Populations: Evolution and Natural Selection
EVPP 110 Lecture
Instructor: Dr. Largen Fall 2003

Historical Background

✓ Ideas about evolution
 – originated before Darwin
 • mid-350s BC
 • 1500s
 • 1600s
 • 1700s
 • 1800s

✓ mid-350s BC
 – Aristotle
 • noted evidence of natural similarities and relationships among organisms
 • lead him to arrange all organisms he knew into a “Scale of Nature”
 – extended from most simple to most complex
 • visualized living organisms as being
 – imperfect but “moving toward a more perfect state”

✓ 1500s
 – fossils
 • term coined in early 1500s
 – to describe remains of ancient organisms
 • of familiar living organisms
 • in unexpected contexts
 – marine invertebrate fossils imbedded in rocks on high mountains

✓ 1500s
 – fossils
• some unlike any known form
• Leonardo da Vinci
 – first interpret these finds
 » as remains of animals that had existed in past but had become extinct

Historical Background

1600s
 – emergence of modern scientific
1700s
 – exploration of continents
 – discovery of new species
 – emergence of idea
 • natural world of living organisms must be guided by natural laws
 • as physical world was governed by physical laws

Historical Background

1800s
 1809
 • Jean Baptiste de Lamarck, French naturalist, published *Philosophie Zoologique*
 • Charles Darwin born

Historical Background

1800s
 Jean Baptiste de Lamarck, French naturalist
 • published *Philosophie Zoologique*, in 1809
 • expressed most accepted view of evolution of that time
 – all living organisms were endowed with vital force that drove them to change
 toward greater complexity over time
 – organisms could pass traits acquired during their lifetimes on to their offspring
 » example, ancestral giraffe

Historical Background

Darwin’s life and experiences led to development of his theory of evolution
 – born in 1809
 – son physician
 – sent to University of Edinburgh to study medicine at age 15
 • found himself unsuited for medicine
 – transferred to Cambridge University to study theology and received his degree

Historical Background

Darwin’s life and experiences
 – 1831 (at age 22)
 • embarked on 5-year round-the-world voyage
 – as naturalist on *H.M.S. Beagle*
– profoundly influenced his thinking
 • during voyage
 – read extensively about geology
 – collected 1000s of specimens
 » plants, animals, fossils, including marine snail fossils in Andes
 – observed unique adaptations of organisms

15 Historical Background
✓ Darwin’s life and experiences
 – 1836
 • returned to England at end of voyage
 • his reading and experiences had led him to
 – seriously doubt current thinking of the time
 » Earth and living organisms were relatively new and unchangeable
 • had come to believe that Earth was very old and constantly changing

16 Historical Background
✓ early 1840s
 – Darwin had composed an essay describing major features of his theory
 • delayed publishing it because
 – he knew it would cause a social furor
✓ mid-1850s
 – British naturalist Alfred Wallace, who had been doing field work in Indonesia,
 • conceived a theory identical to Darwin’s

17 Figure 22.x5 Alfred Wallace

18 Historical Background
✓ in 1858
 – Wallace’s work and excerpts from Darwin’s work were jointly presented to scientific community

19 Historical Background
✓ in 1859
 – Darwin’s text On the Origin of Species by Means of Natural Selection, was published
 • didn’t use term “evolution” at first
 – referred instead to “descent with modification”
 – perceived a unity among species
 » all organisms related through descent from unknown organisms that lived in past

20 Figure 22.0 Title page from The Origin of Species

21 Historical Background
✓ in 1859
 – On the Origin of Species by Means of Natural Selection
 • maintained that
 – as descendants spread into various habitats over millions of years
 » they accumulated adaptations that accommodated them to diverse ways of life
Historical Background

- Darwin’s phrase for evolution “descent with modification” captured the idea that
 - an ancestral species could diversify into many descendant species
 - by accumulation of different adaptations to various environments

Evidence of evolution

- fossil record
 - provides some of strongest evidence of evolution
 - an ordered array in which fossils appear within layers, or strata, of sedimentary rock
 - each strata can bear a unique set of fossils representing a local sample of organisms that lived when the sediment was deposited
 - younger strata are on top of older strata
 - position of fossils in strata reveals their relative age

- biogeography
 - geographical distribution of species
 - first suggested to Darwin that organisms evolve from common ancestors
 - environment of Galapagos islands resembled that of tropical islands from distant parts of world
 - animals of Galapagos more closely resembled species of mainland South America

