Matter & Energy: Properties of Water, pH, Chemical Reactions

EVPP 110 Lecture GMU Dr. Largen Fall 2003

² The Properties of Water

- 3 ☐ Water Its Properties and Its Role in the Fitness of Environment
 - √ importance of water to life
 - ✓ chemical characteristics of water
 - polarity and properties associated with it
 - _
 - dissociation of water molecules
- The Properties of Water Water is essential to life
 - √ Importance of water to life
 - covers 34 of surface of earth
 - is where life evolved
 - essential to life on earth
 - -~ 2/3 of mass of all organisms
- 5 Figure 3.0 Earth (Biology, 6th Ed., Campbell & Reece)
- 6 The Properties of Water -Chemical Structure of water
 - √ chemical structure of water (H₂O)
 - -2 H atoms covalently bonded to 1 O atom
 - · resulting molecule is stable
 - outer electron shells full
 - no net charge
 - no unpaired electrons

7 🗷	
8 🗷	
9 🗖	The Properties of Water - Water is a polar molecule
	√ Water is a polar molecule
	 O atom is more electronegative than H atoms
	 attracts electrons more strongly than do H atoms
	- shared electrons in a water molecule more likely to be found near O nucleus
	than near the H nuclei, » partial – charge on O atom
	» partial + charge on each H atom
10 🗷	partial i charge on each i atom
11 🗷	
12 🗖	The Properties of Water -
	Water is a polar molecule
	✓ Water is a polar molecule
	 water molecule as a whole is neutral but partial charges cause molecule to have "poles"
	negative pole
	O end due to partial – charge on O atom
	positive poles
	- H ends due to partial + charge on each H atom
13 🗷	
14	Web/CD Activity 3A:
	The Polarity of Water
	www.campbellbiology.com
15 🗖	The Properties of Water -
	Water's polarity leads to unusual properties
	✓ Water's polarity leads to unusual properties that make life possible
	– hydrogen bonds
	– cohesion
	- surface tension
	- temperature moderation
	- less dense as solid than liquid
	versatile solventrole in acid/base conditions
16 🗖	
٠	Water's polarity leads to unusual properties
	✓ polarity of water molecules
	 causes them interact with each other

	 this attraction results in formation of weak bonds
	called hydrogen bonds
17	The Properties of Water -
	Water's polarity leads to unusual properties
	✓ hydrogen bonds
	result when polar molecules interact with one another
	 partial – charge of one molecule is attracted to the partial + charge of another molecule
18 🗷	Figure 3.1 Hydrogen bonds between water molecules (Biology, 6th Ed., Campbell & Reece)
19 🗷	
20 🗖	The Properties of Water - Water's polarity leads to unusual properties
	√ hydrogen bonds
	– individually weak
	•
	•
	cumulatively strong
	 form between each water molecule and four of its neighboring molecules
	 hydrogen bonds extremely important to biological systems
21	The Properties of Water -
	Water's polarity leads to unusual properties
	✓Like no other <u>common</u> substance on Earth, water exists in nature in all three physical states (or phases of matter)
	- solid (ice)
	- liquid (water)
	– gas (water vapor)
22 🗷	Figure 3.x1 Water , liquid, solid, vapor (<i>Biology</i> , 6th Ed., Campbell & Reece)
	Figure 3.5x1 Ice, water, and steam (Biology, 6th Ed., Campbell & Reece)
24	The Properties of Water -
	Hydrogen bonds make liquid water cohesive
	✓ cohesion
	attraction resulting from polar water molecules being attracted to each other
	water molecules have a strong tendency to stick together water molecules have a strong tendency to stick together water molecules have a strong tendency to stick together
	much stronger for water than for most other liquids
	of water is important in living world
	• example, trees
25 🗷	Figure 3.2x Trees (Biology, 6th Ed., Campbell & Reece)
26	The Properties of Water -
🖵	Hydrogen bonds make liquid water cohesive
	✓ surface tension
	- related to cohesion

- a measure of how difficult it is to stretch or break surface of a liquid
- at air-water interface, all hydrogen bonds in water face downward, causing molecules of water surface to cling together
 - polar water molecules are "repelled" by nonpolar molecules in the air

27 The Properties of Water -

Hydrogen bonds make liquid water cohesive

√ surface tension

- water has highest surface tension of any liquid except for liquid mercury
 - •
- Figure 3.3 Walking on water (*Biology*, 6th Ed., Campbell & Reece)
- 29 The Properties of Water -

