1 EVPP 110 Lecture

Fall 2003, Instructor: Dr. Largen

Physical Environment: Plate Tectonics, Earthquakes, Volcanoes

2 🗖

- · development of the theory of plate tectonics
- plate tectonics
 - earthquakes
 - volcanoes

- 3 Dlate Tectonics
- ⁴ Theory of plate tectonics
 - lines of evidence leading to development of current theory
 - plate movements
 - faulting and volcanism at plate boundaries
 - · earthquakes and volcanoes
- 5
 Theory of plate tectonics
 - Based on 6 lines of evidence
 - shapes of continents
 - similar distribution of geologic features, fossils, some living species
 - non-uniform distribution of earthquakes and volcanoes
 - sea floor topography, especially the Mid-Atlantic Ridge
 - age of volcanic islands in the Atlantic
 - sea floor magnetism & sea floor spreading
- 6 Shapes of continents
 - Historical perspective
 - throughout most of history
 - physical features of earth believed to be were fixed
- 7 Shapes of continents
 - Historical perspective

- beginning centuries ago
 - noticed outlines of western Africa and eastern South America matched
- 8 🗖 Shapes of continents
 - Historical perspective
 - in 1915
 - concept of continental drift was proposed
 - by Alfred Wegener
- 9 🗷 Shape of continents
 - Alfred Wegener (German, 1880-1930)
 - meterologist
 - wrote The Origin of Continents and Oceans in 1915
- 10 Shapes of continents
 - Wegener's continental drift proposed
 - all large continents of current world were joined together in late Paleozoic Era
 - as single supercontinent, called Pangaea
 - broke apart
 - fragments had drifted about
- 11 🗷
- 12 🔄 Figure: history of continental drift
- ¹³ Shapes of continents
 - Fit of continental shelves
 - lended further support
 - more striking than fit of continents
- ¹⁴ Shapes of continents
 - rejection of continental drift
 - despite mounting evidence
 - Wegener's theory largely rejected
 - due to lack of mechanism for moving the continents
- 15 Shapes of continents
 - Animation of Pangea, continental drift
- ¹⁶ Similar distribution of geologic features, fossils, some living species
 - Geologic features
 - cited by Wegener in support of continental drift
 - marine and non-marine rock sequences of same age
 - mountain ranges and glacial deposits match
 - · diamond fields of Africa and South America

- 17 🗖 Similar distribution of geologic features, fossils, some living species
 - Fossils
 - cited by Wegener in support of continental drift
 - many of same extinct plants and animals in matching locations
- 18 🗖 Similar distribution of geologic features, fossils, some living species
 - Fossils
 - Glossopteris fossils
 - plant found on five continents thought to have been joined to form Gondwana
 - · former supercontinent formed by southern continents
 - proposed in 1885 by Austrian geologist Edward Suess
- ¹⁹ Similar distribution of geologic features, fossils, some living species
 - Fossil plant evidence Glossopteris
 - extinct group of seed plants that arose during Permian on great southern continent of Gondwana
- ²⁰ Similar distribution of geologic features, fossils, some living species
 - Fossils
 - evidence provided in 1937 by Alexander Du Toit, South Africa geologist
 - found Mesosaurus fossils in same sediment layer in Brazil and in South Africa
 - fossils of a unique trilobite species
 - found only in Boston, Massachusetts and Scotland
- 21 🗖 Similar distribution of geologic features, fossils, some living species
 - Living species
 - earthworm genera
 - one genus found only at southern tips of South America and Africa
 - another genus found only in southern India and southern Australia

²² Non-uniform distribution of earthquakes and volcanoes

- earthquakes and volcanoes
 - · do not occur uniformly over surface of earth
 - unheard of in some areas
 - routine in other areas

²³ Non-uniform distribution of earthquakes and volcanoes

- · earthquakes and volcanoes
 - ring of fire
 - around Pacific Rim
- ²⁴ Figure: Crustal plate boundaries

- ²⁵ Sea floor topography
 - historical perspective
 - prior to advent of technology that enabled its exploration
 - ocean floor was thought to be
 - feature-less plain
 - called the abyssal plain
- ²⁶ Sea floor topography
 - historical perspective
 - · declassification of sonar
 - helped document presence
 - mid-ocean ridges