- comparative anatomy
 - comparison of body structures in different species
 - anatomical similarities among many species give sign of common descent
 - same skeletal elements make up forelimbs of humans, cats, whales & bats
 - since forelimbs of these animals function differently
 - would expect their designs would be different, unless
 - they all descended from a common ancestor with same basic limb structure

Evidence of evolution

- comparative embryology
 - molecular biology
✓ Comparative anatomy
 – homologous structures
 • features that have different functions but are structurally similar because of common ancestry

30 Figure 22.17 A transitional fossil linking past and present

32 Evidence of evolution
 ✓ Comparative embryology
 – study of structures that appear during development of different organisms
 – closely related organisms often have similar stages in their embryonic development
 • one sign that vertebrates evolved from a common ancestor
 – all of them have an embryonic stage in which structures called gill pouches appear on sides of throat
 » at that stage, embryos of fishes, frogs, snakes, birds, apes look more alike than different

33 Evidence of evolution
 ✓ Molecular biology
 – study of molecular basis of genes and gene expression
 – universality of genetic code is strong evidence that all life is related
 – related individuals have greater similarity in their DNA than do unrelated individuals of same species
 – two closely related species have a greater proportion of their DNA in common than more distantly related species

34 Table 22.1 Molecular Data and the Evolutionary Relationships of Vertebrates

36 Darwin’s Theory
 ✓ In The Origin of Species
 – Darwin focused on how organisms become adapted to their environments
 – his theory arose from several key observations
 • all species tend to produce more offspring than environment can support
 • individuals of a population vary in their traits
 • organisms’ variations can be inherited by their offspring

37 Darwin’s Theory
 ✓ all species tend to produce excessive numbers of offspring (overproduction)
 – production of more individuals than an environment can support
 – leads to a struggle for existence
 • natural resources are limited
 • only a percentage of offspring in each generation survive and reproduce
 – rest are starved, eaten, frozen, diseased, unmated, unable to reproduce for some other reason

38 Darwin’s Theory
 ✓ Individuals of a population vary extensively in their characteristics
– individuals whose characteristics make them best suited (adapted) to their environment are most likely to survive
 • most likely to reproduce
 – leave more offspring than less “fit” (adapted) individuals

39 🌐 **Darwin’s Theory**
✓ Many of varying traits of individuals in a population can be passed from one generation to the next (heritable variations)
– individuals whose traits make them best suited to an environment are more likely to survive and reproduce and
 • traits that made them well adapted to their environment are likely to be inherited by their offspring

40 🌐 **Natural selection**
✓ natural selection
 – proposed by Darwin as basic mechanism of evolution
 – essence of which is differential, or unequal, success in reproduction
 • not all individuals have equal success in reproduction

41 🌐 **Natural selection**
✓ natural selection
 – higher reproductive success
 • occurs in individuals that are well adapted to their environment
 – these individuals will reproduce and pass on their traits
 » their traits will become more heavily represented in the next generation than will the traits of poorly adapted individuals

42 🌐 **Natural selection**
✓ natural selection
 – lower reproductive success
 • occurs in individuals that are poorly adapted to their environment
 – these individuals will reproduce less
 » their traits will become more less and less common in subsequent generations

43 🌐 **Natural selection**
✓ natural selection
 – individuals that are well adapted to their environment can be said to be most fit for that environment, or the “fittest”
 • hence phrase “survival of the fittest”
 – natural selection leads to, in subsequent generations,
 • favored traits (well adapted) will be represented more and more
 • unfavored traits (poorly adapted) will be represented less and less

44 🌐 **Natural selection**
✓ natural selection
 – unequal ability of individuals to survive and reproduce leads to
 • gradual change in characteristics of a population of organisms
 – over generations
 » favored characteristics accumulate
 » unfavored characteristics disappear
Natural selection

- **artificial selection** provided Darwin with evidence for his ideas on natural selection
- **definition**
 - selective breeding of domesticated plants & animals
 - by selecting individuals with desired traits as breeding stock, humans were playing role of environment and bringing about differential reproduction

Natural selection

- **artificial selection** examples
 - **plants**
 - broccoli, cauliflower, cabbages, brussel sprouts, kale and kohlrabi are all varieties of a single species of wild mustard that were produced by artificial selection
 - **animals**
 - hundreds of varieties of domestic dog, a single species called *Canis familiaris*, are result of 1000s of years of artificial selection
 - many species of canines resulted from 1000s to millions of years of natural selection

