Matter & Energy: Thermodynamics, Enzymes, Membranes, Diffusion

EVPP 110 Lecture

Dr. Largen

Fall 2003

² Energy

✓ Energy

- capacity to do work
 - to move matter in a direction it would no move if left alone
- required by all organisms to survive
- exists in two states
 - kinetic energy
 - potential energy
- 3 🗖 Energy
 - ✓ Energy exists in two states
 - kinetic energy
 - · energy of motion
 - · moving objects perform work by causing matter to move
 - potential energy
 - stored energy
 - · objects that are not actively moving but have capacity to do so possess energy

4 🗖 Energy

✓ Energy exists in two states

- potential energy vs kinetic energy

- · boulder perched on a hilltop has potential energy
- as it begins to roll down hill some of energy is converted into kinetic energy

5 Energy

- ✓ energy exists in many forms
 - mechanical energy
 - heat
 - sound
 - electric current
 - light
 - radioactive radiation
 - chemical energy
 - · potential energy of molecules
 - · most important type of energy for living organisms

6 Energy

- ✓ many ways to measure energy
 - most convenient is heat
 - measure of random motion of molecules
 - all other forms of energy can be converted into heat

7 🗖 Energy

- \checkmark Life depends on fact that energy can be converted from one form to another
- ✓ thermodynamics
 - study of energy transformations

✓ Laws of Thermodynamics

- set of universal laws that govern all energy changes in the universe
- 8 Two laws govern energy conversion

✓ First Law of Thermodynamics

- concerns amount of energy in universe
- energy can be changed from one form to another but can neither be created or destroyed
- total amount of energy in universe remains constant
- 9 Two laws govern energy conversion

✓ First Law of Thermodynamics

- in any living system, potential energy can be shifted to other molecules, stored in different chemical bonds, convert into other forms
 - during each conversion some energy dissipates into environment in form of heat
 - · although amount of energy in universe remains constant
 - energy available to do work decreases as progressively more of it dissipates as heat
- 10 🗖 Two laws govern energy conversion

✓ Second Law of Thermodynamics

- concerns transformation of potential energy into heat, or random molecular motion
- disorder (or entropy) in universe is continuously increasing; disorder is more likely than order
 - entropy is a measure of disorder of a system
 - heat is one form of disorder

11 🗖 Two laws govern energy conversion

✓ Second Law of Thermodynamics

- entropy increases
- when universe was formed it had all potential energy it will ever have
 - has become more disordered ever since
 - every energy exchange has increased amount of entropy in universe

—

- ¹² Chemical reactions either store or release energy
 - ✓ Chemical reactions, including those within cells, are of two types

endergonic reactions

- "energy in"
- · require a net input of energy

exergonic reactions

- "energy out"
- release energy
- ¹³ Chemical reactions either store or release energy

✓ endergonic reactions

- yield products rich in potential energy
 - · start with reactants molecules that have little potential energy
 - · absorb energy from surroundings as reaction occurs
 - · products store more energy that reactants did
- don't proceed spontaneously
 - requires input of energy
- example is photosynthesis

14 💵

¹⁵ Chemical reactions either store or release energy

✓ exergonic reactions

- reactants store more energy than products
 - energy is released to surroundings as reaction proceeds
- tend to proceed spontaneously
 - · does not require an input of energy
- example is cellular respiration
 - •

16 🗷

¹⁷ Chemical reactions either store or release energy

✓ Cellular metabolism

- sum of exergonic and endergonic reactions carried out by working cells
- ¹⁸ Energy and the Cell

✓ Energy coupling

- using energy released from exergonic reactions to drive essential endergonic reactions
 - usable energy released from most exergonic reactions is stored in ATP
 - · energy used in most endergonic reactions comes from ATP
- ✓ATP powers nearly all forms of cellular work
- ¹⁹ Energy and the Cell

✓ ATP (adenosine triphosphate)

- has 3 parts, connected by covalent bonds
 - adenine = a nitrogenous base
 - ribose = a 5-carbon sugar

• phosphate groups = a chain of 3 phosphate groups

20 🗷

21 🗷

²² Energy and the Cell

✓ The ATP cycle (ATP is renewable resource)

- hydrolysis of ATP to ADP + P

- · removes a phosphate
- exergonic reaction
 - releases energy for endergonic reactions
- dehydration synthesis of ADP + P to ATP
 - adds a phosphate
 - endergonic reaction
 - requires energy from exergonic reactions

23 🗷

24 🗖 How Enzymes Work

✓ Energy of activation (E_A)

