Populations: Population Ecology

EVPP 110 Lecture Instructor: Dr. Largen Fall 2003

² Population ecology

✓ Population

- definition
- major characteristics
- dynamics
- life histories

³ Population definition

✓ Population

- definition
 - · group of individuals of a species living in same area at same time
 - using common resources
 - regulated by same natural phenomena
- 4 Figure: Monarch butterflies

⁵ Deputation definition

✓ Population

- definition
 - flexible
 - · allows discourse in similar terms about any population

_

_

6 Figure: Aerial census for African buffalo (Syncerus caffer) in the Serengeti of East Africa

⁷ Population characteristics

✓ Populations

- major characteristics
 - size
 - density
 - dispersion
 - age distribution

⁸ Population characteristics

✓ Population size

definition

- number of individuals
- important feature of any population

9 Population characteristics

✓ Population size

- affects ability of population to survive
 - · small populations tend to become extinct
 - endangered by random events
 - inbreeding
 - »
 - »

¹⁰ Population characteristics

✓ Population density

- definition
 - · number of individuals in a certain area or volume
 - # trees per km² of forest
 - # earthworms per m³ of soil

¹¹ • Population characteristics

✓ Population density

- important to survival of population
 - · individuals spaced widely apart may rarely encounter one another
 - limits reproductive capacities
 - »

¹² • Population characteristics

✓ Population density

- how is population density measured?
 - impossible or impractical to count all individuals in a population
 - _
 - use sampling techniques

¹³ Depulation characteristics

✓ Population density

- sampling technique

- method to estimate population density
 - direct count of organisms or indicators in small area or volume
 - » used to project actual density over entire area or volume
 - examples
 - »
 - »

¹⁴ Depulation characteristics

✓ Population dispersion

- way in which individuals of a population are spaced within their area or volume
 - · often depends on resource availability
- spatial pattern
 - three main patterns of dispersion
 - clumped
 - uniform
 - random

¹⁵ • Population characteristics

✓ Population dispersion

- clumped
 - · individuals clump into groups or clusters
 - · often in response to uneven distribution of resources

-

• most common pattern in nature


```
17 🗷
```

18 Figure: Clumped dispersion: buffalo, swans, fish, lupine

¹⁹ Population characteristics

✓ Population dispersion

- uniform
 - · individuals are uniformly or evenly spaced
 - · often results from interactions between individuals

_

• relatively common in nature

20 🗷

21 🗷

²² Depulation characteristics

✓ Population dispersion

- random
 - · individuals spaced in a pattern-less, unpredictable way
 - don't interact strongly with
 - » one another
 - » non-uniform aspects of their environment
 - not common in nature

23 🗷

- 24 🗷
- ²⁵ Population characteristics
 - ✓ Population age distribution

- proportions of individuals of each age
- often based on
 - non-reproductive ages
 - reproductive ages
 - post-reproductive ages

²⁶ Population dynamics

✓ Population dynamics

- variables governing changes in population size
- factors that affect population size
- population growth
 - · types of
 - · limits to

²⁷ Population dynamics

✓ Population dynamics

- populations are dynamic
 - size increases or decreases in response to
 - environmental stress
 - changes in environmental conditions

²⁸ • Variables governing change in population size

✓ Variables governing change in population size

- governed by 4 variables
 - births
 - deaths
 - immigration
 - emigration

²⁹ Tariables governing change in population size

✓ Variables governing change in population size

- populations
 - gain individuals by
 - birth
 - immigration
 - · lose individuals by
 - death
 - emigration

³⁰ □ Variables governing change in population size ✓ Variables governing change in population size

✓ population change=(births+immigrations - (deaths+emigration)

³¹ Factors that affect size of population

✓ Factors that affect size of population

- population size may increase, remain stable, or decrease

- · depending on interactions between
 - biotic potential
 - » growth factors
 - environmental resistance
 - » decrease factors

32 🗖 Factors that affect size of population

✓ Factors that affect size of population

- biotic potential
 - "growth factors"
 - capacity of a population for growth
 - varies
 - between populations
 - within population over time

Factors that affect size of population

✓ Factors that affect size of population

- biotic potential
 - factors that favor increase in size
 - abiotic
 - » favorable light
 - » favorable temperature
 - » favorable chemical environment (optimal level of critical nutrients)

³⁴ Factors that affect size of population

✓ Factors that affect size of population

- biotic potential

- · factors that favor increase in size
 - biotic (such as)
 - » high reproductive rate
 - » generalist
 - » adequate food
 - » adequate defenses from predators
 - » resistance to diseases

