¹□ Matter & Energy: Chemistry of Life

EVPP 110 Lecture GMU Dr. Largen

Fall 2003

² Molecules are the building blocks of life

✓ Molecules

- building blocks of life
 - four major types of biological macromolecules
 - carbohydrates
 - lipids
 - proteins
 - nucleic acids
 - · we'll return to these later

3 Molecules are the building blocks of life

√ Molecules

- consist of 2 or more atoms bound together
- all small in comparison to what we can see
- some are "small"
- others are "gigantic"
 - · thousands of atoms
 - · organized into hundreds of smaller molecules linked into long chains
 - · almost always synthesized by living things

⁴ ☐ Molecules are the building blocks of life

✓ organic molecules

- compounds that are synthesized by cells **and** contain carbon

⁵ □ Molecules are the building blocks of life

✓ carbon

- plays central role in organic molecules
- involved in almost all molecules made by cells

.

- unparalleled in its ability to form large, diverse molecules
- containing compounds most common substances in living organisms, other than water

6 ☐ Carbon plays central role in organic molecules

√ carbon

- forms 4 covalent bonds
- single, double, or triple covalent bonds w/ other carbon atoms
- forms variety of molecular shapes
- combines with hydrogen to form hydrocarbons

- bonds with H, N, O, S
- forms isomers

¬□ Molecules - life's building blocks

- √ Chemistry of carbon
 - forms 4 covalent bonds
 - outer electron shell can hold 8 electrons
 - · contains only 4 electrons in its outer shell
 - can form up to 4 covalent bonds (8-4=4, or 4+4=8)
- 8 Figure 4.3 Valences for the major elements of organic molecules (*Biology*, 6th Ed., Campbell & Reece)
- 9 🚁
- 10 🗷

11 Molecules - life's building blocks

- ✓ Chemistry of carbon
 - can form single, double, or triple covalent bonds with other carbon atoms

 - · can readily form chains of carbon atoms
- 12 🗷 Figure 4.2 The shapes of three simple organic molecules (*Biology*, 6th Ed., Campbell & Reece)

13 Molecules - life's building blocks

- √ Chemistry of carbon
 - forms variety of molecular shapes
 - · carbon chains, can be
 - straight
 - branched
 - closed into rings
 - · can form greater variety of molecules than any other element
- 14 Figure 4.4 Variations in carbon skeletons (*Biology*, 6th Ed., Campbell & Reece)
- 15 Figure 4.4x Hydrocarbons: molecular models (*Biology*, 6th Ed., Campbell & Reece)

16 Molecules - life's building blocks

- ✓ Chemistry of carbon
 - combines w/hydrogen, forms hydrocarbons
 - · organic molecules consisting only of C and H
 - · C H covalent bonds store a lot of energy
 - hydrocarbons make good fuels
 - »
 - most biologically important molecules are not hydrocarbons
- 17 Figure 4.2 The shapes of three simple organic molecules (Biology, 6th Ed., Campbell & Reece)

18 Molecules - life's building blocks

- √ Chemistry of carbon
 - carbon forms bonds with H, N, O, S

- · forming many other biologically significant molecules
 - _
 - including biologically important functional groups
- 19 🔽
- 20 Web/CD Activity 4A:
 Diversity of Carbon-Based Molecules

- 21 Molecules life's building blocks
 - ✓ Chemistry of carbon
 - forms isomers
 - alternative forms of a molecule which have same empirical formula but atoms are arranged in different way
 - · types of isomers
 - structural isomers
 - stereoisomers (geometric)
 - enantiomers
 - · we'll return to this later
- ²² The construction of biologically important organic molecules
 - ✓ any organic molecule can be thought of as a carbon-based core to which specific groups
 of atoms with specific chemical properties are attached
 - √ carbon skeleton or core
 - √ functional groups
- ²³ The construction of biologically important organic molecules
 - ✓ carbon skeleton or core
 - repeating carbons to which specific groups of atoms with definite chemical properties are attached
 - represented in diagrams by
- **R** =."remainder"
- 24 ☐ The construction of biologically important organic molecules