- **Darwin reasoned**
 - if artificial selection could bring about so much change in a relatively short period of time
 - then natural selection over vast spans of time would result in gradual accumulation of heritable changes that would result in evolution of new species
 - as in five species of canines thought to have evolved from a single ancestral canine

Natural selection

- **natural selection in action**
 - many examples have been documented
 - peppered moth
 - exists in two forms
 - light colored with splotches of darker pigment (where it gets its name)
 - uniformly dark variety

Natural selection

- **natural selection in action**
 - peppered moth
 - feed at night, rest during the day, on trees & rocks encrusted with lichens
 - light variety is well-camouflaged against lichens, protected from predators
 - dark variety is conspicuous, therefore not protected from predators

Natural selection

- **natural selection in action**
 - peppered moth
• Great Britain, prior to Industrial Revolution
 – dark variety of moth was rare
 » not camouflaged against lichens
 » became prey for birds before they could reproduce and pass onto next generation their genes for dark coloration

54 ☐ Natural selection
 ✔ natural selection in action
 – peppered moth
 • late 1800s, pollution from Industrial Revolution killed large numbers of lichens, exposing darker tree bark or rock
 – dark variety of moth became increasingly more abundant
 » now was camouflaged against dark surface and lighter variety was not
 • by early 1900s, in some industrial areas, populations consisted almost entirely of dark variety

55 ☐ Natural selection
 ✔ Population
 – group of individuals of same species living in same place at same time
 – is smallest unit that can evolve
 • in moth example, it was population, not individual moths, that evolved

 – population is smallest unit that can evolve

56 ☐ Natural selection
 ✔ Population
 – evolution can be measured as
 • a change in prevalence of certain heritable traits in a population over a succession of generations
 – Darwin
 • understood
 – it is populations that evolve
 • did not understand
 – genetic basis of population change

57 ☐ Natural selection
 ✔ Darwin could not explain
 – cause of variation among individuals making up a population
 – perpetuation of parents’ traits in their offspring
 ✔ Due to knowledge that came after Darwin, it is now understood that
 – mutations in genes may produce new traits
 – heritable traits are carried by genes on chromosomes

58 ☐ Natural selection
 ✔ modern synthesis
 – current version of theory of evolution that includes genetics
 – was developed in early 1940s
 – focuses on populations as units of evolution
 – includes most of Darwin’s ideas
– melds population genetics with theory of natural selection
– requires an understanding of relationship between populations and species

59 🌐 Natural selection
✓ sexual species (biological species)
– group of populations whose individuals have potential to interbreed & produce fertile offspring

60 🌐 Microevolution
✓ Studying evolution at population level
– focuses on
 • gene pool
 – total collection of genes in a population at any one time
 – reservoir from which members of next generation will derive their genes
 – can be studied by observing changes in relative frequencies of alleles over time

61 🌐 Microevolution
✓ For most genes, there are 2 or more alleles (varieties)
✓ a population at a given time can be described by relative frequencies of a particular set of alleles
✓ over time, relative frequencies of particular alleles in population can change as result of natural selection
 – leads to microevolution
 • change in gene pool
 – as in moth example

62 🌐 Microevolution
✓ frequency of each allele in gene pool will remain constant unless acted on by other agents
– population to which this applies is said to be in Hardy-Weinberg equilibrium

63 🌐 Microevolution
✓ Hardy-Weinberg equilibrium
 – suggests that something other than sexual reproduction is required to alter a gene pool
 • by changing allele frequencies from one generation to next
✓ One way to determine what factors can change a gene pool is
 – identify conditions necessary to maintain genetic equilibrium

64 🌐 Figure 23.3a The Hardy-Weinberg theorem
65 🌐 Figure 23.3b The Hardy-Weinberg theorem

66 🌐 Microevolution
✓ Hardy-Weinberg equilibrium
 – following 5 conditions must be met
 • population is very large
 • population is isolated
 – no movement into or out of population
 • gene mutations do not alter gene pool
 • mating is random
• all individuals are equal in reproductive success
 – natural selection does not occur

67 Microevolution
✓ five conditions necessary for Hardy-Weinberg equilibrium
 – rarely occur in nature
 • equilibrium breaks down
 • allele frequencies in natural populations change constantly

68 Microevolution
✓ Causes of microevolution
 – basically reverse of 5 necessary conditions for Hardy-Weinberg equilibrium
✓ 5 causes of microevolution
 – genetic drift
 – gene flow
 – mutation
 – nonrandom mating
 – natural selection

