Personal Energy Inventory

Introduction
Energy use is an important part of all our lives. Energy is available from many sources including oil, coal, natural gas, electricity, and hot water. Each one of these sources of energy has different costs associated with it. Many of our energy resources are nonrene wable and inefficient use unnecessarily decreases their supply to posterity.

Worldwide energy consumption differs greatly among different nations. The United S tates makes up only 6 percent of the world's population, yet Americans use 25 percent of the world's energy resources. On a per person basis, the average American uses twice as mucfi energy as someone in Europe or I apan and 16 times as mucf energy as someone in a developing nation. Clearly, it is important to use energy resources judiciously and responsibly, both for ourselves and for the world.

As a consumer you can help decrease energy use. Think about the ways you use energy. Do you let the fiot water run when you brush your teeth? Do you have a water efficient shower nozzle? Do you leave the ligfts on in a room even when you are not therefor an
extended period? Do you drive somewhere you could easily walk? Do you find yourself making multiple trips when you could combine all your errands into one trip? With a little forethought you can save energy without a major change in your lifestyle.

In this exercise, you will monitor your own energy usage in various categories for one typical day. For each category, you will calculate kilowatt fours used and then sum the categories to get your total energy usage. You can then compare your usage to typical energy usage in the OUS and to that of your classmates.

Procedure

1. Chose a day between now and next week's lab session which is typical (or merely convenient) to monitor your energy usage by category.
2. For one day, monitor and record your energy use in three categories; 1) nontransportation, without fot water demand, 2) nontransportation, with hot water demand, and 3) transportation.
3. \mathcal{N} on-transportation, without fot water demand energy use will be recorded in Data Table 1. Ulse this table to record non-
transportation uses that $\mathcal{D O}$ $\mathcal{N O}$ T involve fot water.
a. Column \mathcal{A} is the category name.
i. multiple rows fiave been provided for incandescent and fluorescent light bulbs since your usage will probably include bulbs of more than one wattage.
4. Column \mathcal{B} is for the watts used by the item.
i. if possible, try to record the actual watts used by an item (look for a label on the device with this information)
ii. if you cannot determine the actual watts used by a specific item, refer to Table 1 which provides typical watts used for various household appliances.
c. Column C is for Kilowatts, which you will calculate by dividing the watts (column B) $6 y 1000$
d. Cotumn \mathcal{D} is a measure of usage in minutes
e. Column E is for the number of hours the item was used, which you will calculate by
dividing the minutes used (column D) by 60
f. Column \mathcal{F} is for Kilowatt hours used, which you will calculate by multiplying the Kilowatts (column C) by the hours used (column \mathcal{E})
g. Total the values for Kilowatt fours used (column $\mathcal{F})$ and record this number in the last row of the table as your total nontransportation, without hot water demand, energy usage
5. Non-transportation, with hot water demand energy use will be recorded in Data Table 2. Ulse this table to record nontransportation uses that $\mathcal{D O}$ involve hot water, such as showers, Gaths, dishwashers and clothes washers. PLEASE $\mathcal{N O T E}$ that for this category you must determine the minutes the appliance was used as well as determining the quantity of water used.
a. Column \mathcal{A} is the category name and there are two main subcategories;
i. electricity used by the appliance
1) Column \mathcal{B} is for the watts used by the ite m
a) if possible, try to record the actual watts
used by an item (look for a label on the device with this information)
2) if you cannot
determine the actual watts used by a specific item, refer to Table 1 which provides typical watts sued for various
fousefold appliances.
3) Column C is for Kilowatts, which you will calculate by dividing the watts (column \mathcal{B}) by 1000
4) Column \mathcal{D} is a measure of usage in minutes
5) Column \mathcal{E} is for the number of hours the item was used, whicf you will calculate by dividing the minutes used (column D) by 60
6) Column \mathcal{F} is for Kilowatt hours used, which you will calculate by
multiplying the
Kilowatts (column
C) by the frours used (column E)
ii. electricity/energy used to heat water
7) for disf wasfing and clothes washing
a) record in column \mathcal{B} the number of loads
b) calculate the number of gallons of fot water used by multiplying column \mathcal{B} times column C and record the result in column \mathcal{D}
c) calculate the Kilowatt fours used by multiplying the \# gallons used (column D) by the conversion factor (column E) and record in column \mathcal{F}
8) for showering
a) record in column \mathcal{A} the lengtf of the