 ✓ functional groups
 - groups of atoms w/specific chemical properties attached to C core
 - retain their chemical properties no matter where they occur
 - most compounds in cells contain two or more different functional groups
 - every amino acid contains at least two functional groups
 - · an amino group
 - · a carboxyl group
- ²⁵ The construction of biologically important organic molecules
 - √ functional groups
 - there are several biologically important functional groups
 - hydroxyl (R-OH)
 - carbonyl (R-[C=O]-H, or (R-[C=O]-R)
 - carboxyl (R-[C=O]-OH, R-COOH)

- amino (R-NH₂)
- phosphate (R-O-P[=O]-OH]-OH)
- sulfhydryl (R-SH)
- methyl (R-CH₃)
- 26 🗷
- 27 Figure 4.8 A comparison of functional groups of female (estradiol) and male (testosterone) sex hormones (*Biology*, 6th Ed., Campbell & Reece)

²⁸ □ Web/CD Activity 4C: Functional Groups

www.campbellbiology.com

²⁹ Making & Breaking Macromolecules

- √ Biological macromolecules
 - polymers
 - made up of repeating subunits (monomers)
 - four categories
 - · each category contains different subunits
 - · assembled in the same way
 - dehydration synthesis
 - · disassembled in the same way
 - hydrolysis

30 Making & Breaking Macromolecules

- √ dehydration synthesis (condensation reaction)
 - macromolecule is assembled by removing an -OH group from one subunit and an H from other subunit
 - constitutes removal of molecule of H₂O
 - also called "water-losing" reaction
 - · energy is required to break chemical bonds when water is extracted
 - · cells must supply energy to assemble macromolecules

31 Making & Breaking Macromolecules

- √ dehydration synthesis
 - anabolic reactions
 - · reactions in which macromolecules are built from smaller subunits, requires
 - energy
 - catalysis
 - » process of positioning (reacting substances must be held close together)
 - » process of stressing bonds (correct chemical bonds be stressed and broken)
 - » these processes carried out by a special class of proteins known as enzymes
- 32 🗷
- 33 🗷
- 34 Making & Breaking Macromolecules

- ✓ Cells also disassemble macromolecules into their constituent subunits by performing
 - catabolic reactions
 - reactions in which macromolecules are synthesized by disassembling other macromolecules into their constituent parts
 - energy released
 - are essentially the reverse of dehydration synthesis, called
 - hydrolysis (digestion)

35 Making & Breaking Macromolecules

- √ hydrolysis (digestion)
 - macromolecules created by disassembling other macromolecules into their constituent parts
 - by adding an -OH group to form one subunit and an H to form other subunit
 - constitutes addition a molecule of water (H₂O) for every macromolecule that is disassembled
 - energy is released when energy-storing bonds are broken
- 36 🗷
- 37 🗷
- 38 ☐ Web/CD Activity 5A:
 Making and Breaking Polymers

- ³⁹ ☐ The **4 major classes** of biological macromolecules
 - √ carbohydrates
 - monosaccharides
 - ✓ lipids
 - glycerol
 - fatty acids
 - ✓ proteins
 - amino acids
 - √ nucleic acids (DNA, RNA)
 - nucleotide
- ⁴⁰ The **4 major classes** of biological macromolecules
 - √ carbohydrates
 - monosaccharides
 - ✓ lipids
 - glycerol
 - fatty acids
 - ✓ proteins
 - amino acids

√ nucleic acids (DNA, RNA) nucleotide Polymers are large molecules consisting of long chains of repeating subunits 42 🗷 ⁴³ Biological macromolecules have certain functions in organisms √ carbohydrates - loosely defined group - molecules that contain C, H, and O in molecular ratio of 1:2:1, with empirical formula of $(CH_2O)_n$ - functions · energy storage molecules · structural elements ⁴⁴ Biological macromolecules have certain functions in organisms ✓ Carbohydrates - named based on number of sugar units they contain · monosaccharides – one sugar unit (mono-) disaccharides - two sugar units (di-) polysaccharides many sugar units (poly-) 45 Diological macromolecules have certain functions in organisms √ Carbohydrates - monosaccharides structure - simplest carbohydrate - is a single sugar unit - contain 3 to 7 carbons (typically 6-7) - empirical formula, C₆H₁₂O₆ or (CH₂O)₆ - exist in straight chain form or in rings - in water solutions they almost always form rings ⁴⁶ ■ Biological macromolecules have certain functions in organisms