35 Factors that affect size of population

✓ Factors that affect size of population

environmental resistance

- "decrease factors"
- · all the factors acting jointly to limit growth of a population

³⁶ Factors that affect size of population

✓ Factors that affect size of population

- environmental resistance

- · factors that lead to decrease in size
 - abiotic
 - » too much, too little light
 - » temperature too high, too low
 - » unfavorable chemical environment (critical nutrients too high, too low)

³⁷ Factors that affect size of population

✓ Factors that affect size of population

- environmental resistance

- · factors that lead to decrease in size
 - biotic (such as)
 - » low reproductive rate
 - » specialist
 - » inadequate food
 - » inadequate defenses from predators
 - » inability to resist diseases

³⁸ Factors that affect size of population

✓ Factors that affect size of population

- biotic potential & environmental resistance
 - together determine
 - carrying capacity (K)
 - » number of individuals of a given species that can be sustained indefinitely in a given area or volume

³⁹ Types of population growth

✓ Two types of population growth

- exponential
 - accelerating increase in population size
 - occurs when growth is unregulated
- logistic
 - population growth that is slowed by population-limiting factors
 tends to level off at a carrying capacity

⁴⁰ Types of population growth

- ✓ population growth
 - two types
 - exponential
 - logistic

⁴¹ Types of population growth

✓ Exponential growth

- exhibited by a population that has few, if any, resource limitations
- starts out slowly, speeds up as population increases
- rate of expansion that occurs under ideal conditions
- entire population multiplies by a constant factor during constant time intervals

⁴² Types of population growth

✓ Exponential growth

- described by equation G = rN
 - G = growth rate of the population
 - N = population size
 - r = intrinsic rate of increase
- graph produces typical J-shaped curve

⁴³ Types of population growth

✓ Exponential growth

– r = intrinsic rate of increase

- rate at which a population would grow if it had unlimited resources

 remains constant for any population expanding without limits
- based on organism's inherent capacity to reproduce – varies by organism

⁴⁴ Types of population growth

✓ Exponential growth

- r = intrinsic rate of increase
 - · can be roughly estimated as
 - birth rate minus death rate

- r = b - d

⁴⁵ Types of population growth

✓ Exponential growth

- long periods of exponential growth are not common
 - bacteria example
 - —

⁴⁶ Types of population growth

✓ Exponential growth

- no population can grow indefinitely
 - eventually some factor(s) limit population growth
 - rapidly growing population reaches size limit imposed by shortage of limiting factors
 - » there are always limits to population growth in nature
- 47 Figure: Population growth predicted by the exponential model

⁴⁸ Types of population growth

✓ Logistic growth

- growth, slowed by limiting factors
- involves
 - exponential growth when pop. is small
 - steady \downarrow in growth with time as pop.
 - encounters environmental resistance
 - approaches carrying capacity

⁴⁹ Types of population growth

✓ Logistic growth

- equation must account for limiting factors
 - · exponential equation is modified by a term that represents overall effect of limiting factors
 - (K N)/K where K = carrying capacity

⁵⁰ Types of population growth

✓ Logistic growth

- effects of the modifying term
 - (K N)/K
 - when population is small,
 - » (K N)/K has little effect
 - » growth rate is reduced very little
 - » early logistic curve is very similar to J-shaped exponential curve
 - for example, if N=10 and K=1000
 - (1000-10)/1000 = 0.99

⁵¹ Types of population growth

✓ Logistic growth

- as population gets larger,
 - (K N)/K has greater effect
 - growth rate is affected more (gets smaller)

- later logistic curve becomes S-shaped
 - population levels off at "carrying capacity"
 - » limiting factors causes birth rate and death rate to be equal
- for example, N= 800 and K=1000
 - (1000-800)/1000 = 0.20

52 Table : A Hypothetical Example of Logistic Population Growth, Where K=1,000 and r_{max}=0.05 per Individual per Year

⁵³ Types of population growth

✓ Logistic growth

- after leveling off at carrying capacity (K)
 - population typically fluctuates slightly above or below K
- 54 🗷
- 55 🗷

⁵⁶ Types of population growth

✓ Exponential and logistic growth models

- both are mathematical ideals
- no natural populations fit either model perfectly

57 🗖 Limits to population growth

✓ Population growth

- limited by two general types of factors

· density-dependent factors

- limits to growth related to population density
- density-independent factors
 - limits to growth not related to population density

⁵⁸ Limits to population growth

✓ density-dependent factors

- affect a greater percentage of individuals in a population as density increases
 - individuals compete with increasing intensity for limited resources
 - such as
 - » food
 - » shelter
 - » light

