1 🗖

Life: Early Cells, Classification of Life

EVPP 110 Lecture Fall 2003 Dr. Largen

2 🗖

- ✓ evolution of cells
- ✓ earliest cells
 - prokaryotic cells
 - eukaryotic cells
- ✓ classification of life

Evolution of early cells

⁴ Evolution of early cells

✓ Theories about evolution of cells

- evolution of cells
 - early organic molecules assembled into functional, independent units
 - cells are "bags of fluid"
 - contents differed from environment outside "cell"
 - » interior had a higher concentration of specific organic molecules

⁵ Evolution of early cells

\checkmark Theories about the evolution of cells

- how did "bags of fluid" evolve from simple organic molecules?
 - bubbles
 - spherical, hollow structures
 - molecules with hydrophobic regions spontaneously form bubbles in water
 - structure shields hydrophobic regions from contact with water

□ The Earliest Cells

7 The Earliest Cells

✓ Earliest evidence of life appears in microfossils

• dating from ~3.5 billion years ago

8 🗷

9 The Earliest Cells

- ✓ Characteristics of earliest life forms
 - small (1-2 nanometers)
 - single-celled
 - no external appendages
 - little internal structure
 - no nucleus

- resembled today's bacteria
 - in group called prokaryotes ("before nucleus")

¹⁰ The Earliest Cells

✓ Bacteria

- divided into two groups
 - archaebacteria
 - eubacteria

11 C Prokaryotic versus eukaryotic cells

✓ All life

- two types of cells
 - prokaryotic cells
 - eukaryotic cells
- 12 D Prokaryotic cells are small and structurally simple

✓ Prokaryotic cells

- first appeared ~ 3.5 billion years ago
- "before nucleus"
- small, ~1/10th size of eukaryotic cells
- lack true, membrane-bound nucleus
- surrounded by plasma membrane
- lack true, membrane-bound organelles
- less complex than eukaryotic
- contain a simple DNA molecule

13 The First Eukaryotic Cells

✓ Eukaryotic cells

- first appeared ~ 1.5 billion years ago
- "true nucleus"
- larger than prokaryotic
- rapidly evolved to produce diverse life forms that inhabit earth today
- complex interiors

14 🗖 Eukaryotic cells are partitioned into functional compartments

✓ Eukaryotic cells

- complex interior organization

- extensive compartmentalization
- many membrane-bound organelles, internal membranes
- true, membrane-bound nucleus
- complex DNA molecule
- · contain vesicles and vacuoles which function in storage and transport
- 15 The eukaryotic cell probably originated as a community of prokaryotes

✓ fossil record indicates

- eukaryotes evolved from prokaryotes ~1.5 BYA
- ✓ how did eukaryoites arise?
 - theory: through a combination of 2 processes
 - membrane infolding
 - endosymbiosis

- 16 🗷
- 17 Eukaryotic cell probably originated as a community of prokaryotes

✓ membrane infolding

- of plasma membrane of ancestral prokaryotic cells
 - gave rise to endomembrane system of eukaryotic cells
- ✓ endosymbiosis
 - thought to have generated first
 - mitochondira
 - heterotrophic prokaryote came to reside in ancestral prokaryote
 - chloroplast
 - photosynthetic prokaryote came to reside in ancestral prokaryote

18 The First Eukaryotic Cells

✓ Endosymbiont theory

- critical stage in evolution of eukaryotic cells involved symbiotic relationships with prokaryotic organisms (bacteria)
 - · heterotrophic bacteria engulfed by larger bacteria evolved into mitochondria
 - · photosynthetic bacteria engulfed by larger bacteria evolved into chloroplasts

19 🗖 The First Eukaryotic Cells

✓ Support for the endosymbiont theory

- existence of symbiotic relationships
- presence of DNA in organelles
 - many organelles have their own DNA
 - mitochondria
 - chloroplasts
 - · organelle DNA is similar to bacterial DNA in size and character