✓ carbohydrates – monosaccharides

- function
 - play central role in energy storage
 - » glucose most important
- · examples
 - glucose

	- fructose
🗀	 glyceraldehyde phosphate
	Figure 5.3 The structure and classification of some monosaccharides (<i>Biology</i> , 6th Ed., Campbell & Reece)
	Figure 5.4 Linear and ring forms of the monosaccharide glucose (<i>Biology</i> , 6th Ed., Campbell & Reece)
	Figure 5.3x Hexose sugars (<i>Biology</i> , 6th Ed., Campbell & Reece)
50	Web/CD Activity 5B:
	Models of Glucose
	www.campbellbiology.com
51 –	,
31	Biological macromolecules have certain functions in organisms
	✓ Carbohydrates
	disaccharides
	• structure
	- "double sugars"
	 two monosaccharides joined by a covalent bond
52 🗖	Biological macromolecules have certain functions in organisms
	✓carbohydrates
	- disaccharides
	• function
	 play a role in the transport of sugars
	»
	»
53 🗖	Biological macromolecules have certain functions in organisms
	√ carbohydrates
	disaccharides
	• examples
	» sucrose
	» lactose
	Figure 5.5 Examples of disaccharide synthesis (Biology, 6th Ed., Campbell & Reece)
	Figure 5.5x Glucose monomer and disaccharides (<i>Biology</i> , 6th Ed., Campbell & Reece)
56 🗖	Biological macromolecules have certain functions in organisms
	✓ carbohydrates
	 polysaccharides
	structure
	many monosaccharides put together
	»
	precise number of sugar units varies»
	– chains can be single or branched
57 🗖	Biological macromolecules have certain functions in organisms

√ carbohydrates

- polysaccharides
 - · function
 - storage of energy
 - structural
- 58 ☐ Biological macromolecules have certain functions in organisms

 ✓ carbohydrates
 - polysaccharides
 - functions
 - storage of energy
 - » starch = formed in plants, consists of glucose units
 - » glycogen = formed in animals, consists of glucose units
- 59 Figure 5.6 Storage polysaccharides (*Biology*, 6th Ed., Campbell & Reece)
- 60 ☐ Biological macromolecules have certain functions in organisms

 ✓ carbohydrates
 - polysaccharides
 - functions
 - structural
 - » cellulose = formed in plants, consists of glucose units, component of plant cell walls
 - » chitin = formed in insects, fungi and certain other organisms, consists of glucosamine units (contains N)
- 61 ☐ Biological macromolecules have certain functions in organisms
 - ✓ carbohydrates
 - polysaccharides
 - · functions
 - structural
 - » glycocalyx = coating or layer of oligosaccharides on outside of an animal cell
 - » glycoproteins = protein with covalently attached carbohydrates
- 62 Biological macromolecules have certain functions in organisms
 - √ carbohydrates
 - polysaccharides
 - · functions
 - structural
 - » glycolipids = lipid with polysaccharide attached
 - » peptidoglycan = modified protein or peptide possessing an attached carbohydrate, bacterial cell walls
- 63 Biological macromolecules have certain functions in organisms
 - √ carbohydrates
 - polysaccharides
 - · examples

- starch = amylose, amylopectin - glycogen - cellulose - chitin 64 🗷 65 🗷 66 Figure 5.8 The arrangement of cellulose in plant cell walls (Biology, 6th Ed., Campbell & Reece) ⁶⁷ Biological macromolecules have certain functions in organisms √ Carbohydrates - sugar isomers · more than one sugar can have same empirical formula but different arrangement of their - these structural differences can account for functional differences between isomers · two types of isomers - structural isomers - stereoisomers (geometric isomers) 68 Diological macromolecules have certain functions in organisms √ Carbohydrates - sugar isomers · structural isomers - identical chemical groups bonded to different carbon atoms - example: glucose and fructose • stereoisomers (geometric isomers) - identical chemical groups bonded to same carbon atoms but in different orientations - example: glucose and galactose 69 🗷 70 🗷 71 Figure 4.6 Three types of isomers (*Biology*, 6th Ed., Campbell & Reece) 72 Web/CD Activity 4B: Isomers www.campbellbiology.com 73 ☐ Web/CD Activity 5C: Carbohydrates www.campbellbiology.com ⁷⁴ The **4 major classes** of biological macromolecules √ carbohydrates - monosaccharides

