- Physical Environment: The Atmosphere EVPP 110 Lecture
 - Fall 2003
 - Dr. Largen
- 2 Physical Environment:The Atmosphere
 - Atmosphere
 - Composition
 - Vertical structure
 - · Heat transfer
 - Atmospheric moisture
 - · Atmospheric circulation
 - · Weather and climate
- 3 Physical Environment:The Atmosphere
 - Earth's atmosphere
 - unique
 - solar system
 - universe
 - thin, blanket of air
 - presence contributes to physical characteristics
 - · determines scope of life
- 4 Physical Environment:

- Earth's atmosphere
 - · central in physical geography
 - · heat transfer
 - water vapor transport
 - · weather and climate
- 5 Physical Environment:

- Composition
 - · Gaseous envelope
 - · mixture of

- · Various gases
- Water vapor and ice crystals
- aerosols
- ⁶ Physical Environment:

- Composition
 - · mixture of gases
 - two gases = 99% of volume
 - nitrogen $(N_2) = 78\%$
 - oxygen $(O_2) = 21\%$
 - percentages fairly constant up ~ 80km
 - water vapor (H₂O)
 - · concentrations vary greatly
 - vertically and horizontally
- ⁷ Physical Environment:

The Atmosphere

- · Composition
 - · mixture of gases
 - carbon dioxide (CO₂)
 - · small percent of volume
 - ~0.036%
 - · varies vertically and horizontally
 - increasing since industrial revolution
- 8 Physical Environment:

The Atmosphere

- Composition
 - mixture of gases
 - others
 - · small amounts
 - methane
 - nitrous oxide
 - chlorofluorocarbons
 - sulfur dioxide
 - ozone
- 9 Physical Environment:

The Atmosphere

· Vertical structure of atmosphere

- · several characteristics vary altitude
 - air density and air pressure
 - · temperature
 - · gaseous composition
 - · electrical properties
- 10 Physical Environment:

- Vertical structure
 - · air density and air pressure
 - air density
 - determined by
 - masses of component atoms and molecules
 - · amount of space between them
- 11 Physical Environment:

The Atmosphere

- · Vertical structure
 - · air density and air pressure
 - air density
 - density
 - measure of amount of matter in a given volume
 - · greatest near earth's surface
 - more atoms and molecules in given volume of air
- 12 Physical Environment:

The Atmosphere

- Vertical structure
 - · air density and air pressure
 - air pressure or atmospheric pressure
 - force exerted by constantly moving air molecules
 - · air molecules are matter
 - · occupy space and have mass
 - pressure measured in terms of
 - total mass of air above any point
- 13 Physical Environment:

The Atmosphere

- Vertical structure
 - air pressure and air density
 - air pressure or atmospheric pressure
 - average or standard atmospheric pressure at sea level is ~14.7 pounds/in²
 - 1013.25 mb (millibars)
 - 29.92 in. Hg (inches of mercury)
- 14 Physical Environment:

- · Vertical structure
 - air pressure and air density
 - air pressure or atmospheric pressure
 - more air molecules in same column
 - = more dense air
 - = higher pressure
 - · fewer air molecules
 - = less dense
 - = lower pressure
- 15 Physical Environment:

- · Vertical structure
 - air pressure and air density
 - · air pressure or atmospheric pressure
 - · number of air molecules decreases with increases in altitude
 - density decreases with increased altitude
 - pressure decreases with increased altitude
- 16 Physical Environment:

The Atmosphere

- · Vertical structure
 - · air density and air pressure
 - · initially decrease rapidly with altitude
 - air near earth's surface is compressed
 - ~ 10 mb/100 m increase in altitude
 - · decrease more slowly with altitude
 - 1013 mb at 0 km
 - 500 mb at ~ 5.5 km
 - 100 mb at ~17.0 km
 - 50 mb at ~22.0 km
 - 10 mb at ~32.0 km
- 17 🗷
- 18 Physical Environment:

The Atmosphere

- · Vertical structure
 - · several characteristics vary with altitude
 - · air density and air pressure
 - temperature
 - gaseous composition
 - · electrical properties
- 19 Physical Environment:

- · Vertical structure of the atmosphere
 - air temperature
 - · vertical profile more complicated than density and pressure
 - · measure of "heat" of air
 - measure of average speed of movement of air molecules
- 20 Physical Environment:

- · Vertical structure
 - air temperature
 - normally decreases from earth's surface up to altitude of ~11 km
 - · atmosphere is heated primarily from below
 - · transfer of heat energy from surface
 - · lapse rate
 - rate at which air temperature decreases with altitude
 - average or standard in lower region of atmosphere is ~6.5°C per 1000 m
- 21 Physical Environment:

The Atmosphere

- Vertical structure of the atmosphere
 - · air temperature
 - · lapse rate
 - occasionally, temperature may increase with increases in altitude in lower region of atmosphere
 - = temperature inversion

- 22 🗷
- 23 Physical Environment:

- · Vertical structure of the atmosphere
 - air temperature
 - most common parameter used to define atmospheric layers
 - troposphere
 - stratosphere
 - mesosphere
 - thermosphere

- 24 🗷 Fig. 17.1
- 25 Physical Environment:

- · Vertical structure
 - · air temperature
 - · troposphere
 - from 0 km to ~ 11 km
 - characterized by air temperature decreasing with height
 - region in which "weather" occurs
 - ends at point where temperature stops decreasing with height
 - boundary called tropopause
- 26 🗷
- 27 Physical Environment:

The Atmosphere

- Vertical structure of the atmosphere
 - · air temperature
 - stratosphere
 - from ~11 km to 20 km
 - air temperature remains constant with altitude
 - from ~20 km to ~50 km
 - air temperature increases with altitude
 - from ~ 50°C to ~0°C
 - results in temperature inversion
- 28 Physical Environment:

- · Vertical structure of the atmosphere
 - air temperature
 - stratosphere
 - temperature inversion attributed to ozone
 - reaches maximum concentrations in stratosphere
 - absorbs energetic UV solar energy
 - some of absorbed energy heats stratosphere

- 29 🗷
- 30 Physical Environment:

- · Vertical structure of the atmosphere
 - air temperature
 - mesosphere
 - separated from stratosphere by boundary called stratopause
 - from ~50 km to ~85km
 - % of N and O ~ same at this level as at sea level
 - · but much less air
 - atmospheric pressure is ~1 mb at 50 km
- 31 Physical Environment:

The Atmosphere

- · Vertical structure of the atmosphere
 - air temperature
 - mesosphere
 - air temperature decreases with altitude
 - little ozone to absorb solar radiation
 - molecules of air lose more energy than they are able to absorb
 - cooling continues up to ~ 85 km
 - where temperature reaches its lowest average value, ~ 90°C
- 32 🗷
- 33 Physical Environment:

The Atmosphere

- Vertical structure
 - air temperature
 - thermosphere
 - separated from mesosphere by boundary called mesopause
 - from ~85 km to several hundred km
 - · temperature increases with altitude
 - oxygen molecules absorb solar radiation
 - actual temperature varies greatly depending on solar activity

- 34 🗷
- 35 🗷
- 36 Physical Environment:

- · Vertical structure
 - exosphere
 - · upper limit of atmosphere
 - top of thermosphere
 - altitude of ~500 km
 - some atoms and molecules from this region
 - · escape earth's gravitational pull
 - shoot off into space

37 Physical Environment:

The Atmosphere

- · Vertical structure
 - atmospheric characteristics vary with altitude
 - · air density and air pressure
 - · temperature
 - · gaseous composition
 - · electrical properties
- 38 Physical Environment:

The Atmosphere

- Vertical structure
 - · gaseous composition
 - homosphere
 - region below thermosphere where gaseous composition remains fairly constant
 - from 0 km to ~85 km
 - well-mixed region
 - ~78% N & ~21% O
- 39 Physical Environment:

- · Vertical structure of the atmosphere
 - · gaseous composition
 - heterosphere
 - thermosphere & above (>85km)
 - not well-mixed
 - heavier atoms and molecules, such as N & O, tend to settle to bottom of layer
 - lighter gases, H & He, float to top

40 🗖	Physical Environment: The Atmosphere
	Vertical structure of the atmosphere
	several atmospheric characteristics vary with changes in altitude
	air density and air pressure
	• temperature
	gaseous composition
	electrical properties
41 🗖	Physical Environment:
	The Atmosphere
	Vertical structure of the atmosphere
	electrical properties
	• ionosphere
	• above ~60 km
	electrified region
	 fairly high concentrations of ions and free electrons
	 atoms lose electrons and become
42 🗷	
43	Physical Environment:
	The Atmosphere
	Heat transfer
	occurs via a process called
	• convection
	 transfer of heat by mass movement of a fluid (such as water and air)
	 takes place because fluids can move freely and it is possible to set up currents within them
	 leads to a cycle of heated air rising and cooled air descending
	 called convective circulation
44	Physical Environment:
	The Atmosphere
	Heat transfer
	convective circulation
	 certain areas of earth's surface absorb more heat from sun than others areas
	 uneven heating of air near surface
	 heated air expands and becomes less dense
_	 expanded , less dense air rises and transfers heat energy upward
45 –	Physical Environment:

- Heat transfer in the atmosphere
 - convective circulation
 - after warmed, expanded, less dense air rises
 - cooler, heavier, more dense air flows toward surface to replace rising air

- upon closer exposure to warm surface
 - cool air heats up, expands, becomes less dense and rises
 - · and cycle is repeated
- 46 Physical Environment:

- Heat transfer
 - convective circulation
 - vertical exchange of heat called convection
 - rising air "bubbles" (or masses of warmed air) known as thermals
 - warmed air rises, temperature eventually decreases, sinks to surface where it can replace rising air
 - producing a convective circulation or thermal cell
- 47 Physical Environment:

The Atmosphere

- Heat transfer
 - · convective circulation
 - any air that rises will expand and cool
 - · creates areas of low pressure
 - any air that sinks is compressed and warms
 - · creates areas of high pressure
 - wind
 - horizontally moving part of circulation

48 🗷

49 🗷

50 **Fig. 17.2**

51 Physical Environment:

The Atmosphere

- Atmospheric moisture
 - several processes and principles interact to determine the manner in which moisture enters, moves about in, and leaves the atmosphere
 - evaporation of water from surface into atmosphere
 - transport of water vapor through the atmosphere
 - · precipitation, return of water to surface
- 52 Physical Environment:

- Atmospheric moisture
 - in lower atmosphere, water exists in all three phases of matter
 - · liquid water
 - gas water vapor
 - · solid ice
 - various atmospheric conditions govern change of water from one phase to

another

53 Physical Environment:

The Atmosphere

- Atmospheric moisture
 - · water changes phases in atmosphere
 - sublimation
 - changing from solid (ice) to gas (water vapor) phase without passing through the liquid phase
 - evaporation
 - · changing from liquid to vapor phase
 - condensation
 - · changing from vapor to liquid phase
- 54 Physical Environment:

The Atmosphere

- Evaporation
 - water molecules escape surface & enter atmosphere as water vapor
 - energy is required
 - · comes from radiant energy from sun
 - escaping molecules carry heat with them
 - evaporation = cooling process
 - rate of evaporation is affected by amount of moisture already present in a mass of air
 - affected by wind, temperature and humidity
- 55 Physical Environment:

The Atmosphere

- Evaporation
 - rate is affected by amount of moisture in a mass of air
 - amount of water vapor present in a quantity of air can be specified in several ways
 - absolute humidity
 - relative humidity
- 56 Physical Environment:

- Evaporation
 - absolute humidity
 - most direct measure of air's moisture content
 - weight of water present in given volume of air
 - · affected by air temperature
 - warm air is able to contain more water vapor per unit volume than cool

air

57 Physical Environment:

The Atmosphere

- Evaporation
 - relative humidity
 - ratio of amount of water actually present in quantity of air to amount that could be held by same air if it were saturated
 - does not indicate actual moisture content
 - change in temperature of moist air = change in its relative humidity
 - temperature at which relative humidity becomes 100% = dew point
- 58 Physical Environment:

The Atmosphere

- Transport
 - water is transported by atmosphere in form of water vapor
- 59 Physical Environment:

The Atmosphere

- Precipitation
 - means by which water leaves atmosphere and returns to earth's surface
 - · can take form of any of phases of water
 - liquid rain
 - gas fog
 - solid ice
 - on average, amount of water that leaves atmosphere = amount that enters atmosphere
- 60 Physical Environment:

The Atmosphere

- Precipitation
 - several factors govern the process by which water leaves the atmosphere as precipitation
 - temperature
 - humidity
 - · dew point
 - presence of condensation nuclei
- 61 Physical Environment:

- Precipitation
 - condensation
 - change from water vapor to liquid water
 - · occurs when
 - moist air is cooled to its dew point

- · cooler air can't hold as much water
- some water vapor condenses to liquid
- 62 Physical Environment:

- Precipitation
 - condensation
 - dust particles in air serve as condensation nuclei
 - · collection centers for water molecules
 - promote growth of water droplets to a size large enough to be stable
- 63 Physical Environment:

The Atmosphere

- · Adiabatic processes
 - combine aspects of vertical structure of atmosphere, heat transfer, moisture content and circulation
 - · adiabatic cooling
 - adiabatic heating
- 64 Physical Environment:

The Atmosphere

- · adiabatic cooling
 - temperature of rising mass of air decreases
 - air mass heated by earth's surface, rises
 - · warm, rising air mass expands
 - because air pressure decreases with altitude
 - as it expands, it does work against surrounding atmosphere
 - expenditure of energy causes temperature to decrease
 - · water vapor condenses to clouds
- 65 Physical Environment:

The Atmosphere

- adiabatic heating
 - temperature of descending air mass increases
 - air mass is cooled adiabatically, descends
 - cooled, descending air mass compresses
 - because air pressure increases with decrease in altitude
 - as it compresses, surrounding atmosphere does work against it, pushing inward
 - input of energy causes temperature to increase
- 66 Physical Environment:

- lapse rate
 - normally, air temp. decreases with altitude
 - ~6.5°C per 1000m increase in altitude

- dry adiabatic lapse rate
 - adiabatic cooling in absence of condensation
 - ~10.0°C per 1000m increase in altitude
- moist adiabatic lapse rate
 - adiabatic cooling in presence of condensation
 - varies with moisture content of air
 - ~5.0°C per 1000m
- 67 🗷
- 68 🗷
- 69 🗷
- 70 The End