1 🗖

Populations: Evolution and Natural Selection

EVPP 110 Lecture

Instructor: Dr. Largen Fall 2003

2 🗖

- ✓ Historical background
- Evidence of evolution
- ✓ Darwin's theory
- ✓Natural selection
- ✓ Microevolution

³ Historical Background

- ✓ Ideas about evolution
 - originated before Darwin
 - mid-350s BC
 - 1500s
 - 1600s
 - 1700s
 - 1800s

4 🗖 Historical Background

- ✓ mid-350s BC
 - Aristotle
 - · noted evidence of natural similarities and relationships among organisms
 - lead him to arrange all organisms he knew into a "Scale of Nature"
 - extended from most simple to most complex
 - visualized living organisms as being
 - imperfect but "moving toward a more perfect state"

5 🗖 Historical Background

✔1500s

- fossils
 - term coined in early 1500s
 - to describe remains of ancient organisms
 - of familiar living organisms
 - in unexpected contexts
 - marine invertebrate fossils imbedded in rocks on high mountains

6 🗆 Historical Background

- ✔1500s
 - fossils

- some unlike any known form
- Leonardo da Vinci
 - first interpret these finds
 - » as remains of animals that had existed in past but had become extinct

7 - Historical Background

- ✔1600s
 - emergence of modern scientific
- ✔1700s
 - exploration of continents
 - discovery of new species
 - emergence of idea
 - · natural world of living organisms must be guided by natural laws
 - · as physical world was governed by physical laws

8 Historical Background

- ✔1800s
 - 1809
 - Jean Baptiste de Lamarck, French naturalist, published Philosophie Zoologique
 - Charles Darwin born

9 Historical Background

- ✔1800s
 - Jean Baptiste de Lamarck, French naturalist
 - published Philosophie Zoologique, in 1809
 - · expressed most accepted view of evolution of that time
 - all living organisms were endowed with vital force that drove them to change toward greater complexity over time
 - organisms could pass traits acquired during their lifetimes on to their offspring
 » example, ancestral giraffe
- 10 Figure 22.x4 Jean Baptiste Lamarck

11 🗖 Historical Background

- ✓ Darwin's life and experiences led to development of his theory of evolution
 - born in 1809
 - son physician
 - sent to University of Edinburgh to study medicine at age 15
 - found himself unsuited for medicine
 - transferred to Cambridge University to study theology and received his degree
- 12 Figure 22.18 Charles Darwin in 1859, the year The Origin of Species was published

13 🗖 Historical Background

\checkmark Darwin's life and experiences

- 1831 (at age 22)
 - embarked on 5-year round-the-world voyage
 - as naturalist on H.M.S. Beagle

- profoundly influenced his thinking
- during voyage
 - read extensively about geology
 - collected 1000s of specimens
 - » plants, animals, fossils, including marine snail fossils in Andes
 - observed unique adaptations of organisms

14 🗷

15 🗖 Historical Background

✓ Darwin's life and experiences

- 1836
 - · returned to England at end of voyage
 - his reading and experiences had led him to
 - seriously doubt current thinking of the time
 - » Earth and living organisms were relatively new and unchangeable
 - · had come to believe that Earth was very old and constantly changing

16 Historical Background

- ✓ early 1840s
 - Darwin had composed an essay describing major features of his theory
 - delayed publishing it because
 - he knew it would cause a social furor
- ✔ mid-1850s
 - British naturalist Alfred Wallace, who had been doing field work in Indonesia,
 - conceived a theory identical to Darwin's
- 17 Figure 22.x5 Alfred Wallace

18 🗖 Historical Background

- **√** in 1858
 - Wallace's work and excerpts from Darwin's work were jointly presented to scientific community

19 🗖 Historical Background

- ✔ in 1859
 - Darwin's text On the Origin of Species by Means of Natural Selection, was published
 - didn't use term "evolution" at first
 - referred instead to "descent with modification"
 - perceived a unity among species
 - » all organisms related through descent from unknown organisms that lived in past
- 20 Figure 22.0 Title page from The Origin of Species

