1 EVPP 110 Lecture

Dr. Largen - Fall 2003

Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life's Activity

² Levels of Organization of Life

- \checkmark Levels of organization of life
 - non-living components of life
 - atom
 - molecule
 - within cells
 - macromolecule (biological)
 - organelle
 - cell

3 Levels of Organization of Life

- ✓ Levels of organization of life
 - within multicellular organisms
 - tissue
 - organ
 - organ systems

⁴ Levels of Organization of Life

- ✓ Levels of organization of life
 - among organisms
 - species
 - population
 - community
 - ecosystem
 - biosphere
 - ecosphere

⁵ Levels of Organization of Life

- ✓ Levels of organization of life
 - represent a hierarchy
 - each level incorporates lower levels of organization
- 6 💵
- 7 🗖

Structure of the Cell

⁸ Introduction to the cell

✓ Before microscopes (first used in 17th century), no one knew living

organisms were composed of cells

- ⁹ All cells share fundamental features
 - ✓Major features common to all cells

-plasma membrane

-DNA

-cytoplasm

-carry out metabolism

- 10 All cells share fundamental features
 - ✓ Major features common to all cells

- plasma membrane

- encloses cell
- separates contents from surroundings
- phospholipid bilayer
 - 5-10 nanometers thick
- contains embedded proteins

11 C All cells share fundamental features

- ✓ Major features common to all cells
 - DNA the hereditary molecule
 - prokaryotes
 - nucleoid
 - » area near center of cell, contains circular molecule of DNA
 - » not differentiated from rest of cell's contents by membrane
 - eukaryotes
 - nucleus
 - » double-membrane bound organelle contains DNA

12 C All cells share fundamental features

- ✓ Major features common to all cells
 - cytoplasm
 - semi-fluid matrix
 - · contains chemicals of cell
 - sugars
 - amino acids
 - proteins
 - contains organelles in eukaryotes

13 C All cells share fundamental features

✓ Major features common to all cells

carry out metabolism

- · interconversion of different forms of energy and of chemical materials
 - two major metabolic processes
 - » photosynthesis
 - » cellular respiration

14 🗖 All cells share fundamental features

✓ primary tenants of Cell Theory

- all organisms composed of 1 or 1+cells
- cell is smallest (basic) unit of life
 - smallest living thing
- cells arise only by division of a previously existing cell
 - all life on earth represents continuous line of descent from early cells

¹⁵ Introduction to the cell

✓ Two kinds of structurally different cells have evolved over time

- prokaryotic cells
 - Archaebacteria
 - Eubacteria
- eukaryotic cells
 - Protista
 - Fungi
 - Plantae
 - Animalia

¹⁶ Introduction to the cell

Prokaryotic cell characteristics

- small (1/10th size of eukaryote)
- lacks a nucleus
 - DNA in nucleoid region (not membrane bound)
- plasma membrane
- bacterial cell wall
- some have **pili** (sticky)
- some propelled by flagellum

17 🗷

¹⁸ Introduction to the cell

✓ Eukaryotic cells

- from Greek eu for "true" and karyon for kernal or "nucleus"
- fundamentally similar to each other
 - · profoundly different from prokaryoes
- ✓ characteristics of eukaryotic cells
 - in general
 - comparing animal and plant cell

¹⁹ Introduction to the cell

✓ Eukaryotic cells

- presence vs. absence of **cell walls**
 - animal cells lack cell walls
 - some protists lack cell walls
 - plants, fungi and some protists have cell walls

²⁰ Introduction to the cell

✓ Eukaryotic cells

- complex interior organization

- extensive compartmentalization
- · many membrane-bound organelles
- true, membrane-bound nucleus
- complex DNA molecule
- contain vesicles and vacuoles which function in storage and transport

21 🗷

²² Introduction to the cell

✓ Eukaryotic cells

- membranes partition cytoplasm into compartments called membranous organelles
 - location of many chemical activities known as cellular metabolism

²³ Introduction to the cell

✓ Eukaryotic cells, animal vs. plant

- animal cells
 - cell wall absent
 - · chloroplasts absent
 - central vacuole absent
 - mitochondria present
 - centrioles present
 - lysosome present
 - flagella may be present

²⁵ Introduction to the cell

✓ Eukaryotic cells, plant vs. animal

- plant cells
 - cell wall present
 - chloroplasts present
 - mitochondria present
 - central vacuole present
 - flagella absent (except in some sperm)
 - lysosome absent
 - · centrioles absent