20 🗷

- 21 🗷
- 22 Figure 28.4 A model of the origin of eukaryotes
- 23 🗷
- ²⁴ Classification of Life
- ²⁵ Classification of Life
 - ✓ diversity of life can be arranged into three domains

-how we classify life

· therefore, organisms

²⁶ Classification of Life

✓To bring order to diversity of life, a system of classification exists

✓ Taxonomy

- science of classifying and naming organisms
- ²⁷ Classification of Life

- ✓ earliest classification schemes
 - only two broad groups recognized (kingdoms)
- \checkmark as knowledge increased about significant differences among living organisms
 - classification system was developed that recognized a taxonomic level higher than kingdom
 - domain

²⁸ Classification of Life

✓ All life can be classified into one of

- three domains
 - Archaea
 - Bacteria
 - Eukarya

29 🗷

30 Classification of Life

- ✓ Domain Archaea
 - single-celled, "ancient" bacteria
- ✓ Domain Bacteria
 - single-celled, "true" bacteria
- ✓ Domain Eukarya
 - single-celled protists, paramecia, single- and multi-cellular algae
 - fungi
 - plants
 - animals

31 🗷

32 🗷

33 Classification of Life

✓ All organisms are grouped into a few major categories

- earliest classification systems recognized 2 kingdoms of life
 - animal kingdom
 - plant kingdom
- kingdoms were added over time
 - new organisms were discovered
 - understanding of relationships/differences grew

34 🗖 Classification of Life

- ✓ How many kingdoms?
 - all "life" currently classified into 6 kingdoms
 - Archaebacteria
 - Eubacteria
 - Protista
 - Fungi
 - Plantae
 - Animalia

³⁶ Six Kingdoms Relative to 3 Domains

✓ Domain Archaea

- Kingdom Archaebcateria
- ✓ Domain Bacteria
 - Kingdom Eubacteria

✓ Domain Eukarya

- Kingdom Protista
- Kingdom Fungi
- Kingdom Plantae
- Kingdom Animalia
- 37 🗖 Six Kingdoms Relative to Prokaryotic Versus Eukaryotic Cells

✓ Prokaryotic kingdoms

- Archaebacteria
- Eubacteria

✓ Eukaryotic kingdoms

- Protista
- Fungi
- Plantae
- Animalia

38 Figure 1.11 Three domains of life (Biology, 6th Ed., Campbell & Reece)

³⁹ Classification of Life

- ✓ binomial system
 - early
 - developed by Swedish biologist, Carl Linnaeus (1707-1778)
 - gave two-part (binomial) name to each species
 - names eventually came to be written in Latin

⁴⁰ Classification of Life

- ✓ Binomial system
 - current
 - unique 2-part name for each organism
 - first part designates genus
 - capitalized
 - underlined or italicized in print
 - second part designates species
 - not capitalized
 - underlined or italicized in print

⁴¹ Classification of Life

✓Examples

- Homo sapiens or H. sapiens (human)
- Quercus alba or Q. alba (white oak)
- ⁴² Taxonomic Classification is Hierarchical
 - ✓ taxonomic heirarchy

- over time, genera were grouped into large, more inclusive categories known as families
 - grouping intended to reflect relationships between genera included
- taxonomic system extended to include several, more inclusive units

⁴³ Taxonomic Classification is Hierarchical

✓ Species

- grouped to form a genus
- ✓ Genera (plural of genus)
 - grouped together to form a family
- ✓ Families
 - grouped to form orders
- ✓ Orders
 - grouped to form classes
- ✓ Classes
 - grouped to form divisions or phyla
- ✓ Phyla or Divisions
 - grouped into kingdoms

44 🗷

⁴⁵ Classification of the Human Being

- ✓ Domain: Eukarya
- ✓Kingdom: Animalia
- ✓Phylum: Chordata
- ✓ Class: Mammalia
- ✓ Order: Primates
- ✓ Family: Hominidae
- ✓ Genus: Homo
- ✓ Species: sapiens
- 46 Figure 1.10 Classifying life (Biology, 6th Ed., Campbell & Reece)
- 47 🗷

⁴⁸ The End.