- amount of energy that reactants must absorb to start a chemical reaction
- can be thought of as an energy barrier
- since most reactions require energy to get started
 - •
- ²⁵ How Enzymes Work

✓ Energy of activation (E_A)

- illustrated with "jumping bean" (JB) analogy
- ²⁶ How Enzymes Work

✓ solution for speeding up a reaction lies in enzymes

- protein molecules that serve as biological catalysts
- increase rate of a reaction without being changed into a different molecule
- does not add energy to a cellular reaction
 - speeds up reaction be lowering the Energy of activation (E_A), or energy barrier
- ✓ without enzymes, many reactions would occur too slowly to sustain life

27 - How Enzymes Work

✓ enzyme lowers energy barrier

- leading to speeding up of reaction

28 🗷

29 🗷

³⁰ How Enzymes Work

√ enzymes

- can lower **E**_A by holding reactant molecules in a particular position
- selective in which reactions they catalyze
- have a unique 3-dimensional shape (since it's a protein) that determines specificity
- recognize only **substrate**(s) of reaction it catalyzes
 - substrate is substance enzyme acts on

³¹ How Enzymes Work

✓ catalyzing a reaction

- enzyme binds to its substrate
 - at active site
 - pocket or groove on surface of enzyme
 - » active site fits only one substrate molecule
- while joined, substrate changes into product
- enzyme releases products
- enzyme emerges from reaction unchanged
- ³² How Enzymes Work

✓ enzyme emerges from reaction unchanged

- active site now ready for another substrate molecule and another cycle
- single enzyme molecule may act upon thousands or millions of substrate molecules per second

33 🗷

- ³⁴ How Enzymes Work
 - ✓ Activity of an enzyme is affected by its environment
 - conditions under which it is most effective
 - any chemical or physical factor that alters an enzyme's three-dimensional shape can affect its ability to catalyze a reaction

35 🗖 How Enzymes Work

✓ Factors affecting enzyme activity

- temperature
- pH
- salinity
- ³⁶ How Enzymes Work
 - ✓ Factors affecting enzyme activity
 - temperature
 - at optimum temperatures (35-40°C)
 - highest rate of contact occurs between enzyme's reactive site and substrate
 - because temperature affects molecule motion
 - at high temperatures
 - enzyme can be denatured, lose its 3-dimensional shape, and lose its function

³⁷ How Enzymes Work

- ✓ Factors affecting enzyme activity
 - pH and salinity
 - · cause variations in number of salt and hydrogen ions
 - can interfere with some of chemical bonds that maintain protein structure
 - optimum pH = 6-8
 - optimum salinity = cell salinity

³⁸ How Enzymes Work

✓ Factors affecting enzyme activity

- presence of non-protein helpers called cofactors
 - required by some enzymes
 - may be inorganic molecules, called cofactors
 - may be organic molecules, called **coenzymes**

³⁹ How Enzymes Work

✓ inhibitor

- chemical that interferes with an enzyme's activity
- two types of inhibitors
 - competitive inhibitor
 - non-competitive inhibitor

40 🗷

⁴¹ How Enzymes Work

✓ competitive inhibitor

- -resembles enzyme's normal substrate
- -competes with substrate for enzyme's active site
- 42 🗷
- 43 How Enzymes Work

✓ non-competitive inhibitor

- -does not compete with active site
- -binds to enzyme outside of active site
 - binding causes shape of enzyme to change

44 🗷

45 🗷

46 • Membrane Structure and Function

✓ Many metabolic reactions occur simultaneously in a cell

- teams of enzymes function like assembly lines
- right enzymes have to be in right place at right time
- ✓ Membranes provide the structural basis for metabolic order
- ⁴⁷ Hembrane Structure and Function
 - ✓ For all types of cells
 - plasma membrane is edge of life
 - · forming boundary between living cell and its surroundings
 - ✓ For most eukaryotic cells
 - membranes form
 - most organelles
 - · compartments within cells that contain enzymes
- ⁴⁸ Membrane Structure and Function
 - ✓ <u>All</u> membranes are selectively permeable
 - control passage of molecules into and out of cell (or organelle)
 - · takes up substances needed by cell
 - · disposes of cell waste
 - _

⁴⁹ Hembrane Structure and Function

✓ Plasma membrane (cell membrane)

- very thin
 - · 20 times too small to be seen by light microscope
 - can be seen by electron microscope
- _