²⁷ Introduction to the cell

✓ membranous organelles

- nucleus
- endoplasmic reticulum
- Golgi apparatus
- <u>mitochondria</u>
- lysosome
- peroxisome
- <u>chloroplast</u>
- central vacuole

²⁸ Introduction to the cell

✓ non-membranous structures

- centriole
- flagellum
- ribosome
- microtubule
- microfilament
- cell wall

²⁹ Energy converting organelles

✓ Chloroplasts

- photosynthesizing organelles of plants and protists
 - internal membranes create 3 compartments

³⁰ Energy converting organelles

✓ Chloroplasts

- space between inner & outer membranes

• intermembrane space

- space enclosed by inner membrane
 - contains
 - fluid called stroma
 - network of tubules and hollow disks

- space inside tubules and disks
 - disks occur in stacks, called grana
 - grana are chloroplasts' solar power packs

32 🗷

33 Energy converting organelles

✓ Mitochondria

- energy converting organelles of heterotrophs
- carryout cellular respiration
 - chemical energy of foods
 - converted to chemical energy of a molecule such as ATP (adenosine triphosphate)
 - » ATP is main energy source for cellular work

³⁴ Energy converting organelles

✓ Mitochondria

- enclosed by 2 membranes, has 2 compartments
 - space between inner & outer membrane
 - intermembrane space
 - » fluid filled compartment
 - space enclosed by inner membrane
 - contains fluid called mitochondrial matrix

³⁵ Energy converting organelles

✓ Mitochondria

- space enclosed by inner membrane
 - contains mitochondrial matrix
 - many of chemical reactions of cellular respiration occur here
 - inner membrane has many folds
 - called cristae
 - increases surface area
 - contains enzymes that make ATP

³⁷ Fueling the activities of life

- ✓ two main mechanisms by which organisms obtain food
 - autotrophs (self-sustaining)
 - heterotrophs (not self-sustaining)

³⁸ Fueling the activities of life

✓ two main mechanisms by which organisms obtain food

- autotrophs (self-sustaining)

- plants and other photosynthetic organisms
- can produce from inorganic compounds the organic molecules they need for life

³⁹ Fueling the activities of life

✓ two main mechanisms by which organisms obtain food

- heterotrophs (not self-sustaining)
 - animals
 - must obtain organic molecules they need by consuming organic molecules already produced by other organisms

⁴⁰ How organisms harvest energy from food molecules

- \checkmark Two major processes enable organisms to fuel the processes of life
 - hetertrophs
 - ingest their food
 - cellular respiration harvests energy from ingested food molecules
 - autotrophs
 - manufacture their own food via photosynthesis
 - cellular respiration harvests energy manufactured food molecules

⁴¹ Cellular Respiration

⁴² Introduction to Cellular Respiration

✓ <u>Respiration</u>

- refers to exchange of gases
 - organism obtains O₂ from its environment & releases CO₂

✓ Cellular respiration

- aerobic harvesting of energy from food molecules by cells

43 Introduction to Cellular Respiration

- ✓ Breathing and cellular respiration are related
 - organism takes in O2 from environment
 - distributes O2 to its cells
 - mitochondria use O2 in cellular respiration

44 🔽

45 2 Fig. 4.8

46 Introduction to Cellular Respiration

- ✓ Harvesting energy from food molecules
 - glucose used as a representative food molecule
- ✓ summary equation for cellular respiration
 - C₆H₁₂O₆ + 6O₂ **®** 6CO₂ + 6H₂O + ATPs
 - bond energy from reactants is stored in chemical bonds of ATP
- 47 🖃
- 48 Introduction to Cellular Respiration
 - ✓ Efficiency of cellular respiration
 - glucose contains chemical energy
 - each ATP molecule made by cellular respiration contains ~ 1% of chemical energy in glucose molecule
 - cellular respiration is not able to harvest all energy of glucose in a usable form
 - typical cell banks ~ 40% of glucose's energy in ATP molecules
 - other ~ 60% is converted to heat
- ⁴⁹ Introduction to Cellular Respiration
 - ✓ Efficiency of cellular respiration
 - comparison
 - glucose burned in lab
 - glucose "burned" in cell
 - gasoline engine
- 50 🗷
- ⁵¹ Introduction to Cellular Respiration
 - ✓ Cellular respiration
 - more efficient than any other process a cell can perform without oxygen
 - · yeast cell in an anaerobic environment harvests only about 2% of energy in glucose
- 52 🗖 Basic Mechanisms of Energy Release & Storage
 - ✓ Underlying mechanisms of energy release and harvest in cell
 - energy available to cell is contained in chemical bonds of a molecule (glucose)
 - cellular respiration dismantles glucose in a series of steps
 - · taps the energy carried by electrons