✓ lipids

- glycerol
- fatty acids

✓ proteins

- amino acids

√ nucleic acids (DNA, RNA)

- nucleotide

75 ☐ Biological macromolecules have certain functions in organisms ✓ Lipids

- loosely defined group
- molecules with one main characteristic
 - insoluble in water
- main type
 - fats (triglycerides or triacylglycerols)
- other types
 - phospholipids
 - steroids
 - waxes

76 ☐ Biological macromolecules have certain functions in organisms

- fats (triglycerides or triacylglycerols)
 - structure = glycerol + 3 fatty acids
 - glycerol
 - » 3-carbon alcohol with each carbon bearing a hydroxyl group
 - fatty acids
 - » long hydrocarbon chains ending in a carboxyl group

»

Properties 77 ☐ Biological macromolecules have certain functions in organisms ✓ Lipids

- fats (triglycerides or triacylglycerols)
 - functions
 - energy storage
 - » efficient energy storage molecules because of their high concentrations of C-H bonds
 - insulation
 - cushioning
- 78 🗷
- 79 Figure 5.10 The synthesis and structure of a fat, or triacylglycerol (*Biology*, 6th Ed., Campbell & Reece)
- ⁸⁰ ☐ Biological macromolecules have certain functions in organisms✓Lipids

- saturated and unsaturated fats

 based on absence/ presence of double bonds between carbon atoms and number of hydrogen atoms

Biological macromolecules have certain functions in organisms *Lipids

- saturated fats
 - all internal C atoms are bound to at least two other C atoms
 - results in maximum number of H atoms.
 - said to be saturated
 - · fatty acid chains tend to be straight and fit close together
 - · most are solid at room temperature
 - such as butter
- 82 🗷
- 83 🗷
- Biological macromolecules have certain functions in organisms

 Lipids
 - unsaturated fats
 - · double bonds between one pair of C atoms
 - results in less than maximum number of hydrogen atoms
 - because double bonds replace some of hydrogen atoms
 - said to be unsaturated
 - · most are liquid at room temperature
 - such as oil

Biological macromolecules have certain functions in organisms *Lipids*

- unsaturated fats
 - polyunsaturated fats
 - double bonds between 2+ pairs of C atoms
 - · have low melting points because fatty acid chains can't closely align
 - double bonds cause kinks
 - most are liquid at room temperature
 - » such as corn oil
- 86 🗷
- 87 🗷
- 88 Biological macromolecules have certain functions in organisms
 - fats (triglycerides or triacylglycerols)

- · other types and their function
 - phospholipids
 - » modified fats with two fatty acid chains rather than three
 - » one fatty acid chains is replaced by a phosphate group
 - » has hydrophillic head, hydrophobic tail
 - » structure of cell membranes = phospholipid bilayer

89 🗷

- 90 Figure 5.12 The structure of a phospholipid (*Biology*, 6th Ed., Campbell & Reece)
- 91 🗷 Figure 5.13 Two structures formed by self-assembly of phospholipids in aqueous environments (Biology, 6th Ed., Campbell & Reece)

92 Biological macromolecules have certain functions in organisms

- fats (triglycerides or triacylglycerols)
 - · other types and their function
 - terpenes
 - » long chain lipids which are components of many biologically important pigments
 - » chlorophyll and other plant pigments
 - » vitamin A (retinol)
 - » retinal visual pigment of eyes of mollusks, insects, and vertebrates
 - » rubber and other plant products

93 Biological macromolecules have certain functions in organisms

- fats (triglycerides or triacylglycerols)
 - · other types and their function
 - prostaglandins = modified fatty acids w/ 2 nonpolar tails attached to 5 C ring
 - » local chemical messengers in animal tissues
 - waxes
 - » waterproof coating on leaves, bird feathers, mammalian skin, arthropod exoskeleton
- 94 🗷

