti-predator defense mechanisms · Plant defenses against herbivores - two major types » morphological » chemical 76 Communities: Community Ecology ✓ predation - anti-predator defense mechanisms · Plant defenses against herbivores - morphological » structural features that discourage browsing and feeding » such as thorns, spines, prickles, plant hairs, deposits of silica in leaves 77 🗷 78 Communities: Community Ecology ✓ predation - anti-predator defense mechanisms · Plant defenses against herbivores chemical » more crucial than morphological » chemical compounds act by being toxic, repulsive, disrupting metabolism 79 🗷 80 Communities: **Community Ecology** ✓ predation

anti-predator defense mechanisms
 Animal defenses against herbivores

major typesmechanical

	camouflage aposematic (warning) coloration
	» deceptive coloration/appearance» mimicry
81 🗖 (Communities:
(Community Ecology
	✓ predation
	- anti-predator defense mechanisms
	Animal defenses against herbivores
	- mechanical
	» structural features such as quills, claws, shells, spines
82 🗷	
83 🗷	
84 🗖 (Communities:
(Community Ecology
	✓ predation
	 anti-predator defense mechanisms
	Animal defenses against herbivores
	- chemical
	» venom in venomous animals, alkaloids in skin of poison-arrow frogs, malodorous spray of a skunk
85 🗷	
86 🗷	
87 🗷	
88 🗷	
89 🗖 🕻	Communities:
(Community Ecology
	✓ predation
	 anti-predator defense mechanisms
	Animal defenses against herbivores
	- camouflage
	 also known as cryptic coloration use of color/patterns that cause animals become less apparent to predators by
	blending in with their background
	» a passive defense
90 🗷 F	rigure: Carnouflage: Poor-will (left), lizard (right)
	Communities: Community Ecology

» chemical

✓ predation

- anti-predator defense mechanisms
 - · Animal defenses against herbivores
 - aposematic (warning) coloration
 - » often found in animals with effective chemical defenses
 - » warns predators that animal is toxic
- 92 🗷
- 93 Communities:

Community Ecology

- ✓ predation
 - anti-predator defense mechanisms
 - · Animal defenses against herbivores
 - deceptive coloration/appearance
 - » a species comes to look like a larger animal or predator
- 94 Figure: Deceptive coloration: moth with "eyeballs"
- 95 Figure: Batesian mimicry
- 96 ☐ Communities:

Community Ecology

- ✓ predation
 - anti-predator defense mechanisms
 - · Animal defenses against herbivores
 - mimicry
 - » "copycat" adaptation in which one species mimics appearance of another
 - » species that lacks a defense comes to resemble a species that has a defense
- 97 Communities:

Community Ecology

- ✓ predation
 - anti-predator defense mechanisms
 - · Animal defenses against herbivores
 - **mimicry**, two types of mimicry
 - » Batesian mimicry
 - » Mullerian mimicry
- 98 Communities:

- ✓ predation
 - anti-predator defense mechanisms
 - · Animal defenses against herbivores
 - Batesian mimicry
 - » undefended species mimics defended species

- » undefended species must be rare in the area
- » flower fly (no stinger) mimics a honey bee (with stinger), predators avoid both
- 99 Figure: Batesian mimicry

Community Ecology

- ✓ predation
 - anti-predator defense mechanisms
 - · Animal defenses against herbivores
 - Mullerian mimicry
 - » two defended species in community come to resemble each other
 - » each species gains advantage because predators learn more quickly to avoid both
 - » cuckoo bee and yellow jacket
- 101 Figure: Müllerian mimicry: Cuckoo bee (left), yellow jacket (right)

102 Communities:

Community Ecology

- ✓ Predation
 - definition & concept
 - coevolution
 - anti-predator defense mechanisms
 - predator-prey interactions
 - role in community diversity

103 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · predators rarely drive prey to extinction because
 - natural communities are complex
 - predators themselves are often preyed upon
 - predators can switch to alternative food sources
 - defense mechanisms of prey can be successful