- that are rearranged when old bonds break and new bonds form

⁵³ Basic Mechanisms of Energy Release & Storage

 $\boldsymbol{\checkmark}$ cellular respiration shuttles electrons through a series of energy releasing reactions

- electrons start in a molecule where they have more energy & end up in molecule where they have less energy
 - · energy is released in small amounts
 - · cell stores some of that energy in ATP
- ✓ cells transfer energy from glucose to ATP by coupling exergonic & endergonic reactions
- 54 🗖 Basic Mechanisms of Energy Release & Storage
 - ✓ cellular respiration shuttles electrons through a series of energy releasing reactions
 - movement of hydrogen atoms illustrates electron transfers
 - · glucose loses hydrogen atoms as it is converted to carbon dioxide
 - molecular oxygen gains hydrogen atoms as it converted to water
 oxygen serves as the ultimate electron acceptor

55 🗷

⁵⁶ D Mechanisms of Energy Release & Storage

✓ Movement of electrons from one molecule to another is oxidation-reduction reaction (redox) – oxidation

- loss of electrons from one substance (molecule is oxidized)
- reduction
 - addition of electrons to another substance (molecule is reduced)
- reactions always go together because electron transfer requires donor and acceptor

57 🗖 Mechanisms of Energy Release & Storage

✓ oxidation-reduction reaction (redox)

- glucose gives up energy as it is oxidized
- electrons are moved about by moving hydrogen atoms (along with their electrons)

58 🗷

59 🗖 Mechanisms of Energy Release & Storage

✓ electron cascade occurs

- electrons "fall" down an energy "hill" of carriers
- each carrier is different molecule
- electrons move "downhill"
 - · increasing electron affinity
- redox reactions release energy in small amounts at each step, useful to the cell
- last molecule at bottom of hill is O2
 - greatest electron affinity of all carriers

- 60 🗷
- 61 🗖 Mechanisms of Energy Release & Storage

✓ Electron transport chains

- series of electron carriers
- ordered groups of molecules embedded in membranes of mitochondria
 - · located in plasma membrane in prokaryotes
- as electrons pass along chain, they lose energy
 - which cell can use to make ATP

62 🗷

- 63 🗖 Stages of Cellular Respiration
 - ✓ Cellular respiration
 - continuous process
 - three main stages
 - 1st & 2nd stages
 - glycolysis
 - Krebs cycle
 - 3rd stage

- electron transport chain & chemiosmosis

64 🗖 Stages of Cellular Respiration

✓ Glycolysis

- first stage
- occurs outside mitochondria in cytoplasm of
- means "splitting of sugar"
- universal energy-harvesting process of life
 - occurs in all cells
 - · because of its universality, is thought to be ancient metabolic system
- starts with glucose

65 🗷

66 🗖 Stages of Cellular Respiration

✓ Krebs cycle

- 2nd stage
- takes place in mitochondria
- completes breakdown of glucose
 - producing carbon dioxide
- contributes electrons to 3rd stage
- produces 2 molecules of ATP
- produces other energy-rich molecules

68 🗖 Stages of Cellular Respiration

✓ Electron transport chain

- 3rd stage
- takes place in mitochondria
- chain uses downhill flow of electrons from electron carriers to oxygen

69 🗷

70 🗖

Photosynthesis: Using Light to Make Food

⁷¹ Photosynthesis uses light energy to make food molecules

- ✓ Photosynthesis
 - most of living world depends on this process
 - on global scale billions of tons of organic matter are produced each year
 - · no other chemical process of Earth matches this output
 - consists of two stages that occur in chloroplast

72 3 Fig. 4.7

⁷³ Autotrophs are the producers of the biosphere

✓ Plants are autotrophs

- "self-feeders"
 - make own food
 - sustain themselves
- chloroplasts capture energy in sunlight
 - convert sun's energy to chemical energy using water and carbon dioxide

 stored in form of glucose and other organic molecules

74 🗷

⁷⁵ Autotrophs are the producers of the biosphere

✓ Producers

- produce food consumed by heterotrophs
- all organisms that use light energy to make food molecules from inorganic molecules
 - photosynthetic autotrophs
- producers include
 - plants
 - certain archaea
 - certain bacteria
 - · certain protists