95 Biological macromolecules have certain functions in organisms✓ lipids

- fats (triglycerides or triacylglycerols)
 - other types and their function
 - steroids = lipids composed of 4 carbon rings
 - » hormones
 - » regulatory
 - » cholesterol
 - » found in eukaryotic cell membrane
 - » bile salts (emulsify fats)

96 🗷

97 □ Web/CD Activity 5D: Lipids

98 The 4 major classes of biological macromolecules

√ carbohydrates

- monosaccharides

✓ lipids

- glycerol
- fatty acids

✓ proteins

- amino acids

✓ nucleic acids (DNA, RNA)

- nucleotide

99 Biological macromolecules have certain functions in organisms

✓ proteins

- perform many functions
- are all polymers of only 20 amino acids
- structure
 - amino acids joined by peptide bonds
- levels of structure
- functions
- types of

100 ☐ Biological macromolecules have certain functions in organisms ✓ proteins

protonio

- structure
 - made up of repeating subunits, amino acids
 - joined by peptide bonds
 - molecules containing
 - » an amino group (-NH₂)
 - » a carboxyl group (-COOH)
 - unique chemical properties determined by nature of the side group

101 🗷

102 ☐ Biological macromolecules have certain functions in organisms

✓ proteins

- structure
 - · amino acids
 - grouped into 5 chemical classes based on their side groups
 - » nonpolar
 - » polar
 - » ionizable
 - » aromatic (rings)
 - » special function

103 🗷

104 🗷	
105 🗷	
106 🗷	
107 🗖	Biological macromolecules have certain functions in organisms / proteins - structure • peptide bonds join amino acids together - covalent » - has partial double bond characteristic - is stiff » amino acids are not free to rotate around C-N linkage »
108 🗷	
109 🗷	
110 🗖	Biological macromolecules have certain functions in organisms ✓ proteins – levels of structure • primary • secondary – motifs • tertiary
	• domains
111	• quaternary
	Biological macromolecules have certain functions in organisms
	✓ proteins – levels of structure
112 🗷	 primary result from specific amino acid sequence one dimensional
113	rigate on the primary and country of a protein (protegy, and Ed., Campbell a Neces)
113	Biological macromolecules have certain functions in organisms ✓ proteins – levels of structure • secondary – results from hydrogen bonding between individual amino acids – two dimensional – two patterns of hydrogen bonding → b pleated sheets

→ahelix

- 114 🗷
- ¹¹⁵ ☐ Biological macromolecules have certain functions in organisms ✓ proteins
 - levels of structure
 - tertiary
 - final folded shape of protein
 - globular, 3-D
 - results from hydrophobic interactions with water
 - domains
 - different sections of a protein fold into a structurally independent globular protein like knots on a rope
- 116 Figure 5.22 Examples of interactions contributing to the tertiary structure of a protein (*Biology*, 6th Ed., Campbell & Reece)
- 117 🗷
- Biological macromolecules have certain functions in organisms
 - levels of structure
 - quaternary
 - two or more polypeptide chains associate to form a functional protein
- 119 🗷
- 120 🗷 Figure 5.23 The quaternary structure of proteins (*Biology*, 6th Ed., Campbell & Reece)
- 121 Figure 5.24 Review: the four levels of protein structure (*Biology*, 6th Ed., Campbell & Reece)
- Biological macromolecules have certain functions in organisms

 ✓ proteins
 - levels of structure
 - · how proteins fold and unfold
 - chaperone proteins
 - » help protein fold correctly
 - denaturation
 - » process by which a protein changes its shape or unfolds
- Biological macromolecules have certain functions in organisms

 ✓ proteins
 - levels of structure
 - · how proteins fold and unfold
 - chaperone proteins
 - » help protein fold correctly
 - » rescue proteins caught in a wrongly folded state giving them another chance to fold correctly

