The Working Cell

Bio 103 Lecture

GMU

Dr. Largen

2 Sections

✓ Energy and the cell

✓Enzymes

✓Membrane structure and function

3 🗖

Energy and the Cell

Energy and the Cell
 Energy is the capacity to perform work

✓ Energy

٠

- capacity to do work

- all organisms require energy to stay alive

- exists in two states
 - kinetic energy

potential energy

⁵ Energy and the Cell

Energy is the capacity to perform work

✓ Energy exists in two states

kinetic energy

energy of motion

-

- potential energy
 - stored energy

6 🗖 Energy and the Cell

Energy is the capacity to perform work

✓ Energy exists in two states

- potential energy vs kinetic energy

- · consider boulder perched on a hilltop
- as it rolls down hill potential energy is converted into kinetic energy

7 Energy and the Cell

Energy is the capacity to perform work

✓ energy exists in many forms

- mechanical energy
- heat
- sound
- electric current
- light
- radioactive radiation
- chemical energy
 - potential energy of molecules

8 Energy and the Cell

Energy is the capacity to perform work

- ✓ many ways to measure energy
 - most convenient is in form of heat
 - measure of random motion of molecules
 - ٠

9 Energy and the Cell

Two laws govern energy conversion

- ✓ Life depends on fact that energy can be converted from one form to another
- ✓ thermodynamics
 - study of energy transformations

✓ Laws of Thermodynamics

- set of universal laws that govern all energy changes in universe

10 Energy and the Cell

•

Two laws govern energy conversion

✓ First Law of Thermodynamics

- concerns amount of energy in universe
- states that energy can be changed from one form to another but can neither be created or destroyed
- total amount of energy in universe remains constant

¹¹ Energy and the Cell

Two laws govern energy conversion

✓ First Law of Thermodynamics

 potential energy can be shifted to other molecules, stored in different chemical bonds, convert into other forms

- · during each conversion some of energy dissipates into environment in form of heat
- energy available to do work decreases

¹² Energy and the Cell

Two laws govern energy conversion

✓ Second Law of Thermodynamics

- concerns transformation of potential energy into heat
- states that disorder (or entropy) in universe is continuously increasing
 - entropy
 - measure of disorder of a system
 - heat is one form of disorder

13 Energy and the Cell

Two laws govern energy conversion

✓ Second Law of Thermodynamics

- entropy increases

- when universe was formed it had all potential energy it will ever have
 - has become more disordered ever since
 - · every energy exchange has increased entropy in universe

14 Energy and the Cell

Chemical reactions either store or release energy

✓ Chemical reactions are of two types

endergonic reactions

- · "energy in"
- · requires net input of energy
- exergonic reactions
 - · "energy out"
 - releases energy
- 15 **Energy and the Cell**

Chemical reactions either store or release energy

✓ endergonic reactions

- yield products rich in potential energy

 - .

- don't proceed spontaneously
 - requires input of energy
- example is photosynthesis

17 Energy and the Cell

Chemical reactions either store or release energy

✓ exergonic reactions

- reactants store more energy than products
 - · energy is released
- tend to proceed spontaneously
 - does not require an input of energy
- example is cellular respiration
 - •

18 💵

¹⁹ Energy and the Cell

Chemical reactions either store or release energy

✓ Cellular metabolism

- sum of exergonic and endergonic reactions carried out by working cells

20 Energy and the Cell

ATP shuttles chemical energy within the cell

✓ Energy coupling

- using energy released from exergonic reactions to drive essential endergonic reactions
- usually
 - usable energy stored in ATP
 - energy used comes from ATP
- ✓ ATP powers nearly all forms of cellular work

21 Energy and the Cell

ATP shuttles chemical energy within the cell

✓ ATP (adenosine triphosphate)

- has 3 parts, connected by covalent bonds
 - adenine
 - nitrogenous base
 - ribose
 - 5-carbon sugar
 - phosphate group
 - chain of 3 phosphate groups

22 🗷

²³ Energy and the Cell

ATP shuttles chemical energy within the cell

✓ Hydrolysis of ATP

- exergonic reaction
- covalent bond btwn 2nd and 3rd phosphate groups is unstable
 - •
- when 3rd bond breaks
 - phosphate is removed
 - ATP becomes ADP (adenosine diphosphate)
 - energy is released

24 🗷

²⁵ Energy and the Cell

ATP shuttles chemical energy within the cell

✓ Phosphorylation

- transfer of a phosphate group to a molecule
- process by which ATP energizes other molecules
 - •
 - 3rd phosphate is used as energy shuttle

26 🗷

27 🗖 Energy and the Cell

ATP shuttles chemical energy within the cell

✓ ATP cycle (ATP is renewable resource)