Hydrogen bonds make liquid water cohesive

√ adhesion

- attraction resulting from polar water molecules being attracted to other polar <u>non-water</u> molecules
 -)
- capillary action
 - · tendency of water to rise in small tubes, as a result of cohesive and adhesive forces
 - •
- 30 Figure 3.2 Water transport in plants (*Biology*, 6th Ed., Campbell & Reece)
- 31 ☐ Web/CD Activity 3B: Cohesion of Water

www.campbellbiology.com

32 The Properties of Water -

Water's hydrogen bonds moderate temperature

- ✓ Water has greater ability to resist temperature change than most other substances
 - due to its hydrogen bonds

√ heat

- amount of energy associated with movement of atoms and molecules in a body of matter

√ temperature

- intensity of heat
- average speed of molecules rather than total amount of heat in a body of matter

33 The Properties of Water -

Water's hydrogen bonds moderate temperature

- ✓ Water resists temperature increases
 - raising temperature of a substance involves
 - · adding heat energy to make its molecules move faster
 - in water, some of H bonds must first be broken
 - · to allow the molecules to move more freely
 - much of energy added to water is used up in breaking the H bonds
 - · only a portion of heat energy is available to speed movement of water molecules

34 The Properties of Water -

Water's hydrogen bonds moderate temperature

✓ Water stores heat

- heat is absorbed as H bonds break

 water absorbs and stores a large amount of heat while warming up only a few degrees

✓ Water cools slowly

- as water cools, H bonds re-form
 - · heat energy is released as H bonds form, thus slowing the cooling process

35 The Properties of Water -

Water's hydrogen bonds moderate temperature

- ✓ Water resists temperature change
 - enables organisms to maintain relatively constant internal temperatures

•

- crucial in stabilizing temperatures on earth
 - by storing heat from sun during warm periods, releasing heat during cooler times

36 The Properties of Water -

Water's hydrogen bonds moderate temperature

- ✓ Water resists tendency to evaporate or vaporize
 - liquids vaporize when some of their molecules move fast enough to overcome attractions that keep molecules close together
 - heating a liquid increases vaporization by increasing energy of molecules
 - providing some of molecules with enough energy to escape

37 The Properties of Water -

Water's hydrogen bonds moderate temperature

- ✓ Water resists tendency to vaporize
 - large amount of energy is required to change one gram of liquid water into a gas
 - water's resistance to vaporization results from the hydrogen bonding of its molecules
 - transition of water from a liquid to a gas requires input of energy to break hydrogen bonds
 - source of such energy can be surface of substance on which water is located

38 The Properties of Water -

Water's hydrogen bonds moderate temperature

- ✓ evaporation of water from surfaces causing a cooling of that surface
 - enables organisms to dispose of excess heat by evaporative cooling
 - organism gives up some heat energy to break H bonds in the water molecules
 - such molecules then have enough heat energy to escape
 - » they take that heat energy with them when they go
- Figure 3.4 Evaporative cooling (*Biology*, 6th Ed., Campbell & Reece)
- 40 The Properties of Water -

Ice is less dense than liquid water

- ✓ Water is less dense as a solid than as a liquid
 - most substances become more dense as temperature decreases
 - water is most dense at 4°C then becomes less dense as temperature decreases below that point
 - hydrogen bonds in liquid water are unstable
 - · they constantly break and re-form
 - hydrogen bonds in ice are stable
 - each molecule bonds to 4 neighbors forming a 3-D crystal
- 41 Figure 3.5 The structure of ice (Layer 1) (Biology, 6th Ed., Campbell & Reece)

- 42 Figure 3.5 The structure of ice (Layer 2) (Biology, 6th Ed., Campbell & Reece) 43 The Properties of Water -Ice is less dense than liquid water ✓ liquid water expands (becomes less dense) as it freezes because - H bonds joining water molecules in crystalline lattice keep molecules far enough apart to give ice a density about 10% less than density of water · less dense frozen water (ice) floats on more dense cold, unfrozen water 44 Figure 3.5x1 Ice, water, and steam (Biology, 6th Ed., Campbell & Reece) 45 The Properties of Water -Ice is less dense than liquid water ✓ Ice is less dense than liquid water - frozen water floats on liquid water • extremely important factor in enabling life to appear, survive and evolve - if ice were more dense than water it would sink » all ponds, lakes, oceans would freeze solid from the bottom to surface making life impossible 46 Figure 3.6x2 Ice floats and frozen benzene sinks (*Biology*, 6th Ed., Campbell & Reece) 47 The Properties of Water -Ice is less dense than liquid water ✓ Ice is less dense than liquid water since ice floats on water instead of sinking · a body of deep water freezes at top, becoming covered with floating ice ice insulates liquid water below it » preventing water from freezing solid » allowing certain animals and plants to survive below icy surface 48 Figure 3.6 Floating ice and the fitness of the environment (*Biology*, 6th Ed., Campbell & Reece) 49 🗷 Figure 3.6x1 Floating ice and the fitness of the environment: ice fishing (*Biology*, 6th Ed., Campbell & Reece) 50 Water - Its Properties and Its Role in the Fitness of Environment ✓ importance of water to life ✓ chemical characteristics of water - polarity and properties associated with it hydrogen bonds cohesion · surface tension · temperature moderation · less dense as solid than as liquid dissociation of water molecules · water is versatile solvent · role in acid/base conditions · effect of pH on living organisms 51 The Properties of Water -
 - Water is a versatile solvent