⁷⁶ Autotrophs are the producers of the biosphere

✓ Predominant producers

- terrestrial
 - · plants such as trees
- aquatic
 - photosynthetic protists (algae)
 - photosynthetic bacteria

⁷⁷ Photosynthesis occurs in chloroplasts

✓ All green parts of a plant have chloroplasts and can carry out photosynthesis

- leaves have most chloroplasts
 - are major sites of photosynthesis
- green color in plants from chlorophyll pigments in chloroplasts
 - · chloroplhyll absorbs light energy from sun

⁷⁸ Photosynthesis occurs in chloroplasts

- ✓ Green tissue in interior of leaf is called mesophyll
 - each mesophyll cell has numerous chloroplasts
 - membranes in chloroplast many reactions of photosynthesis occur
 - inner membrane encloses a compartment filled with a thick fluid called stroma
 - within the stroma, disklike membranous sacs called thylakoids are suspended
 » thylakoids are concentrated in sacks called grana

79 🗷

⁸⁰ Plants produce O₂ gas by splitting water

- ✓ Photosynthesis equation
 - $-\operatorname{CO}_2+\operatorname{H}_2\operatorname{O}\rightarrow\operatorname{light}\rightarrow\operatorname{C}_6\operatorname{H}_{12}\operatorname{O}_6+\operatorname{H}_2\operatorname{O}+\operatorname{O}_2$

⁸¹ Photosynthesis is a redox process, as is cellular respiration

- ✓ Photosynthesis is a redox process
 - water is oxidized to O2
 - when water molecules are split apart
 - they lose electrons & hydrogen ions
 - CO₂ is reduced to sugar
 - when electrons & hydrogen ions are added to it

⁸² Photosynthesis is a redox process, as is cellular respiration

- ✓ Photosynthesis is a redox process
 - water is oxidized & carbon dioxide is reduced
 - electrons gain energy by being boosted up an energy hill
 - converts light energy to chemical energy
- \checkmark Cellular respiration is a redox process
 - sugar is oxidized and oxygen is reduced

- · electrons lose energy as they travel down an energy hill
- converts chemical energy from one form to another

⁸⁴ Photosynthesis occurs in two stages

- ✓ Photosynthesis
 - two stages
 - light dependent reactions
 - first stage
 - converts light energy to chemical energy and oxygen gas
 - light independent reactions (Calvin cycle)
 - second stage
 - assembles sugar molecules using CO_{2} and energy-containing products of the light reactions

85 Photosynthesis occurs in two stages

✓ Light dependent reactions

- occur in thylakoid membranes
- absorb solar energy & convert it to chemical energy by
 - making ATP from ADP + P
 - transferring electrons from $\rm H_2O$ to NADP+ to form NADPH
 - electron carrier
 - no sugar is produced during these reactions
- requires light
- ⁸⁶ Photosynthesis occurs in two stages
 - ✓ Light independent reactions (Calvin cycle)
 - occurs in stroma of chloroplasts
 - carries out process of carbon fixation
 - incorporation of C from CO₂ into organic compounds
 - enzymes of cycle then make sugars by further reducing fixed carbon
 - by adding high-energy electrons and hydrogen ions to it
 - does not require light directly
 - but occurs during day in most plants

87 🗷

⁸⁸ D Photosynthesis uses light energy to make food molecules

✓ light dependent reactions

- occur in thylakoid membrane
- photosystems I & II capture solar energy and energize electrons
- water is split and O₂ is released
- photosystems transfer electrons to ETCs
 - where energy is harvested and used to make NADPH and ATP

⁸⁹ Photosynthesis uses light energy to make food molecules

✓ Light independent reactions (Calvin cycle)

- occurs in stroma

- incorporates carbon from CO₂ into sugar G3P
- G3P is used to make sugars which are
 - · used as fuel for cellular respiration
 - · used as starting material for other organic molecules such as cellulose
 - stored as starch in chloroplasts, roots, tubers, fruits

91 🗖

- \checkmark photosynthesis
 - location: chloroplasts
 - equation
 - $CO_2 + H_2O \rightarrow light \rightarrow C_6 H_{12}O_6 + H_2O + O_2$
 - manufactures food molecules
 - used by: autotrophs
- ✓ cellular respiration
 - location: mitochondria (stage 2-3)
 - equation
 - $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATPs$
 - harvests energy in food molecules
 - used by: autotrophs and heterotrophs

92 The end