	» chaperone deficiency may play role in disease
124 🗷	
125 🗖	Biological macromolecules have certain functions in organisms
	√proteins
	- levels of structure
	how proteins fold and unfold
	denaturation
	 process by which a protein changes its shape (secondary & + structure) or even unfolds when its "tolerance range" for some factor is exceeded results from breaking hydrogen bonds, disrupting polar - nonpolar interactions
126 🗖	Biological macromolecules have certain functions in organisms
	√proteins
	- levels of structure
	how proteins fold and unfold
	 denaturation can be caused by
	» heats
	» acids
	» bases
	» salts
127 🗷	Figure 5.25 Denaturation and renaturation of a protein (<i>Biology</i> , 6th Ed., Campbell & Reece)
128 🗷	
129 🗷	
130 🗖	Web/CD Activity 5F:
	Protein Structure
	www.campbellbiology.com
131 🗖	Biological macromolecules have certain functions in organisms
	✓proteins
	- functions
	• regulation
	• structural
	• contractile
	• transport
	energy storage
	• defense
	osmotic regulation
132 🗖	Biological macromolecules have certain functions in organisms /proteins
	ψ proteins

	- functions
	• regulation
	 enzymes catalysts in metabolic pathways
	- hormones
	in gene expression
133 🗖	Biological macromolecules have certain functions in organisms
	✓ proteins
	- functions
	• structural
	cell membranescell cytoskeleton components
	– cell cytoskeleton components – collagen
	– elastin
	- keratin
134 🗖	Biological macromolecules have certain functions in organisms
	✓proteins
	– functions
	• contractile
	muscle fibers
	• transport
	– hemoglobin
	– myoglobin
135 🗷	
136 🗖	Biological macromolecules have certain functions in organisms
	✓ proteins
	- functions
	energy storage
	– egg albumin
	plant seedsdefense
	– antibodies
	osmotic regulation
	– globulins
137 🗷	Table 5.1 An Overview of Protein Functions (Biology, 6th Ed., Campbell & Reece)
138 🗖	Web/CD Activity 5E:
	Protein Function
	www.campbellbiology.com
139 🗖	Biological macromolecules have certain functions in organisms ✓ proteins

- types of
 - · dipeptides
 - two amino acids
 - · polypeptides
 - many amino acids
 - fibrous
 - globular

The **4 major classes** of biological macromolecules

√ carbohydrates

- monosaccharides

√ lipids

- glycerol
- fatty acids

✓ proteins

- amino acids

✓ nucleic acids (DNA, RNA)

- nucleotide

141 Biological macromolecules have certain functions in organisms

✓ nucleic acids

- information storage devices of cells
- long polymers of repeating subunits called **nucleotides**
- two types
 - DNA
 - deoxyribonucleic acid
 - RNA
 - ribonucleic acid

Biological macromolecules have certain functions in organisms

✓ nucleic acids

- genetic material organisms inherit from their parents consists of DNA
 - · within DNA are genes
 - specific stretches of that program amino acid sequences of proteins

143 ☐ Biological macromolecules have certain functions in organisms

✓ nucleic acids

- nucleotides
 - consist of three components
 - five-carbon sugar
 - phosphate group
 - nitrogenous base
 - » organic nitrogen-containing base

144 🗷	
145	Biological macromolecules have certain functions in organisms ✓ nucleic acids – nucleotides • consist of three components – five-carbon sugar » ribose in RNA » deoxyribose in DNA
146 🗷	
147	Biological macromolecules have certain functions in organisms ✓ nucleic acids – nucleotides • consist of three components – phosphate group
148 🗷	
149 🗖	Biological macromolecules have certain functions in organisms ✓ nucleic acids – nucleotides • consist of three components – nitrogenous base » two types of organic bases occur in nucleotides » purines » pyrimidines
151 🗖	Biological macromolecules have certain functions in organisms ✓nucleic acids - nucleotides • two types of organic bases occur in nucleotides - purines = large, double-ringed molecules » adenine (A) - found in RNA and DNA » guanine (G) - found in RNA and DNA - pyrimidines = smaller, single-ringed molecules
153 🗖	Biological macromolecules have certain functions in organisms ✓ nucleic acids – nucleotides