- ✓ Solution
 - liquid, that is uniform throughout (homogeneous), consisting of a mixture of two or more substances
 - solvent
 - · substance in a solution that serves as dissolving agent
 - · usually a liquid, capable of dissolving one or more other substances
 - solute

- substance which is dissolved by solvent

 ✓ solution that has water as its solvent is called an aqueous solution
- 52 The Properties of Water Water is a versatile solvent
 - ✓ Water is a versatile solvent
 - dissolves an enormous variety of solutes necessary for life
 - · water is solvent in all cells
 - results from polarity of its molecules
 - solutes whose charges or polarity allow them to stick to water molecules will dissolve in water, forming an aqueous solution
- 53 The Properties of Water Water is a versatile solvent
 - ✓ Water is a versatile solvent
 - consider how a crystal salt dissolves in water
 - Na⁺ and Cl⁻ ions at surface of salt crystal have affinities for different parts of water molecules
 - Na+ ions attract area of H2O at O
 - Cl ions attract + areas at H's
 - water molecules surround and separate Na⁺ and Cl⁻ ions (hydration shell)
 - causing salt crystal to dissolve
- 54 🗷 Figure 3.7 A crystal of table salt dissolving in water (*Biology*, 6th Ed., Campbell & Reece)
- 55 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- ✓ Most water molecules remain intact in aqueous solutions within living organisms
 - but some water molecules actually break apart in a process called dissociation or ionization
 - formation of ions when covalent bonds in a water molecule break spontaneously
- 56 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- √ Two types of ions result from dissociation of water molecules (H₂O)
 - hydrogen ions (H+) with + charge
 - hydroxide ions (OH⁻) with charge
- 57 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- ✓ Two types of ions result from dissociation
 - hydrogen ions (H⁺) with + charge result
 - when one of protons (from hydrogen atom nuclei) dissociate from the rest of the molecule
- 58 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

7

- ✓ Two types of ions result from dissociation
 - hydroxide ions (OH⁻) with charge results
 - · from the rest of the dissociated water molecule
 - which has retained shared electron from covalent bond, is negatively charged and forms a hydroxide ion, OH⁻
- 59 🗷 Unnumbered Figure (page 47) Dissociation of water molecule to hydronium and hydroxide ions (*Biology*, 6th Ed., Campbell & Reece)

60 🗷

61 ☐ Web/CD Activity 3C:

Dissociation of Water Molecules

www.campbellbioogy.com

62 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- ✓ Hydrogen and hydroxide ions result from spontaneous dissociation of water molecules in aqueous solutions
 - right balance of these two ions is required for proper functioning of chemical processes within organisms
 - the balance between these two ions is described and measured in terms of acids, bases and pH scale
- 63 The Properties of Water -

- any substance that dissociates in water to increase concentration of H+ ions
- √ base (or alkali)
 - any substance that combines with H⁺ ions when dissolved in water
- ✓ neutral
 - any substance in which concentrations of H⁺ ions and OH⁻ ions are equal
- 64 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions In Hiscale

- used to measure acidity or alkalinity of a solution
 - pH stands for" potential hydrogen"
 - the negative logarithm of hydrogen ion ([H+]) concentration in solution
 - » (negative logarithm of 10⁻⁷ equals 7, therefore pH of pure water is 7)
- 65 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions ✓ acid

- any substance that dissociates in water to increase concentration of H⁺ ions
- stronger an acid is, the more H⁺ ions it produces
- acidic solutions have pH values below 7
- strong hydrochloric acid (HCI), abundant in your stomach, ionizes completely in water to H⁺ and CI⁻ ions, has a pH of 1

66 🗷

67 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions ✓ base

- any substance that combines with H⁺ ions when dissolved in water
- by combining with H⁺ ions, a base lowers H⁺ ion concentration in solution
- basic, or alkaline, solutions have pH values above 7
- strong bases, such as sodium hydroxide (NaOH), have pH values of 12 or more