69 Microevolution
✓ Genetic drift
 – change in gene pool of a small population due to chance
 – in small population, chance event can have a disproportionately large effect
 • altering gene pool in next generation
 – iguana example, assume a small population (3 WW, 2 Ww and 5 ww)
 » an earthquake kills 3 iguana
 » 3 dead iguanas were all WW
 » frequency of W allele in next generation would be reduced

70 Microevolution
✓ Genetic drift
 – two subtypes
 • bottleneck effect
 • founder effect

71 Microevolution
✓ Genetic drift, subtypes
 • bottleneck effect
 • results from event that drastically reduces population size
 • event kills large numbers of individuals unselectively
 – produces small surviving population that is not likely to have same genetic makeup as original population
 » certain alleles will be present at higher frequencies, other alleles will be present at lower frequencies

72

73 Microevolution
✓ Genetic drift, subtypes
 • founder effect
• results from random change in a gene pool that occurs in a small colony
• colonization of a new location by a single pregnant individual or a small # of individuals
 – gene pool of subsequent generations will be derived from just these few individuals
• thought to have been important in evolution of many species in Galapagos Islands

74 📊 Figure 23.4 Genetic drift

75 📊 **Microevolution**

✓ **Gene flow**
 – gain or loss of alleles from a population by movement of individuals or gametes
 – occurs when
 • fertile individuals move into or out of a population
 • gametes are transferred from one population to another
 – minimizes genetic differences between populations

76 📊 **Microevolution**

✓ **Gene flow**
 – reduced by reproductive isolation
 • which increases genetic differences between populations
 – increased by
 • migration
 • wars

77 📊 **Microevolution**

✓ **Mutation**
 – random change in an organism’s DNA that creates a new allele
 – rare event for any given gene
 • occur ~ once per gene locus per 10^5 to 10^6 gametes
 – little effect on large population in a single generation
 – over time, vital to evolution because
 • ultimate source of genetic variation
 – serves as raw material for evolution

78 📊 **Microevolution**

✓ **Nonrandom mating**
 – selection of a mate other than by chance
 • random mating (chance) would require
 – every male (female) in population have an equal chance of mating with every
 female (male) in population
 – is rare in nature
 – nonrandom mating is the norm in most populations
 • for example, in humans, short males tend to marry short females

79 📊 **Microevolution**

✓ **Natural selection**
 – fifth agent of microevolution
 – differential success in reproduction
 – most likely to result in adaptive changes in a gene pool
Microevolution
✓ Some genetic variation
 – seems to have a trivial impact on reproductive success
 • therefore may not be subject to natural selection

Microevolution
✓ neutral variation hypothesis
 – proposes that species have some alleles that confer no selective advantage or disadvantage
 • frequencies of these alleles may increase or decrease as a result of chance genetic drift
 – but natural selection will not affect them
 • human fingerprints are probably an example of neutral variation

Microevolution
✓ Evolutionary fitness
 – contribution an individual makes to gene pool of next generation relative to contribution made by other individuals
 – fittest individuals in an evolutionary context are those that pass on the greatest number of genes to the next generation

Microevolution
✓ Individuals with a high degree of fitness
 – those whose phenotypic traits enable them to reproduce and contribute genes to more offspring than other individuals
✓ Favored genotypes
 – those whose positive phenotypic effects outweigh any harmful effects they may have on reproductive success of organism
✓ By culling less fit individuals, natural selection also culls unfavored genotypes

Microevolution
✓ natural selection can alter phenotypic variations in an idealized population
 – three main ways
 • stabilizing selection
 • directional selection
 • diversifying selection

Microevolution
✓ Stabilizing selection
 – favors intermediate variants
 – typically occurs in relatively stable environments
 • where conditions tend to reduce phenotypic variation
 – probably prevails most of time in most populations

Microevolution
✓ Directional selection
– shifts overall makeup of population by acting against individuals at one of phenotypic extremes
– most common
 • during periods of environmental change
 • when members of a species migrate to new habitat with different environmental conditions

Microevolution
 ✓ Diversifying selection
 – typically occurs when environmental conditions are varied in a way that favors individuals at
 • both extremes of a phenotypic range
 • rather than intermediate individuals

Microevolution
 ✓ Natural selection can produce resistant populations of pests and parasites
 – new pesticide, antibiotic, drug is fairly effective killing all but a few individuals in target population when first used
 • few survivors live and reproduce because, by chance, they have genes that protect them (provide resistance)
 – they pass these protective traits on to their offspring
 » eventually, most of population consists of resistant individuals

The End