⁵⁰ Membrane Structure and Function

✓ Plasma membrane (cell membrane) is composed mainly of phospholipids

- phospholipid molecule has two parts, which interact oppositely with water
 - "head"
 - glycerol and phosphate group
 - polar = hydrophilic
 - " tail"
 - two fatty acid tails
 - non-polar = hydrophobic

51 🗷

⁵² Membrane Structure and Function

- ✓ Structure of phospholipids is suited to their role in membranes
 - in water, they spontaneously form a stable two-layer sheet, a phospholipid bilayer
 - hydrophilic (polar) heads face outwards towards the water
 - hydrophobic tails point inward, shielded from the water

53 🗷

⁵⁴ Membrane Structure and Function

✓ membranes are **selectively permeable**

- partly due to hydrophobic interior of bilayer
 - · nonpolar, hydrophobic molecules are soluble in lipids
 - polar, hydrophilic molecules are not soluble in lipids

⁵⁵ • Membrane Structure and Function

- ✓ Structure of plasma membrane is described as a fluid mosaic
 - mosaic = surface made of small fragments
 - fluid = moveable
 - most of the protein and phospholipid molecules can drift laterally w/in membrane
- ⁵⁶ Membrane Structure and Function
 - √two surfaces of plasma membrane are different
 - outer surface (exterior of cell)

- has carbohydrates covalently bonded to proteins and lipids in membrane
- inner surface (interior of cell)

57 🗷

⁵⁸ Diffusion and Osmosis

✓ Diffusion

- tendency for particles of any kind to spread out spontaneously to regions where they are less concentrated
- requires no work, results from
 - random motion (kinetic energy)
 - universal tendency of order to deteriorate into disorder (entropy)
- ✓ diffusion of molecules across a biological membrane is called **passive transport**

⁵⁹ Diffusion and Osmosis

✓ passive transport

- concentration affects direction in which a substance diffuses across a membrane
 - substance moves from area of higher concentration to area of lower concentration until equilibrium is reached
 - a substance diffuses down its concentration gradient
 - at equilibrium, there is no **net** change in concentration on either side of membrane

60 🗷

61 🗷

62 🗖 Diffusion and Osmosis

✓ Passive transport

- different substances diffuse independently of one another
 - ٠
- is extremely important to all cells
 - ٠

63 Diffusion and Osmosis

✓ Osmosis

- special case of passive transport
 - involving diffusion of water molecules across a selectively permeable membrane
 - · water molecules move down their concentration gradient
- plays role because cells contain and are surrounded by aqueous solution
 - · solution contains solutes
 - solutes also diffuse down their concentration gradient

64 🗖 Diffusion and Osmosis

✓ Osmosis

- aqueous solution on either side of membrane can be described on basis of concentrations of their solutes
 - solution with higher concentration of solutes, hypertonic (hyperosmotic)
 - solution with lower concentration of solutes, hypotonic (hypoosmotic)
 - when solutions on both sides of membrane have same concentration of solutes, **isotonic** (**isoosmotic**)

65 🗖 Diffusion and Osmosis

✓ Osmosis

- as solutes diffuse
 - from hypertonic solution (area of higher concentration) across membrane into hypotonic solution (area of lower concentration)
- water molecules will move via osmosis
 - from hypotonic solution (area of higher concentration of water molecules) across membrane into hypertonic solution (area of lower concentration of water molecules)

66 🗷

67 🗷

68 Diffusion and Osmosis

✓ If an animal cell is immersed in

- isotonic solution
 - cell's volume remains constant
 - gains water at same rate it loses it
- hypotonic solution (lower solute conc than cell)
 - cell gains water (loses solutes), swells, may lyse (pop)
- hypertonic solution (higher solute conc than cell)
 - cell loses water (gains solutes), shrivels, may die

⁶⁹ Diffusion and Osmosis

- ✓ If a plant cell is immersed in
 - isotonic solution
 - · cell is flaccid, plant wilts

70 Diffusion and Osmosis

✓ If a plant cell is immersed in

- hypotonic solution (lower solute conc than cell)
 - cell is turgid, plant is healthiest
 - ٠
- hypertonic solution (higher solute conc than cell)
 - cell loses water (gains solutes), shrivels, may die
- 71 🗷

72 🗷

73 Active Transport

✓ Substances can be moved across a membrane <u>against</u> its concentration

- process called active transport
 - requires a cell to expend energy – usually in the form of ATP
 - transport protein actively pumps a substance across the membrane <u>against</u> substance's concentration gradient

74 🗷

75 🗷

76 The End