²¹ Historical Background

- ✔ In 1859
 - On the Origin of Species by Means of Natural Selection
 - · maintained that
 - as descendants spread into various habitats over millions of years
 - » they accumulated adaptations that accommodated them to diverse ways of life

22 - Historical Background

✓ Darwin's phrase for evolution "descent with modification" captured the idea that

- an ancestral species could diversify into many descendant species
 - by accumulation of different adaptations to various environments
- 23 Figure 22.1 The historical context of Darwin's life and ideas

²⁴ Evidence of evolution

✓ Evidence of evolution

- fossil record
- biogeography
- comparative anatomy
- comparative embryology
- molecular biology

²⁵ Evidence of evolution

✓ fossil record

- provides some of strongest evidence of evolution
- an ordered array in which fossils appear within layers, or strata, of sedimentary rock
 - each strata can bear a unique set of fossils representing a local sample of organisms that lived when the sediment was deposited
 - younger strata are on top of older strata
 position of fossils in strata reveals their relative age

²⁶ Evidence of evolution

✓ fossil record

- shows that organisms appeared in a historical sequence
- oldest known fossils
 - prokaryotes dating from ~ 3.5 BYA
- younger layers of rock reveal evolution of various groups of eukaryotes
 - including successive appearance of various classes of vertebrates
 - fishlike, then amphibians, then reptiles, then mammals and birds

²⁷ Evidence of evolution

✓ biogeography

- geographical distribution of species
- first suggested to Darwin that organisms evolve from common ancestors
 - environment of Galapagos islands resembled that of tropical islands from distant parts of world
 - animals of Galapagos more closely resembled species of mainland South America

²⁸ Evidence of evolution

✓ Comparative anatomy

- comparison of body structures in different species
- anatomical similarities among many species give sign of common descent
 - same skeletal elements make up forelimbs of humans, cats, whales & bats
 - · since forelimbs of these animals function differently
 - would expect their designs would be different, unless
 - » they all descended from a common ancestor with same basic limb structure

²⁹ Evidence of evolution

✓ Comparative anatomy

- homologous structures

 features that have different functions but are structurally similar because of common ancestry

30 🗷

31 Figure 22.17 A transitional fossil linking past and present

³² Evidence of evolution

✓ Comparative embryology

- study of structures that appear during development of different organisms
- closely related organisms often have similar stages in their embryonic development
 - one sign that vertebrates evolved from a common ancestor
 - all of them have an embryonic stage in which structures called gill pouches appear on sides of throat
 - » at that stage, embryos of fishes, frogs, snakes, birds, apes look more alike than different

³³ Evidence of evolution

✓ Molecular biology

- study of molecular basis of genes and gene expression
- universality of genetic code is strong evidence that all life is related
- related individuals have greater similarity in their DNA than do unrelated individuals of same species
- two closely related species have a greater proportion of their DNA in common than more distantly related species

34 🔄 Table 22.1 Molecular Data and the Evolutionary Relationships of Vertebrates

35 🗷

³⁶ Darwin's Theory

- ✓ In The Origin of Species
 - Darwin focused on how organisms become adapted to their environments
 - his theory arose from several key observations
 - all species tend to produce more offspring than environment can support
 - · individuals of a population vary in their traits
 - · organisms' variations can be inherited by their offspring

37 🗖 Darwin's Theory

✓ all species tend to produce excessive numbers of offspring (overproduction)

- production of more individuals than an environment can support
- leads to a struggle for existence
 - natural resources are limited
 - only a percentage of offspring in each generation survive and reproduce
 - rest are starved, eaten, frozen, diseased, unmated, unable to reproduce for some other reason