104 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · occur in virtually all communities
 - · may or may not generate cycles in both populations
 - determined by two factors
 - » population growth of prey in absence of predator
 - » relationship between prey population size & amount of prey eaten by average predator (known as functional response)

105 Communities:

Community Ecology

✓ Predation

- predator-prey interactions
 - · probability of predator-prey cycles occurring (all else being equal) increases
 - when prey exhibit little density dependence
 - predators functional response increases rapidly as prey density increases

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · functional response
 - relationship between prey population size and amount of prey eaten by an average predator
 - affected by
 - » population densities
 - » search time
 - » capture/subduing time
 - » consuming time
 - » digestion time

107 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · functional response
 - three types
 - » type 1
 - » type 2
 - » type 3

108 **Communities**:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · functional response
 - type 1
 - » prey consumption rises linearly to a plateau
 - » characteristic of filter feeders
 - » at high concentrations of prey, predation rate is "maxed out"
 - » predator "processes" prey as fast as it can, reaches plateau

109 Communities:

- ✓ Predation
 - predator-prey interactions
 - functional response
 - type 2
 - » prey consumption rises asymptotically a plateau
 - » characteristic of invertebrates
 - » as prey density increases, predation increases at slower and slower rate
 - » prey are dense enough that predator doesn't have to spend time searching, only handling

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · functional response
 - type 3
 - » prey consumption is a sigmoid (S-shaped) function of prey density
 - » at low prey densities, greater proportion of search effort is "wasted" (unsuccessful)
 - » triggers more attempts which then increase success rate
 - » plateau is eventually reached time of predator is dominated by handling time

111 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · predator-prey cycles
 - characterized by
 - » sharp increases in numbers followed by
 - » seemingly periodic crashes
 - classic example is snowshoe hare and Canadian lynx cycle
- 112 Figure: snowshoe hare and lynx

113 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · predator-prey cycles
 - explained by two hypotheses
 - » top-down control
 - » bottom-up control

114 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · predator-prey cycles
 - top-down control hypothesis
 - » lynx prey on hare
 - » reduces hare population
 - » fewer hares supports fewer lynxes
 - » causes periodic reduction in lynx population
 - » lag-time, offset from hare reduction

115 Communities:

- ✓ Predation
 - predator-prey interactions

· predator-prey cycles

- top-down control hypothesis cont
 - » reduced numbers of predators (lynx) allows population of prey (hare) to recover and increase
 - » increased numbers of prey (hare) support increased numbers of predators and lynx population increases
 - » cycle continues

116 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · predator-prey cycles
 - top-down control hypothesis cont
 - » doubt has been cast on this
 - » snowshoe hares have been found to exhibit similar 10-year "boom-or-bust" cycles on islands where lynx are absent
 - » leading to 2nd hypothesis
 - » bottom-up control

117 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - · predator-prey cycles
 - bottom-up control hypothesis
 - » rather than cycle being driven by predator at top
 - » might be driven by food source of prey (hare) at bottom

118 Communities:

Community Ecology

- ✓ Predation
 - predator-prey interactions
 - predator-prey cycles
 - bottom-up control hypothesis cont
 - » reduction in quantity or quality of food source (plants) of hare leads to crash of hare population
 - » fewer hare support fewer predators and lynx population crashes
 - » reduction in hare population gives plant population time to recover

119 Communities:

- ✓ Predation
 - predator-prey interactions
 - · predator-prey cycles
 - bottom-up control hypothesis cont
 - » increased plant population supports more hares and hare population increases
 - » increased hare population supports more lynx and lynx population increases
 - » cycle continues, driven by plant availability

- 120 Figure: Population cycles of the snowshoe hare and lynx
- 121 Communities:

Community Ecology

- ✓ Predation
 - definition & concept
 - coevolution
 - anti-predator defense mechanisms
 - predator-prey interactions
 - role in community diversity
- 122 Communities:

Community Ecology

- ✓ Predation
 - role in community diversity
 - · predator-prey relationships can help maintain community diversity
 - some species have more central roles in community or ecosystem than do others
 - » keystone species
- 123 Communities:

Community Ecology

- ✓ Predation
 - role in community diversity
 - · keystone species
 - not most abundant species in community
 - exerts control on community structure not by its numbers but by its ecological niche
 - reduces density of strongest competitors in community
- 124 Communities:

Community Ecology

- ✓ Predation
 - role in community diversity
 - · keystone species, example
 - sea star (Pisaster ochraceous) of rocky intertidal zone of Washington state
 - feeds preferentially on mussels, will also eat other invertebrates
 - removal sea star resulted in explosion of mussel population
 - mussels monopolized space and excluded other invertebrates
 - community became less diverse
- 125 Figure: Testing a keystone predator hypothesis
- 126 Figure : Testing a keystone predator hypothesis
- 127 Communities:

- ✓ Predation
 - role in community diversity
 - · keystone species, example
 - sea otters in North Pacific
 - » declines in their populations (possibly due to killer whales) have resulted in destruction of

kelp forests

- » sea otters feed on sea urchins who feed on kelp
- » in absence of sea otters, sea urchin populations explode and decimate kelp forests
- 128 Figure: Sea otters as keystone predators in the North Pacific

129 Sections

- ✓ definitions
- ✓ properties
- ✓ organism interactions
 - competition
 - predation
 - symbiotic relationships
- ✓ disturbances
 - succession

130 Communities:

Community Ecology

- ✓ Symbiotic relationships
 - interaction between two or more species that live together in close proximity (on, in, very near) in relatively permanent relationships
 - three types
 - parasitism (also considered predation)
 - commensalism
 - mutualism

131 Communities:

Community Ecology

- √ Symbiotic relationships
 - parasitism
 - one organism (parasite) lives in or on another organism (host)
 - parasite is generally smaller than host
 - one species benefits (parasite) and other species is harmed (host)

132 Communities:

- ✓ Symbiotic relationships
 - parasitism
 - can be viewed as type of predator-prey relationship
 - organism that is "preyed" upon doesn't necessarily die
 - examples
 - tapeworms, bloodflukes, apicomplexans, nematodes, leeches
- 133 Figure: The two-host life history of *Plasmodium*, the apicomplexan that causes malaria
- 134 Figure: The life history of a blood fluke, Schistosoma mansoni
- 135 Figure: Anatomy of a tapeworm
- 136 Figure: Parasite nematode, Trichinella spiralis

- 137 🗷

138 🗷 Figure: Parasitic behavior: A female Nasonia vitripennislaying a clutch of eggs into the pupa of a blowfly (Phormia regina)

139 Communities:

Community Ecology

- ✓ Symbiotic relationships
 - mutualism
 - · both species benefit from relationship
 - example
 - ants and acacia trees
 - » tree provides protein-rich structures, sugar, housing
 - ants provide protection to tree from other insects
- 140 Figure: Mutualism: bacterial "headlights"
- 141 Figure: Mutualism between acacia trees and ants

142 Communities:

Community Ecology

- ✓ Symbiotic relationships
 - commensalism
 - one species benefits and other species is not significantly affected (neither benefits nor is harmed)
 - · few true cases probably exist
 - unlikely that one of species is truly unaffected
 - · example
 - tropical fish living among tentacles of sea anemone gain protection and eat scraps from the anemone's food
- 143 Figure: Commensalism between a bird and mammal

144 Sections

- ✓ definitions
- ✓ properties
- ✓ organism interactions
 - competition
 - predation
 - symbiotic relationships
- ✓ disturbances
 - succession

145 Communities:

- ✓ Disturbances
 - events that alter a community and usually remove organisms from it
 - affect all communities

- · frequency and severity vary from community to community
- can have positive or negative affects