- hydrolysis of ATP to ADP + P
 - · removes a phosphate
 - exergonic reaction
 - _
- dehydration synthesis of ADP + P to ATP
 - · adds a phosphate
 - endergonic reaction

28 🗷

29 🗖

Enzymes

³⁰ How Enzymes Work

Enzymes speed up reactions by lowering energy barriers

✓ Energy of activation (E_A)

- amount of energy that reactants must absorb to start a chemical reaction
- can be thought of as an energy barrier
- most reactions require energy to get started
- •

³¹ How Enzymes Work

Enzymes speed up reactions by lowering energy barriers

✓ Energy of activation (E_A)

- illustrated with "jumping bean" (JB) analogy
 - •
 - •
- 32 How Enzymes Work

Enzymes speed up reactions by lowering energy barriers

✓ Enzymes

- _
- protein molecules that serve as biological catalysts
- increase rate of reaction without being changed into different molecule
- do **not** add energy to reaction
 - speeds up reaction be lowering Energy of activation (E_A), or energy barrier
- 33 How Enzymes Work

Enzymes speed up reactions by lowering energy barriers

✓ In jumping bean analogy

- enzyme lowers energy barrier

- _

34 🗷

35 🗷

³⁶ How Enzymes Work

A specific enzyme catalyzes each chemical reaction

√ enzymes

- lower **E**_A
 - holding reactant molecules in a particular position
- are selective
- have a unique 3-dimensional shape

•

- recognize only the **substrate**(s) of reaction it catalyzes

- substrate is substance enzyme acts on
- ³⁷ How Enzymes Work

A specific enzyme catalyzes each chemical reaction

- ✓ catalyzing a reaction
 - enzyme binds to its substrate
 - at its active site

»

- while joined, substrate changes into product
- enzyme releases products
- enzyme emerges from reaction unchanged
- 38 How Enzymes Work
 - A specific enzyme catalyzes each chemical reaction
 - $\boldsymbol{\checkmark}$ enzyme emerges from reaction unchanged
 - active site now ready for another substrate molecule and another cycle
 - Single enzyme molecule may act upon thousands or millions of substrate molecules per second

39 💵

⁴⁰ How Enzymes Work

The cellular environment affects enzyme activity

- ✓ Activity of enzyme is affected by its environment
 - enzyme has optimal conditions

٠

- factors that alter enzyme's shape can affect its ability to catalyze a reaction
- ⁴¹ How Enzymes Work

The cellular environment affects enzyme activity

- ✓ Factors affecting enzyme activity
 - temperature
 - pH
 - salinity
- 42 How Enzymes Work

The cellular environment affects enzyme activity

- ✓ Factors affecting enzyme activity
 - temperature
 - optimum temperatures (35-40°C)

_

_

- at high temperatures
 - enzyme can be denatured

»

⁴³ How Enzymes Work

The cellular environment affects enzyme activity

✓ Factors affecting enzyme activity

– pH and salinity

- · variations in number of salt and hydrogen ions
 - can interfere with chemical bonds that maintain protein structure
 - optimum pH = 6-8
 - optimum salinity = cell salinity

⁴⁴ How Enzymes Work

The cellular environment affects enzyme activity

✓ Factors affecting enzyme activity

- cofactors
 - required by some enzymes
 - may be inorganic molecules, called cofactors
 such as zinc, iron, copper
 - may be organic molecules, called coenzymes
 - such as vitamins or vitamin products

⁴⁵ How Enzymes Work

Enzyme inhibitors block enzyme action

- ✓ chemical that interferes with an enzyme's activity is called an inhibitor
 - two types of inhibitors
 - competitive inhibitor
 - non-competitive inhibitor

46 🗷

⁴⁷ How Enzymes Work

Enzyme inhibitors block enzyme action

✓ competitive inhibitor

- -resembles enzyme's normal substrate
- -competes with substrate for enzyme's active site
 - •
 - prevents enzyme from acting

48 🗷

⁴⁹ How Enzymes Work

Enzyme inhibitors block enzyme action

✓ non-competitive inhibitor

- -does not compete with active site
- -binds to enzyme outside of active site
 - causes shape change
 - -active site no longer fits substrate
- 50 🗷
- 51 🗷
- 52 🗖

Membrane Structure and Function

- ⁵³ Membranes organize the chemical activities of cells
 - \checkmark Many metabolic reactions occur simultaneously in a cell
 - •

✓ Membranes provide structural basis for metabolic order

- ⁵⁴ Membranes organize the chemical activities of cells
 - ✓ For all types of cells
 - plasma membrane is edge of life
 - · boundary between living cell and its surroundings
 - ✓ For most eukaryotic cells
 - membranes form
 - most organelles
 - · compartments within cells that contain enzymes

⁵⁵ • Membranes organize the chemical activities of cells

- ✓ <u>All</u> membranes are selectively permeable
 - control passage of molecules into and out of cell (or organelle)
 - •
 - allows some substances to cross more easily
 - blocks passage of some substances entirely