27 🖃

²⁸ Sea floor topography

- Mid-Atlantic Ridge
 - under water mountain range
 - Iongest mountain range on earth
 - runs down middle of Atlantic Ocean
 - roughly equidistant between continents
- ²⁹ Age of volcanic islands in Atlantic
 - age of islands in Atlantic Ocean
 - increase the farther they are to either side of Mid-Atlantic Ridge
- 30 🗷 Sea floor magnetism & spreading
 - Earth's magnetic field
 - strong
 - dipolar
- ³¹ Sea floor magnetism & spreading
 - Earth's magnetic polarity
 - present north magnetic pole is located near the north geographic pole
 - south magnetic pole is located near the south geographic pole
- 32 Sea floor magnetism & spreading
 - Interest in continental drift
 - revived during 1950s
 - · result of paleomegnetism studies
 - paleomagnetism
 - remnant magnetism in ancient rocks
 - records direction of Earth's magnetic poles at time of rock's formation
 - magnetic iron-bearing minerals (usually magnetite) align themselves with

- Earth's magnetic field, "freeze" in place
- recording direction and strength
- 33 🗖 Sea floor magnetism & spreading
 - Magnetic reversals
 - · in geologic past
 - earth's magnetic field has reversed, 180 degrees opposite of present
 - reversals are recorded in rock
- ³⁴ Sea floor magnetism & spreading
 - magnetic anomalies
 - average regional magnetic field of earth
 - magnetic field at a point
 - can be measured, values displayed graphically
- 35 🗖 Sea floor magnetism & spreading
 - magnetic stripes
 - discovered during oceanographic research in 1960s
 - resulted from plotting magnetic anomalies measured on ocean floor
 - produced pattern of "stripes"
 - first seen in Atlantic, later in Pacific
 - · striping patterns were symmetrical about mid ocean ridges

36 🗷

- 37 🗷 Sea floor magnetism & spreading
 - magnetic stiping
 - · led to development of
 - · theory of sea floor spreading
 - proposed in 1962 by Harry Hess, Princeton University
 - · helps accounts for continental movement

³⁸ Sea floor magnetism & spreading

- · sea floor spreading
 - · sea floor separates at mid-oceanic ridges
 - new crust forms by upwelling magma
 - · as it cools
 - newly formed crust moves laterally away from ridge over time
- ³⁹ Sea floor magnetism & spreading
 - · during sea-floor spreading
 - magnetic field of the rock is fixed, in alignment with the earth's field, at time rock cools
 - after a polarity reversal
 - it will be aligned against (opposite) earth's field

40 🗷

⁴¹ Sea floor magnetism & spreading

- sea-floor spreading
 - mechanism to drive this system
 - thermal convection cells in mantle
 - hot magma rises from mantle
 - intrudes into fractures along mid ocean ridges, forming new crust
 - · cold crust is subducted back into mantle at deep-sea trenches
 - where it is heated and recycled, completing cell
- 42 Sea floor magnetism & spreading
 - Mechanism
 - convection cells in mantle
 - example
 - heat beaker
 - water expands and rises
 - it spreads and cools at the top
 - cool water sinks
- ⁴³ Sea floor magnetism & spreading
 - · sea-floor spreading
 - consequence
 - ocean basins are geologically young features
 - · continental fossils are at least 3.5 billion years old
 - oldest marine fossils are about 180 million years
 - there is relatively little sediment

44 🗷 45 🗷

⁴⁶ Plate tectonics

47 Delate tectonics

- Plates
- types of plate boundaries

48 • Plate tectonics

- Plates
 - consist of lithosphere (oceanic and continental crust) and underlying mantle
 - vary in thickness
 - up to ~250km thick
 - upper mantle + continental crust
 - up to ~100km thick
 - upper mantle + oceanic crust

49 Delate tectonics

- Plates
 - lithosphere overlies hotter and weaker semi-plastic asthenosphere
 - · heat transfer system in asthenosphere causes overlying plates to move
 - as plates move over asthenosphere
 - they separate
 - mostly at mid ocean ridges
 - · collide and are subducted back into mantle
 - in areas such as ocean trenches
- 50 Plate tectonics
 - Plate movements
 - plates move slowly (up to 15 cm/yr)
 - may collide, move apart, or slide past each other
 - friction during plate movement often generates earthquakes
- 51 Delate tectonics
 - Plate boundary types
 - divergent plate boundaries
 - convergent plate boundaries
 - transform faults
- 52 Plate tectonics
 - Plate boundary types
 - divergent plate boundaries
 - · plates move apart in opposite directions
 - crust is extended, thinned, and fractured as magma arises to surface
 - · two types
 - oceanic
 - continental
- 53 Delate tectonics
 - Plate boundary types
 - · divergent plate boundaries
 - oceanic
 - produce mid-ocean ridges
 - ex., Mid-Atlantic Ridge
 - continental
 - produce rift valleys
 - ex., East African Rift Valley
- 54 Delate tectonics