⁵⁹ Limits to population growth

✓ density-independent factors

- population-limiting affects that are independent of population density
- include abiotic factors
 - weather
 - physical disruption of habitat

60 Deputation fluctuations

✓ Population fluctuations

- occur in nature, over time
 - · four general types exist
 - stable
 - irruptive
 - irregular
 - cyclic

- most are poorly or incompletely understood

61 Deputation fluctuations

✓ Population fluctuations

- stable
 - · population size fluctuates around carrying capacity
 - slightly above
 - slightly below
 - typical of species in undisturbed tropical rainforests
 - little variation in average temperature or rainfall

62 Deputation fluctuations

✓ Population fluctuations

- irruptive
 - population is normally fairly stable
 - occasionally explodes (irrupts) to peak
 - then crashes to
 - » stable lower level
 - » very low level
 - due to factor (ie temp) that temporarily increases carrying capacity
 - examples: raccoon, house mouse

63 Deputation fluctuations

✓ Population fluctuations

- irregular

- irregular, chaotic behavior in population size
 - no apparent recurring pattern
- may be due to
 - chaos in system
 - poorly understood interactions

64 Figure: Irregular population fluctuations

65 Population fluctuations

✓ Population fluctuations

- cyclic
 - · fluctuations in size that occur over a regular time period
 - most are poorly understood
 - include predator-prey cycles

66 Deputation fluctuations

✓ Population fluctuations

predator-prey cycles

- · seen in some groups of species that interact as predator and prey
 - characterized by
 - » sharp increases in numbers followed by
 - » seemingly periodic crashes
 - classic example
 - » snowshoe hare, Canadian lynx

67 Figure: snowshoe hare and lynx

68 Deputation fluctuations

✓ Population fluctuations

predator-prey cycles

- · explained by two hypotheses
 - top-down control
 - bottom-up control

⁶⁹ Depulation fluctuations

✓ Population fluctuations

predator-prey cycles

- top-down control hypothesis
 - lynx prey on hare
 - reduces hare population
 - fewer hares support fewer lynxes
 - causes periodic reduction in lynx population
 - » lag-time, offset from hare reduction

70 Deputation fluctuations

✓ Population fluctuations

predator-prey cycles

- top-down control hypothesis cont
 - reduced numbers of predators (lynx) allows population of prey (hare) to recover and increase
 - increased numbers of prey (hare) support increased numbers of predators and lynx population increases
 - cycle continues

⁷¹ • Population fluctuations

✓ Population fluctuations

predator-prey cycles

- top-down control hypothesis cont
 - doubt has been cast on this explanation
 - » snowshoe hares have been found to exhibit similar 10-year "boom-or-bust" cycles on islands where lynx are absent
 - leading to 2nd hypothesis
 - » bottom-up control

72 Population fluctuations

✓ Population fluctuations

predator-prey cycles

- bottom-up control hypothesis
 - rather than cycle being driven by predator at top
 - » might be driven by food source of prey (hare) at bottom

73 Deputation fluctuations

✓ Population fluctuations

predator-prey cycles

- bottom-up control hypothesis cont
 - reduction in quantity or quality of food source (plants) of hare leads to crash of hare population
 - fewer hare support fewer predators and lynx population crashes
 - reduction in hare population gives plant population time to recover

74 Deputation fluctuations

✓ Population fluctuations

predator-prey cycles

- bottom-up control hypothesis cont
 - increased plant population supports more hares and hare population increases
 - increased hare population supports more lynx and lynx population increases
 - cycle continues, driven by plant availability

75 Population fluctuations

✓ Population fluctuations

- predator-prey cycles
 - genuine examples of both top-down and bottom-up control exist in nature
- ⁷⁶ Figure : Population cycles of the snowshoe hare and lynx
- 77 C Survivorship and Life History Strategies

78 - Survivorship and life history strategies

✓ Survivorship and life history strategies

- survivorship
 - life tables
 - survivorship curves
- life history strategies
 - opportunisitc life history
 - · equilibrial life history

79 🗖 Survivorship

✓ Survivorship

- percentage of an original population that survives to a given age
 - requires compilation of data (life table)
 - for each defined age interval
 - » number living at start of interval

- » number dying during interval
- from which can be calculated
 - » mortality (death rate)
 - » chance of surviving age interval

80 🗷 Table : Life Table for Belding Ground Squirrels (Spermophilus beldini) at Tioga Pass, in the Sierra Nevada Mountains of California