38 Darwin's Theory

✓ Individuals of a population vary extensively in their characteristics

- individuals whose characteristics make them best suited (adapted) to their environment are most likely to survive
 - most likely to reproduce
 - leave more offspring than less "fit" (adapted) individuals

39 🗆 Darwin's Theory

- ✓ Many of varying traits of individuals in a population can be passed from one generation to the next (heritable variations)
 - individuals whose traits make them best suited to an environment are more likely to survive and reproduce and
 - traits that made them well adapted to their environment are likely to be inherited by their offspring

⁴⁰ • Natural selection

✓ natural selection

- proposed by Darwin as basic mechanism of evolution
- essence of which is differential, or unequal, success in reproduction
 - not all individuals have equal success in reproduction

⁴¹ • Natural selection

✓ natural selection

- higher reproductive success
 - · occurs in individuals that are well adapted to their environment
 - these individuals will reproduce and pass on their traits
 - » their traits will become more heavily represented in the next generation than will the traits of poorly adapted individuals

⁴² • Natural selection

✓ natural selection

- lower reproductive success
 - · occurs in individuals that are poorly adapted to their environment
 - these individuals will reproduce less
 - » their traits will become more less and less common in subsequent generations

⁴³ • Natural selection

✓ natural selection

- individuals that are well adapted to their environment can be said to be most fit for that environment, or the "fittest"
 - · hence phrase "survival of the fittest"
- natural selection leads to, in subsequent generations,
 - favored traits (well adapted) will be represented more and more
 - · unfavored traits (poorly adapted) will be represented less and less

⁴⁴ • Natural selection

✓ natural selection

- unequal ability of individuals to survive and reproduce leads to
 - gradual change in characteristics of a population of organisms
 - over generations
 - » favored characteristics accumulate
 - » unfavored characteristics disappear

45 Natural selection

✓ artificial selection

- provided Darwin with evidence for his ideas on natural selection
- definition
 - selective breeding of domesticated plants & animals
 - by selecting individuals with desired traits as breeding stock, humans were playing role of environment and bringing about differential reproduction

⁴⁶ INatural selection

✓ artificial selection examples

- plants
 - broccoli, cauliflower, cabbages, brussel sprouts, kale and kohlrabi are all varieties of a single species of wild mustard that were produced by artificial selection
- animals
 - hundreds of varieties of domestic dog, a single species called *Canis familiaris*, are result of 1000s of years of artificial selection
 - many species of canines resulted from 1000s to millions of years of natural selection

47 🗷

48 🔄 Figure 22.11b Artificial selection: diverse vegetables derived from wild mustard

49 🔄 Figure 22.11a Artificial selection: cattle breeders of ancient Africa

50 Natural selection

✓ Darwin reasoned

- if artificial selection could bring about so much change in a relatively short period of time
 - then natural selection over vast spans of time would result in gradual accumulation of hertitable changes that would result in evolution of new species
 - as in five species of canines thought to have evolved from a single ancestral canine

51 Natural selection

✓ natural selection in action

- many examples have been documented
- peppered moth
 - · exists in two forms
 - light colored with splotches of darker pigment (where it gets its name)
 - uniformly dark variety

52 D Natural selection

✓ natural selection in action

- peppered moth
 - · feed at night, rest during the day, on trees & rocks encrusted with lichens
 - light variety is well-camouflaged against lichens, protected from predators
 - dark variety is conspicuous, therefore not protected from predators

53 Natural selection

✓ natural selection in action

peppered moth

- Great Britain, prior to Industrial Revolution
 - dark variety of moth was rare
 - » not camouflaged against lichens
 - » became prey for birds before they could reproduce and pass onto next generation their genes for dark coloration

54 Natural selection

 \checkmark natural selection in action

- peppered moth
 - late 1800s, pollution from Industrial Revolution killed large numbers of lichens, exposing darker tree bark or rock
 - dark variety of moth became increasingly more abundant
 - » now was camouflaged against dark surface and lighter variety was not
 - by early 1900s, in some industrial areas, populations consisted almost entirely of dark variety