- Plate boundary types
 - convergent plate boundaries
 - · older crust is destroyed and recycled
 - two plates collide
 - · leading edge of one plate descends beneath margin of other via
 - subduction

55 Delate tectonics

- Plate boundary types
 - convergent plate boundaries
 - subduction
 - · key is density of rock types involved
 - density = mass/unit volume
 - more dense plate will be subducted downward (sink) under less dense plate
 - density differences as small as 1% are enough to cause subduction
- 56 **Plate tectonics**
 - Plate boundary types
 - convergent plate boundaries
 - subduction
 - subducting plate moves downward into the asthenosphere
 - · is heated and is incorporated into mantle
 - · results in regional seismic and volcanic activity
 - trench usually forms at boundary between two converging plates

57 **D** Plate tectonics

- Plate boundary types
 - convergent plate boundaries
 - · characterized by
 - defromation
 - volcanism
 - · mountain building
 - metamorphism
 - seismicity
 - important mineral deposits
- 58 Delate tectonics
 - Plate boundary types
 - convergent plate boundaries
 - three types
 - oceanic-oceanic
 - oceanic-continental

- continental-continental
- 59 Delate tectonics
 - Plate boundary types
 - convergent plate boundaries
 - oceanic-oceanic
 - two oceanic plates converge
 - subducted plate bend downward to form outer wall of an oceanic trench
 - leads to formation of a volcanic island arc

60 Plate tectonics

- oceanic trench
 - subducted plate
 - · bends downward
 - drags part of surface with it
 - forms outer wall of trench
 - marks top of subduction zones
- 61 Plate tectonics
 - Volcanic island arc
 - subducted plate descends into mantle
 - is heated and partially melted
 - · produces magma that is less dense than mantle rocks
 - less dense magma rises to surface
 - forming a curved (plane intersecting sphere) chain of volcanic islands called a volcanic island arc
 - examples
 - Japan, the Philippines, and Indonesia are examples
- 62 Plate tectonics
 - Plate boundary types
 - convergent plate boundaries
 - oceanic-continental
 - oceanic and continental plate converge (collide)
 - denser (3.28 g/cm³) oceanic plate is subducted under less dense (3.0 g/cm³) continental plate
 - forms outer wall of oceanic trench
 - · leads to formation of a volcanic mountain chain
- 63 🗷

64 Delate tectonics

• Volcanic mountain chain

- · subducted oceanic plate descends into mantle
 - is heated and partially melted
 - · produces magma that is less dense than mantle rocks
 - · less dense magma rises to surface inland of the coast
 - · forming a chain of volcanic mountains
- examples
 - Andes Mountains (South America)
 - Cascade Mountains (North America)
- 65 Plate tectonics
 - Plate boundary types
 - convergent plate boundaries
 - continental-continental
 - two continental plates converge
 - both plates are of roughly equal density
 - neither plate can be subducted
 - one plate mayslide partly under the other
 - leads to formation of interior mountain belts and seismic activity
- 66
 Plate tectonics
 - Plate boundary types
 - transform plate boundaries
 - two plates move past one another in opposite directions
 - along fractures known as transform faults
 - majority are in ocean crust
 - may along extend into continents
 - · associated with seismic activity
 - example
 - San Andreas fault
 - separates Pacific plate from North American plate
- 67 🔄 Figure: San Andreas fault
- 68 🗷
- 69 🗷
- 70 🗷
- 71 🗖 Earthquakes
- 72 🗖 Earthquakes
 - definition
 - cause
 - features