shower in minutes	column \mathcal{B} times column C and
6) calculate	record the
the number	result in
of gallons of	column \mathcal{D}
fot water	c) calculate the
used by	Kilowatt hours
multiplying	used by
column \mathcal{B}	multiplying the
times	\# gallons used
column C	(column D) by
and record	the conversion
the result in	factor (column
column \mathcal{D}	E) and record
c) calculate	in cotumn \mathcal{F}
the Kilowatt	6. Total the values for Kilowatt
fours used	hours used (column \mathcal{F}) and
$6 y$	record this number in the
multiplying	last row of the table as your
the \#	total non-transportation,
gallons used	with fot water demand
(column \mathcal{D})	energy usage
by the	5. Transportation energy use will
conversion	be recorded in Data Table 3.
factor	a. record in column \mathcal{A} the total
(column E)	miles traveled
and record	i. record miles traveled
in cotumn \mathcal{F}	regardless of whether
for bathing	those miles wer
a) record in	traveled by your own
column \mathcal{A} the	car, in a friend's car,
number of	in a taxi, or on a bus
Gaths taken	ii. if multiple people
6) calculate the	were in the travel
number of	veficle (as in
gallons of hot	carpooling, sharing a
water used by	taxi, taking a bus),
multiplying	divide the miles by

the number of people in the veficle
6. record in column \mathcal{B} the fuel mileage (in miles per gallon) of the veficle
i. if you don't know the veticle's fuel mileage, select an approximate figure from \mathcal{T} able 2.
c. calculate the gallons of fuel used by dividing the miles traveled (column A) by the miles per gallon (cotumn \mathcal{B}) and record in column C
d. calculate the transportation energy use in megajoules by multiplying the total gallons used (column C) by 10 (because each gallon of gas contains energy equivalent to 10 megajoules) and record in the last row of the table as the totalenergy use in megajoules
6. Convert the non-transportation energy use to megajoules.
a. Transfer the total nontransportation energy use, without hot water demand, in kilowatt hours from the last row and column of Data Table 1 to $\mathcal{D a t a}$ Table 4
6. Transfer the total nontransportation energy use, with fot water de mand, in Kilowatt hours from the last row and column of

Data Table 2 to Data Table 4
c. Calculate the energy used in megajoules by multiplying Kilowatt fours (column \mathcal{B}) times the conversion factor (column C) and record the result in column \mathcal{D}
d. Add the values in column \mathcal{D} and record the result in the last row of the table as the total nontransportation energy use in megajoules
7. In Data Table 5 record the non-transportation and transportation energy use totals in megajoules a. Add the values and record the result in the last row of the table as your total daily energy use in megajoules
8. Record your non-transportation and transportation energy use in megajoules on the board with other classmates' data
9. From the class-wide data recorded on the board (or overfead transparency), record in Data Table 6 the maximum, median and minimum values for non-transportation, transportation and total energy use

Table 1. Watt usage assumptions for various housefiold appliances.

Housefold Appliance	Watts
Blender	300
Ceiling fan	50
Clock	5
Clothes dryer (high)	5000
Clothes dryer (med)	3000
Clothes wasker	1200
Coffeemaker	600
Computer	250
Defumidifier	550
Dishwasher	1300
$\mathcal{D V D}$	50
$\mathcal{H a i r ~ d r y e r ~}$	1000
Iron	1200
Microwave	650
Oven @ $350^{\circ} \mathrm{F}$	3500
Portable feater	1500
Radio	50
Range (igh h, 16 urner)	5000
Range (med, 1 burner)	2500
Refrigerator (when running, assume its running 5% of the time)	250
Shaver	15
Stereo system	300
Sewing machine	100
Television	300
Toaster	1000
Vacuum cleaner	450
$\mathcal{V C R}$	50

Personal Energy Inventory $\mathcal{L A B} \mathcal{W} \operatorname{RITE} \mathcal{U P}$: Submit pages 7-11

Student \mathcal{N} ame: \qquad Lab Date: Lab Instructor: \qquad Lab Section: \qquad

Results (Data)

Data Table 1. Personal daily non-transportation energy use for activities without fot water demand, by category, in kilowatt-hours.