55 🗖 Natural selection

✓ Population

- group of individuals of same species living in same place at same time
- is smallest unit that can evolve
 - in moth example, it was population, not individual moths, that evolved

- population is smallest unit that can evolve

⁵⁶ • Natural selection

✓ Population

- evolution can be measured as
 - a change in prevalence of certain heritable traits in a population over a succession of generations
- Darwin
 - understood
 - it is populations that evolve
 - did not understand
 - genetic basis of population change

57 Natural selection

- ✓ Darwin could not explain
 - cause of variation among individuals making up a population
 - perpetuation of parents' traits in their offspring
- ✓ Due to knowledge that came after Darwin, it is now understood that
 - mutations in genes may produce new traits
 - heritable traits are carried by genes on chromosomes

58 Natural selection

✓ modern synthesis

- current version of theory of evolution that includes genetics
- was developed in early 1940s
- focuses on populations as units of evolution
- includes most of Darwin's ideas

- melds population genetics with theory of natural selection
- requires an understanding of relationship between populations and species

59 Natural selection

✓ sexual species (biological species)

 group of populations whose individuals have potential to interbreed & produce fertile offspring

60 Microevolution

✓ Studying evolution at population level

- focuses on
 - gene pool
 - total collection of genes in a population at any one time
 - reservoir from which members of next generation will derive their genes
 - can be studied by observing changes in relative frequencies of alleles over time

61 Microevolution

✓ For most genes, there are 2 or more alleles (varieties)

- ✓ a population at a given time can be described by relative frequencies of a particular set of alleles
- ✓ over time, relative frequencies of particular alleles in population can change as result of natural selection
 - leads to microevolution
 - change in gene pool

- as in moth example

62 Microevolution

- ✓ frequency of each allele in gene pool will remain constant unless acted on by other agents
 - population to which this applies is said to be in Hardy-Weinberg equilibrium

63
Microevolution

- ✓ Hardy-Weinberg equilibrium
 - suggests that something other than sexual reproduction is required to alter a gene pool
 - by changing allele frequencies from one generation to next
- ✓ One way to determine what factors can change a gene pool is
 - identify conditions necessary to maintain genetic equilibrium

64 Figure 23.3a The Hardy-Weinberg theorem

65 Figure 23.3b The Hardy-Weinberg theorem

66 Microevolution

- ✓ Hardy-Weinberg equilibrium
 - following 5 conditions must be met
 - population is very large
 - population is isolated
 - no movement into or out of population
 - gene mutations do not alter gene pool
 - · mating is random

• all individuals are equal in reproductive success – natural selection does not occur

67 Microevolution

✓ five conditions necessary for Hardy-Weinberg equilibrium

- rarely occur in nature
 - · equilibrium breaks down
 - allele frequencies in natural populations change constantly

68 Microevolution

- ✓ Causes of microevolution
 - basically reverse of 5 necessary conditions for Hardy-Weinberg equilibrium
- ✓ 5 causes of microevolution
 - genetic drift
 - gene flow
 - mutation
 - nonrandom mating
 - natural selection

69 Microevolution

✓ Genetic drift

- change in gene pool of a small population due to chance
- in small population, chance event can have a disproportionately large effect
 - altering gene pool in next generation
 - iguana example, assume a small population (3 WW, 2 Ww and 5 ww)
 - » an earthquake kills 3 iguana
 - » 3 dead iguanas were all WW
 - » frequency of W allele in next generation would be reduced

70 Microevolution

✓ Genetic drift

- two subtypes
 - bottleneck effect
 - founder effect

71 Microevolution

✓ Genetic drift, subtypes

- bottleneck effect
 - · results from event that drastically reduces population size
 - · event kills large numbers of individuals unselectively
 - produces small surviving population that is not likely to have same genetic makeup as original population
 - » certain alleles will be present at higher frequencies, other alleles will be present at lower frequencies