- fault
- focus
- epicenter
- measurement and rating
- primary effects
- secondary effects
- 73 Earthquake- definition & cause
 - sudden motion or trembling in Earth along an existing fault
 - caused by abrupt release of slowly accumulated strain
 - strain
 - change in shape or volume of a body as a result of stress
- 74 🗖 Earthquake- features
 - fault
 - focus
 - epicenter
 - foreshocks
 - aftershocks
- 75 Earthquake- features
 - fault
 - fracture in rock of earth's crust
 - along which bodies of rock move past each other
 - results from stress in earth's crust
- 76 🗖 Earthquake- features
 - focus
 - initial rupture point of an earthquake
 - · where strain energy is first converted to elastic wave energy
 - · point within Earth which is center of an earthquake
- 77 🗖 Earthquake- features
 - Depth of focus
 - earthquakes can be classified by
 - depth of focus below the surface
 - shallow
 - 0-70 kilometers
 - intermediate
 - 70-300 kilometers
 - deep
 - 300-700 kilometers
- 78 Earthquake- features
 - epicenter

- point on Earth's surface directly above focus of an earthquake
- 79 Earthquake-features
 - foreshocks
 - shock waves
 - released from seconds to weeks before main shock
 - aftershocks
 - shock waves
 - follow main shock of an earthquake for up to several months
 - often decreasing in frequency and magnitude over time
- 80 Earthquake- measurement
 - device
 - scales
- 81 Earthquake- measurement
 - device
 - seismograph
 - instrument that detects, magnifies, and records vibrations of Earth, especially earthquakes
 - · resulting record is a seismogram
- 82 Earthquake- measurement
 - Seismogram example
 - · shows earthquake
 - three different traces represent vibrations in different directions
- ⁸³ Earthquake- measurement
 - Scales
 - attempt to measure severity of earthquake
 - · do not directly measure amount of energy released
 - imply it
 - examples
 - Richter scale
 - Mercalli scale
- ⁸⁴ Earthquake- measurement
 - Richter scale
 - measures vibrational amplitude of earth's movement in response to seismic waves
 - does NOT measure energy released
 - produces numerical scale of earthquake magnitude
 - as indicated by amplitude (size) of earth's vibrations
- 85 Earthquake- measurement
 - Richter scale
 - devised in 1935 by the seismologist C.F. Richter

- local quake magnitude
 - logarithm, to base 10, of amplitude in microns of largest trace deflection that would be observed on a standard seismograph at a distance of 100 km from epicenter
- ⁸⁶ Earthquake- measurement
 - Richter scale
 - · generalized severity rating
 - insignificant
 - < 4.0 on Richter scale
 - minor
 - 4.0 4.9 on Richter scale
 - damaging
 - 5.0 5.9 on Richter scale
 - destructive
 - 6.0 6.9 on Richter scale
 - major
 - 7.0 7.9 on Richter scale
 - great
 - \geq 8.0 on Richter scale
- 87 Earthquake- measurement
 - Richter scale
 - great
 - \geq 8.0 on Richter scale
 - releases equivalent of 1 billion tons of TNT or more, over a period of 1-2 minutes
 - most intense energy release per unit time of any natural event
 - there is no upper limit
 - Chile, 1960, largest observed to data = 9.5 on Richter scale
 - San Francisco, 1906 = 7.9 on Richter scale

88 🗷 Earthquake- measurement

- Mercalli scale
 - does NOT measure energy released
 - arbitrary scale of earthquake intensity
 - ranges from
 - I (detectable only instrumentally) to
 - XII (causing almost total destruction)

- based on
 - human perception of earthquake
 - damage observed after earthquake
- 89 🗷 Average annual number of earthquakes by magnitude
- 90 Earthquake Effects
 - Earthquakes
 - can cause damage in a number of ways
 - primary effects
 - secondary effects
- 91 🗷 Earthquakes Primary Effects
 - Primary effects
 - direct effects from movement of earth on
 - people
 - buildings
 - bridges
 - overpasses
 - dams
 - pipelines
 - movements include
 - shaking
 - possible permanent vertical or horizontal displacement of ground
- 92 🗷 Earthquakes Secondary Effects
 - Secondary effects
 - · indirect effects on movement of earth
 - include
 - tsunami
 - seiche
 - landslide
 - liquefaction
 - fire
 - disease
- 93 Earthquakes Secondary Effects
 - Tsunami
 - large, water waves produced by any large-scale, short-duration disturbance of ocean floor
 - also called "tidal waves"
 - misnomer nothing to do with tides
 - caused
 - principally, by shallow submarine earthquake