Community Ecology

- ✓ Disturbances
 - types include
 - storms
 - · fire
 - floods
 - · droughts
 - overgrazing
 - human activities
- 147 Figure: Storm disturbance to coral reef communities: Heron Island Reef in Australia
- 148 Figure: Storm disturbance to coral reef communities
- 149 Figure: Routine disturbance in a grassland community
- 150 Figure: Environmental patchiness caused by small-scale disturbances: A fallen tree
- 151 Figure: Patchiness and recovery following a large-scale disturbance
- 152 Figure: Large-scale disturbance: Mount St. Helens
- 153 Figure: Forest fire

154 **Communities:**

Community Ecology

- ✓ Disturbances
 - ecological succession
 - · process of community change that results from disturbance
 - predictable transition in species composition over time following a disturbance
 - ultimately producing a relatively stable, long-lasting community called
 - » climax community

155 Communities:

- ✓ Disturbances
 - ecological succession
 - · climax community
 - relatively stable, long lasting
 - complex and interrelated community
 - specific types that occurs depends on climate, soil type
 - » in some areas, the climax community never occurs

Community Ecology

- ✓ Disturbances
 - ecological succession
 - climax community vs. successional community
 - maintains mix of species for long time vs. temporary
 - tends to have many specialized niches vs. generalized niches
 - have more types of organisms vs, fewer types of organisms
 - tend to recycle nutrients, maintain constant biomass vs. accumulate large amounts of material

157 Communities:

Community Ecology

- ✓ Disturbances
 - ecological succession
 - concept that communities proceed through a series of regular, predictable changes in structure over time
 - occurs because activities of organisms cause changes in their surroundings
 - » making local environment suitable for other kinds of organisms

158 🗷

159 Communities:

Community Ecology

- ✓ Disturbances
 - ecological succession
 - · pace and direction affected by several factors
 - two different kinds are recognized
 - primary succession
 - secondary succession

160 Communities:

Community Ecology

- ✓ Disturbances
 - primary succession
 - · begins with
 - total lack of organisms and bare mineral surfaces or water
 - less frequently observed
 - · usually takes very long time
 - due to lack of soil and few nutrients for plants
 - examples; new volcanic islands, rubble left by retreating glacier

161 Communities:

- ✓ Disturbances
 - primary succession
 - · factors that determine rate of succession and kind of climax community
 - type of substrate

- » rock, sand, clay
- types of spores, seeds, vegetative structures of plants
- climate

Community Ecology

- ✓ Disturbances
 - primary succession
 - · challenging because bare rock or soil is inhospitable place for organisms to live
 - collection of organisms that can become established and survive is called
 - pioneer community

163 Communities:

Community Ecology

- ✓ Disturbances
 - primary succession
 - pioneer community
 - lichens
 - » common members
 - » small, slow growing, mutualistic
 - each step in process from pioneer community to climax community is called
 - » successional stage or seral stage
 - » entire process is called a sere

164 Figure: Primary succession on land

165 Communities:

Community Ecology

- ✓ Disturbances
 - aquatic primary succession
 - except for oceans, most aquatic ecosystems are considered temporary
 - will eventually be replaced by a terrestrial ecosystem
 - · aquatic ecosystems receive continual input of soil and organic particles
 - resulting in gradual filling of shallow bodies of water

166 Communities:

- ✓ Disturbances
 - aquatic primary succession
 - as sediments accumulate, different types of plants can eventually become established
 - wet soil will form
 - » grasses will become established

» more sediments will be trapped

- 167 **☞** Fig.
- 168 Communities:

- ✓ Disturbances
 - secondary succession
 - more commonly observed
 - · proceeds more rapidly
 - begins with destruction or disturbance of existing ecosystem
 - some soil present
 - some seeds or roots from which plants can begin growing
- 169 Figure: Secondary succession on land
- 170 **Fig.**
- 171 🗷
- 172 Figure: Alders and cottonwoods covering the hillsides
- 173 Figure: Spruce coming into the alder and cottonwood forest
- 174 Figure: Spruce and hemlock forest
- 175 The end