72 🗷

73 Microevolution

- ✓ Genetic drift, subtypes
 - founder effect

- · results from random change in a gene pool that occurs in a small colony
- colonization of a new location by a single pregnant individual or a small # of individuals
 gene pool of subsequent generations will be derived from just these few individuals
- thought to have been important in evolution of many species in Galapagos Islands

74 Figure 23.4 Genetic drift

75 Microevolution

✓ Gene flow

- gain or loss of alleles from a population by movement of individuals or gametes
- occurs when
 - · fertile individuals move into or out of a population
 - · gametes are transferred from one population to another
- minimizes genetic differences between populations

76 Microevolution

✓ Gene flow

- reduced by reproductive isolation
 - which increases genetic differences between populations
- increased by
 - migration
 - wars

77 Microevolution

✓ Mutation

- random change in an organism's DNA that creates a new allele
- rare event for any given gene
 - occur ~ once per gene locus per 10^5 to 10^6 gametes
- little effect on large population in a single generation
- over time, vital to evolution because
 - ultimate source of genetic variation
 - serves as raw material for evolution

78 Microevolution

✓ Nonrandom mating

- selection of a mate other than by chance
 - random mating (chance) would require
 - every male (female) in population have an equal chance of mating with every female (male) in population
 - is rare in nature
- nonrandom mating is the norm in most populations
 - for example, in humans, short males tend to marry short females

79 Microevolution

✓ Natural selection

- fifth agent of microevolution
- differential success in reproduction
- most likely to result in adaptive changes in a gene pool

⁸⁰ D Microevolution

- ✓ Some genetic variation
 - seems to have a trivial impact on reproductive success
 - therefore may not be subject to natural selection

81 Microevolution

✓ neutral variation hypothesis

- proposes that species have some alleles that confer no selective advantage or disadvantage
 - frequencies of these alleles may increase or decrease as a result of chance genetic drift

 but natural selection will not affect them
 - human fingerprints are probably an example of neutral variation

⁸² Microevolution

✓ Evolutionary fitness

- contribution an individual makes to gene pool of next generation relative to contribution made by other individuals
- fittest individuals in an evolutionary context are those that pass on the greatest number of genes to the next generation

⁸³ Microevolution

- ✓ Individuals with a high degree of fitness
 - those whose phenotypic traits enable them to reproduce and contribute genes to more offspring than other individuals
- ✓ Favored genotypes
 - those whose positive phenotypic effects outweigh any harmful effects they may have on reproductive success of organism
- ✓ By culling less fit individuals, natural selection also culls unfavored genotypes

⁸⁴ Microevolution

✓ natural selection can alter phenotypic variations in an idealized population

- three main ways
 - stabilizing selection
 - directional selection
 - diversifying selection

85 🗷

⁸⁶ D Microevolution

✓ Stabilizing selection

- favors intermediate variants
- typically occurs in relatively stable environments
 - where conditions tend to reduce phenotypic variation
- probably prevails most of time in most populations

87 💵

88 Microevolution

✓ Directional selection

- shifts overall makeup of population by acting against individuals at one of phenotypic extremes
- most common
 - during periods of environmental change
 - when members of a species migrate to new habitat with different environmental conditions

89 🗷

90 Microevolution

✓ Diversifying selection

- typically occurs when environmental conditions are varied in a way that favors individuals at
 - both extremes of a phenotypic range
 - · rather than intermediate individuals

91 🗷

92 Figure 23.12 Modes of selection

93 Microevolution

- ✓ Natural selection can produced resistant populations of pests and parasites
 - new pesticide, antibiotic, drug is fairly effective killing all but a few individuals in target population when first used
 - few survivors live and reproduce because, **by chance**, they have genes that protect them (provide resistance)
 - they pass these protective traits on to their offspring
 - » eventually, most of population consists of resistant individuals

94 Figure 22.12 Evolution of insecticide resistance in insect populations

96 🗆 The End