- also by submarine earth movement, subsidence, or volcanic eruption
- 94 Earthquakes Secondary Effects
 - Tsunami
 - can severely damage coastal areas
 - can travel up to ~950 km/h (~590m/h)
- 95 Earthquakes Secondary Effects
 - seiche
 - wave oscillation of surface of water in an enclosed or semi-enclosed basin (as a lake, bay, or harbor)
- 96 🗖 Earthquakes Secondary Effects
 - landslide
 - mass movement of rock and sediment on unstable slopes
 - can be triggered by earthquakes
 - occurrence and severity can be increased
 - after fire removes vegetation, or clear-cutting of forests
- 97 🗷 Earthquakes Secondary Effects
 - liquefaction
 - process of changing soil and unconsolidated sediments into a water mixture after an earthquake
 - young, water-saturated, well-sorted, fine grain sands and silts behave as viscous fluids rather than solids
 - can lead to ground failure and foundation failure
 - ground slides under building foundation
- 98 🗷 Earthquakes Secondary Effects
 - Fire
 - often does more damage than earthquake itself
 - · results from
 - ruptured, spilled underground or above ground pipelines or tanks
 - · lack of water due to water lines break s
 - · inability to access fire due to blocked streets
 - downed electrical lines
 - may spark, setting off fires
 - may prohibit communication requesting fire-related assistance
- 99 🔄 Earthquakes Secondary Effects
 - disease
 - resulting from
 - poor sanitation
 - broken sewer and water lines
 - contaminated drinking water
 - broken water lines
 - · increases in populations of disease vectors
 - such as mosquitoes

- 100 🗖 Volcanoes and Volcanism
- 101 🗖 Volcanoes
 - definition
 - cause
 - form
 - locations
 - · types of releases
 - effects
 - example

102 🗖 Volcanoes - definition

- Volcano
 - definition
 - vent in crust of Earth through which magma reaches surface
 - lava = magma that reaches surface

103 🗖 Volcanoes - causes

- Volcano
 - causes
 - · diverging plate boundaries
 - allow magma from mantle to penetrate crust
 - converging plate boundaries
 - subducted (sinking) crust melts to form magma which rises and penetrates plate and reaches surface

104 🗖 Volcanoes - form

- Volcano
 - form
 - varied
 - usually conical
 - results from ejected material

105 🗖 Volcanoes - locations

- Volcano
 - locations

- tend to occur in belts associated with locations of plate boundaries
- "ring of fire"
 - ring of volcanoes around Pacific Rim
- 106 🗖 Volcanoes types of releases
 - Volcano
 - · types of releases
 - ejecta
 - liquid lava
 - gases
- 107 🗖 Volcanoes types of releases
 - Volcano
 - · types of releases
 - ejecta
 - debris ranging from large chunks of lava rock to ash (may be glowing hot)
- 108 🗖 Volcanoes types of releases
 - Volcano
 - types of releases
 - liquid lava
 - molten rock (magma) that has reached surface
 - may be spewed, or released slowly
- 109 🗖 Volcanoes types of releases
 - Volcano
 - types of releases
 - gases
 - water vapor, carbon dioxide, sulfur dioxide

110 🗷

111 🗷

- 112 🗷 Volcanoes effects
 - lava flows
 - ash deposition
 - mud slides
 - "blast" zones
 - toxic gas
 - seismic sea waves
 - atmospheric dust
- 113 🗷 Volcanoes effects
 - effect on climate
 - atmospheric dust
 - blocks great deal of sun's energy from reaching earth's surface
 - cools climate until particles sink to surface

- 114 🗖 Krakatau Volcano
 - located in Sunda strait between islands of Java and Sumatra
 - eruption occurred 8/26-28/1883
 - series of violent explosions
 - audible across 10% of Earth's surface
 - displaced 20 cubic km (5 cubic miles) of lava, rock, ash
 - produced seismic sea waves
 - destroyed 165 coastal villages, killing ~36,000

115 🗖 Krakatau Volcano

- after eruptions
 - ~1/3 of original volume of island remained above sea level
 - volcanic ash (dust) in atmosphere caused
 - deep red sunsets, globally, for years
 - average global temperatures reduction of 1-2 degrees C
 - didn't return to normal for ~5 years

116 🗷

- 117 🗷 Krakatau Volcano
- 118 🗖 The end