- · two types of organic bases occur in nucleotides
 - purines
 - pyrimidines = smaller, single-ringed molecules
 - » cytosine (C) found in RNA and DNA
 - » thymine (T) found in DNA only
 - » uracil (U) found in RNA only
- 154 🗷
- ¹⁵⁵ ☐ Biological macromolecules have certain functions in organisms ✓ nucleic acids
 - nucleotides
 - nucleotides are linked together with phosphodiester bonds
 - result when phosphate group of one nucleotide binds to hydroxyl group of another nucleotide, releasing water
 - creates a "sugar-phosphate" backbone
- 156 🗷
- 157 🗷
- 158 Figure 5.29 The components of nucleic acids (Biology, 6th Ed., Campbell & Reece)
- Web/CD Activity 5H:
 Nucleic Acid Structure

- Biological macromolecules have certain functions in organisms

 ✓ nucleic acids
 - types of and functions
 - RNA
 - DNA
 - ATP and other high energy molecules
- Biological macromolecules have certain functions in organisms
 - types of and functions
 - RNA
 - usually consists of a single polynucleotide strand
 - serves as an intermediary for DNA
 - » DNA's information is transcribed into RNA
- 162 ☐ Biological macromolecules have certain functions in organisms

 ✓ nucleic acids
 - types of and functions
 - RNA
 - interprets genetic blueprint through protein synthesis
 - transcribing DNA message into a chemically different molecule
 - » allows cell to tell which is original information storage molecule and which is

transcript

163 ☐ Biological macromolecules have certain functions in organisms

✓ nucleic acids

- types of and functions
 - RNA
 - 3 types
 - » mRNA = messenger RNA
 - » tRNA = transfer RNA
 - » rRNA = ribosomal RNA
- 164 Figure 5.28 DNA→ RNA → protein: a diagrammatic overview of information flow in a (*Biology*, 6th Ed., Campbell & Reece) cell

165 Biological macromolecules have certain functions in organisms

√ nucleic acids

- types of and functions
 - DNA is a double helix
 - two polynucleotides wrap around each other
 - nitrogenous bases protrude from two sugar-phosphate backbones into center of helix where they pair
 - » adenine (A) with thymine (T)
 - » cytosine (C) with guanine (G)
- 166 🗷
- 167 🗷

168 ☐ Biological macromolecules have certain functions in organisms

✓ nucleic acids

- types of and functions
 - DNA
 - forms genetic blueprint in genes or chromosomes
 - organisms encode information specifying amino acid sequences of their proteins as sequences of nucleotides
- 169 Tigure 5.30 The DNA double helix and its replication (*Biology*, 6th Ed., Campbell & Reece)
- 170 Table 5.2 Polypeptide Sequence as Evidence for Evolutionary Relationships (*Biology*, 6th Ed., Campbell & Reece)

171 ☐ Biological macromolecules have certain functions in organisms

- ✓ nucleic acids
 - types of and functions
 - ATP and other high energy molecules
 - nucleotides play critical roles in molecules which serve as the energy currency of the cell
 - ATP = adenosine triphosphate
 - NAD+ = nicotinamide adenine dinucleotide
 - FAD+ = flavin adenine dinucleotide

172 🗷

Web/CD Activity 5G: Nucleic Acid Functions

www.campbellbiology.com

174 ☐ Biological macromolecules have certain functions in organisms ✓ nucleic acids

- discovering the structure of DNA
 - x-ray crystallographer Rosalind Franklin
 - in 1952, made image of DNA that showed a distinctive X-shape
 - » indication that DNA had twisted or helical structure
 - in 1953, estranged co-worker (Wilkins) gave the image to James Watson (of Watson & Crick fame) without her knowledge (more of her data was subsequently passed to them as well)
- 175 Figure 5.27 X-ray crystallography (*Biology*, 6th Ed., Campbell & Reece)
- 176 Figure 5.x4 Rosalind Franklin (*Biology*, 6th Ed., Campbell & Reece)

177 ☐ Biological macromolecules have certain functions in organisms

✓ nucleic acids

- discovering the structure of DNA
 - · Watson & Crick
 - in March 1953, announced they had solved DNA puzzle, produced model showing helical structure
 - won 1962 Nobel Prize for Physiology and Medicine (along with Wilkins) for discovery of DNA's structure
 - » Franklin was never mentioned
 - » Franklin died in 1958 at age 37 from ovarian cancer
- 178 Figure 5.x3 James Watson and Francis Crick (Biology, 6th Ed., Campbell & Reece)
- 179 The End.