81 🗖 Survivorship

✓ Survivorship curves

- way to express age distribution characteristics of a population
 - · graph of life table data
- varies with species
- uses percentage scale instead of actual life span on horizontal axis
 - · allows comparison of species with different life spans on same graph
- three primary types of survivorship curves
 - type I, type II, type III

82 - Survivorship curves

✓ Survivorship curves

- three primary types
 - type I survivorship curve
 - type II survivorship curve
 - type III survivorship curve

83 C Survivorship curves

✓ type I survivorship curve

- exhibited by population in which mortality rates rise steeply in post-reproductive years
 also known as "late loss" curve
- most individuals die in older age intervals
- species with this type curve
 - produce few offspring & give them intense care to insure their survival
- examples
 - humans, whales, elephants

84 🗷

85 🗖 Survivorship curves

✓ type II survivorship curve

- exhibited by population in which individuals are equally likely to die at any age
 - also known as "constant loss" curve
- mortality is constant over life span
- intermediate to types I and III
- examples
 - jellyfish
 - hydra
 - some rodents

87 🗖 Survivorship curves

✓ type III survivorship curve

- exhibited by population in which individuals produce vast numbers of offspring
 - also known as "early loss" curve
 - · only a small number of offspring survive to reproductive age
 - survivors become established, reproductive, with low mortality rate
- examples
 - oysters, some plants

88 🗷

⁸⁹ Life History Strategies

- ✓ Life history of an organism
 - series of events from birth through reproduction to death
 - life history strategies influence growth rate of a population, including
 - · age of first reproduction
 - number of offspring
 - · amount of parental care given to offspring
 - · energy cost of reproduction

90 🗖 Life History Strategies

✓ life history strategies

- shaped by evolution
 - · operating through natural selection
- every population has a life history strategy adapted to its environment
- two main life history strategies
 - opportunistic (r-selected)
 - equilibrial (K-selected)

91 🗖 Life History Strategies

✓ Opportunistic (r-selected) life history

- put most of their energy into reproduction
 - · rather than long term survival of individuals
- are poor competitors

92 🗖 Life History Strategies

✓ Opportunistic (r-selected) life history

- considered opportunists
 - · take advantage of favorable conditions, changes in environment
 - when favorable conditions are gone population may crash
 - » population go through irregular or unstable cycles

93 C Life History Strategies

✓ Opportunistic(r-selected) life history

- characteristics
 - organisms
 - small-bodied

- reproduce when young
- produce many offspring
- provide little to no parental care of offspring
- most offspring die before reaching reproductive age

94 🗖 Life History Strategies

✓ Opportunistic(r-selected) life history

- characteristics
 - populations
 - tends to grow exponentially
 - » thus the name r-selected
 - » due to high intrinsic rate of growth
 - live in unpredictable environments
 - controlled by density-independent factors
 - exhibit type III survivorship curve

95 🗖 Life History Strategies

✓ Opportunistic(r-selected) life history

- examples
 - bacteria
 - algae
 - most annual plants
 - dandelions
 - most insects
 cockroaches
 - rodents
 - oysters

96 🗷

97 🗷

⁹⁸ Life History Strategies

✓ equilibrial (K-selected) life history

- put fairly little energy into reproduction

- put most energy into long term survival
 - for purpose of being able to put lots of energy into nurturing and protecting offspring
- are good competitors

99 🗖 Life History Strategies

✓ Equilibrial (K-selected) life history

- are <u>not</u> considered opportunistic
 - thrive best in ecosystems with fairly constant environmental conditions
 - populations remain close to carrying capacity (K) over long periods of time

100 🗖 Life History Strategies

✓ equilibrial (K-selected) life history

- characteristics
 - organisms
 - larger-bodied
 - reproduce later in life
 - produce fewer offspring
 - provide high parental care
 - most offspring survive to reproductive age

¹⁰¹ Life History Strategies

✓ Equilibrial (K-selected) life history

- characteristics
 - populations
 - size tends to be stable
 - » thus the name K-selected
 - » populations tends to stay near carrying capacity (K)
 - live in predictable environments
 - controlled by density-dependent factors
 - exhibit type I survivorship curve

¹⁰² Life History Strategies

✓ Equilibrial (K-selected) life history

- examples
 - humans
 - large trees
 - polar bears
 - · elephants

103 🗷

104 C Life History Strategies

✓ Intermediate life history

- many organisms have life histories that fall between opportunistic and equilibrial
 - exhibit type II survivorship curve
 - examples
 - many birds
 - squirrels
 - hydra

105 **The End**.