Data Table 2. Personal daily non-transportation energy use for activities with fot water demand, by category, in kilowatt-fours.

A	\mathcal{B}	c	D	E	\mathcal{F}
Category: Electricity to run appliance:	Watts	Kilowatts $\begin{gathered} (\mathcal{B} / \\ 1000) \end{gathered}$	Minutes Used	Hours used (D) 60)	Killowatt Hours Ulsed (CXE)
Disfiwasher					
Clothes Washer					
Electricity to feat water:	\# Coads	Gallons/ load	$\begin{gathered} \# \\ \text { gallons } \end{gathered}$	Conversion Factor	Kilowatt Hours Ulsed $\left(C^{*} \mathcal{D}\right)$
Dishwasher		15		0.195	
Clothes washer		5		0.195	
	$\begin{gathered} \text { \# } \\ \text { minutes } \end{gathered}$	Gallons/min	\# gallons $(\mathcal{B} \not \subset \mathcal{C})$	Conversion Factor	Kilowatt Hours Ulsed $\left(C^{*} \mathcal{D}\right)$
Showers		2		0.195	
	\# taken	$\begin{gathered} \text { Gallons/ } \\ \text { bath } \end{gathered}$	\# gallons ($\mathcal{B} \not \subset C$)	Conversion Factor	Killowatt Hours Ulsed $\left(C^{*} \mathcal{D}\right)$
Baths		20		0.195	
\mathfrak{N} on- Transportation Energy Ule, \mathcal{W} ITH \mathcal{H} (Water $\mathcal{D e m a n d}$ ($\mathcal{L O T A L}$:					

Data Table 3. Personal daily transportation energy use in megajoules.

	\mathcal{A}	\mathcal{B}	C	\mathcal{D}
	Mile s traveled	Miles/gal	Gallons used $(\mathcal{A} / \mathcal{B})$	Megajoules (Cx10)
Trave 1				
Transportation Energy Use $\quad \mathcal{T O T \mathcal { A L }}$				

Data Table 4. Personal daily energy use, all non-transportation categories, in megajoules.

A	\mathcal{B}	C	\mathcal{D}
Category	Kilowatt- fours	Conversion Factor	Megajoules $(\mathcal{B} \chi C)$
\mathcal{N} on-transportation w / o hot water demands		3.6	
\mathcal{N} Non-transportation w/hot water de mands		3.6	
\mathcal{N} on-transportation Energy Ulse		$\mathcal{T} \mathcal{T A L}$	

Data Table 5. Personal daily energy use, non-transportation versus trans portation, in megajoules.

Energy Ulse Category	Megajoules
\mathcal{N} on-transportation	
Transportation	
Energy Ulse $\mathcal{T O T A}:$	

Data Table 6. Class minimum, median and maximum energy use for nontransportation versus transportation uses, in megajoules.

Category	Minimum	Median	Maximum
\mathcal{N} on-transportation			
Transportation			
Total			

Continued ne xt page

Conclusions (Questions)

1. What fousefold item used the greatest amount of energy in your table? What item used the least? Did you find this surprising?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. If everybody cut energy use by 20% we could save a tremendous amount of energy, certainly enough to not need to drill in sensitive environments and to decrease our dependence on foreign energy sources. Based on your energy inventory, what would you do reatistically to decrease your fousefold use by 20% ?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. How did your transportation energy use compare with the nontransportation use? How might you decrease your transportation energy use?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. How mucf variation was there in energy usage among class members? To what do you attribute this variation?
5. Each gallon of gas produces 24 pounds of CO_{2}. Carbon dioxide is a major contributor to the greenfouse effect. Assuming that your transportation energy use for the day you monitored for this exercise is typical, how many pounds of CO_{2} do you produce in a year from your transportation? The average annual CO_{2} production per person in the US is 5 tons. Assuming that your annual average CO_{2} production is typical of the US average, what percentage of that annual total does your transportation use represent? Does this surprise you? If your transportation use does not account for 100 percent of your annual production, what is the source of the remaining CO_{2} that you produce?
6. The average annual total energy consumption per person in the US is approximately 317,000 megajoules. Assuming that your total energy use for the day you monitored for this exercise is typical, fow much energy, in megajoules, do you consume in a year? How does your total annual energy use compare to the national average?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