68 🗷

69 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions ✓ Neutral

- any substance in which concentrations of H⁺ ions and OH⁻ ions are equal
- neutral solutions have a pH value of 7
 - at 25°C, a liter of pure water contains 1/10,000,000 (or 10⁻⁷) mole of H⁺ ions
 - negative logarithm of 10⁻⁷ equals 7, and therefore the pH of pure water is 7

70 🗷

71 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- ✓ pH inside almost all cells, and in fluid surrounding cells, is fairly close to 7
 - even a slight change in pH can be harmful
 - biological fluids contain buffers that resist changes in pH
- 72 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions ✓ buffer

- substance that resists changes in pH by
 - accepting H+ ions when they're in excess
 - donating H+ ions when they're depleted
- acts as a reservoir for hydrogen (H+) ions
 - takes H⁺ ions from solution when their concentration increases
 - donates H⁺ ions to solution when their concentration falls
- buffers are not foolproof

73 🗷

74 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- √ important that cell maintain a constant pH level
 - pH of an organism is kept at relatively constant pH by buffers
 - within organisms most buffers act as pairs of substances
 - one an acid and one a base
 - example

_

75 ☐ Web/CD Activity 3D:

Acids, Bases, and pH

www.campbellbiology.com

76 The Properties of Water -

Acid precipitation threatens the environment

- √ changes in pH can harm living organisms
- ✓ changes in pH of environment can have drastic effects
 - acid precipitation (rain, fog, snow) can cause changes in pH of environment
 - pH changes can kill fish in lake, trees in forests, affect human health, erode buildings
- 77 🗷 Figure 3.10 The effects of acid precipitation on a forest (*Biology*, 6th Ed., Campbell & Reece)
- 78 Figure 3.10x2 Acid rain damage to statuary, 1908 & 1968 (Biology, 6th Ed., Campbell & Reece)
- 79 The Properties of Water -

Acid precipitation threatens the environment

- √ acid precipitation (rain, fog, snow)
 - precipitation with a pH below 5.6
 - rain with pH of 2-3, more acidic than vinegar, recorded in eastern US
 - fog with pH1.7, nearly acidic as human stomach digestive juices, recorded downwind from LA
- 80 The Properties of Water -

Acid precipitation threatens the environment

- √ acid precipitation (rain, fog, snow)
 - results mainly from presence in air of sulfur oxides and nitrogen oxides
 - which result mostly from the burning of fossil fuels in factories and automobiles
 - coal, oil and gas are fossil fuels
 - complex environmental problem with no easy solution
- 81 Figure 3.10x1 Pulp mill (*Biology*, 6th Ed., Campbell & Reece)
- 82 Rearrangements of Atoms
- 83 Rearrangements of Atoms -

Chemical reactions rearrange matter

- √ chemical reactions lead to chemical changes in matter
 - are essence of chemistry and life
- ✓ all chemical reactions involve
 - shifting of atoms from one molecule or ionic compound to another
 - · via formation and breaking of chemical bonds
 - without any change in number or identity of atoms
- 84 Rearrangements of Atoms -

Chemical reactions rearrange matter

- ✓ all chemical reactions involve
 - reactants
 - original molecules before a chemical reaction starts
 - products

- molecules resulting from chemical reaction
- 85 Rearrangements of Atoms -

Chemical reactions rearrange matter

- ✓ chemical reactions can be described by chemical equations
 - reactants
 - · written on left side of equation
 - products
 - · written on right side of equation
 - arrow (instead of =)between "reactants" side and "products" side
 - · means "yields"
 - · indicates direction in which reaction tends to proceed
- 86 Rearrangements of Atoms -

Chemical reactions rearrange matter

√ chemical equations

- example: $2H_2 + O_2$ **@** $2H_2O$ reactants products
- same numbers of H and O atoms appear on both left and right hand side of arrow but are grouped differently
 - (H-H) + (H-H) + (O-O) = (H-O-H) + (H-O-H)
 - 4 H, 2 O = 4 H, 2 O
 - 2 molecules of H plus 1 molecule of O yields 2 molecules of water
- 87 🗷
- 88 Figure 2.19 A molecular mimic (Biology, 6th Ed., Campbell & Reece)
- 89 Rearrangements of Atoms -

Chemical reactions rearrange matter

√ chemical equations

- can proceed in two directions
 - forward = to the right →
 - reverse = to the left ←
- when rates of forward and reverse reactions are equal, reaction has reached equilibrium
- 90 Rearrangements of Atoms -

Chemical reactions rearrange matter

√ chemical reactions

- organisms carry out a great number of chemical reactions, most involving carbon, that rearrange matter in significant ways
- examples
 - photosynthesis
 - production of vitamin A in human cells
- $\qquad 40\text{C, 2O, 60H} \qquad \qquad \rightarrow \qquad 40\text{C, 2O, 60H}$

92 The End