⁵⁶ • Membranes organize the chemical activities of cells

- ✓ Plasma membrane (cell membrane)
 - very thin
 - •
 - •

57 🗖 Membrane phospholipids form a bilayer

✓ Plasma membrane (cell membrane) is composed mainly

- phospholipid molecules
 - has two parts
 - "head"
 - glycerol and phosphate group
 - polar = hydrophilic
 - " tail"

_

- two fatty acid tails
- non-polar = hydrophobic

58 🗷

⁵⁹ • Membrane phospholipids form a bilayer

 \checkmark Phospholipid structure suited to role in membranes

- spontaneously form stable two-layer sheet in water
 - phospholipid bilayer
- 60 🗷
- 61 Figure 8.1 Artificial membranes (cross sections), Campbell & Reece
- 62
 Membrane phospholipids form a bilayer

✓ membranes are selectively permeable

- partly due to hydrophobic interior of bilayer
 - · nonpolar, hydrophobic molecules are soluble in lipids
 - polar, hydrophilic molecules are not soluble in lipids
- 63 The membrane is a fluid mosaic of phospholipids and proteins

\checkmark Structure plasma membrane described as fluid mosaic

- mosaic
 - many parts
- fluid
 - moveable
 - •
- 64 Figure 8.4 The fluidity of membranes (Campbell & Reece)
- 65 Figure 8.2 Two generations of membrane models (Campbell & Reece)
- 66 Figure 8.5 Evidence for the drifting of membrane proteins (Campbell & Rece)
- 67 🗖 The membrane is a fluid mosaic of phospholipids and proteins
 - √two surfaces of plasma membrane are different

- outer surface (exterior of cell)
 - •
- inner surface (interior of cell)
- 68 🗷 Figure 8.6 The detailed structure of an animal cell's plasma membrane, in cross section (Campbell & Reece)
- 69 Figure 8.3 Freeze-fracture and freeze-etch (Campbell & Reece)
- 70 Figure 8.8 Sidedness of the plasma membrane (Campbell & Reece)
- 71 🗖 Proteins make the membrane of a mosaic function
 - ✓ Proteins perform most of functions of membrane
 - what roles do membrane proteins play
 - · attach membrane to cytoskeleton and external fibers
 - provide cellular identification tags
 - form junctions between adjacent cells
 - receptors for chemical messengers
 - · help move substances across membrane
 - serve as enzymes
- 72 🔄 Figure 8.9 Some functions of membrane proteins (Campbell & Rece)
- 73 🔄 Figure 8.7 The structure of a transmembrane protein (Campbell & Reece)
- 74 🗖 Passive transport is diffusion across a membrane

✓ Diffusion

- tendency for particles to spread out spontaneously to regions where they are less concentrated
- requires no work
 - random motion (kinetic energy)
 - universal tendency of order to deteriorate into disorder (entropy)
- passive transport
 - ٠

75 D Passive transport is diffusion across a membrane

✓ passive transport

- substance moves from area of higher concentration to area of lower concentration until equilibrium is reached
 - substances diffuse down their concentration gradient

76 Figure 8.10 The diffusion of solutes across membranes (Campbell & Reece)

77 🗷

78 Dessive transport is diffusion across a membrane

✓ Passive transport

- different substances diffuse independently of one another
- important to all cells
 - ٠

•

79 🗖 Osmosis is the passive transport of water

✓ Osmosis

_

- special case of passive transport
 - involving diffusion of water molecules across a selectively permeable membrane
- cells contain and are surrounded by aqueous solution
 - · solutes also diffuse down their concentration gradient

80 🗖 Osmosis is the passive transport of water

✓ Osmosis

- solution on either side of membrane

- described on basis of conc.of solutes
 - hypertonic
 - » solution with higher conc.n of solutes
 - hypotonic
 - » solution with lower conc. of solutes
 - isotonic
 - » solutions on both sides of membrane have same conc.
- ⁸¹ Osmosis is the passive transport of water
 - ✓ Osmosis
 - as solutes diffuse
 - ٠
 - water molecules will move via osmosis
- 82 Figure 8.11 Osmosis (Campbell & Recee)
- 83 🖃
- 84 🗖 Water balance between cells and their surroundings is crucial to organisms
 - ✓ animal cell immersed in
 - isotonic solution
 - volume remains constant
 - hypotonic solution
 - gains water (loses solutes), swells, may lyse (pop)
 - •
 - hypertonic solution
 - · loses water (gains solutes), shrivels, may die
 - ٠
- ⁸⁵ 🗖 Water balance between cells and their surroundings is crucial to organisms

✓ plant cell immersed in

- isotonic solution
 - · cell is flaccid, plant wilts

⁸⁶ 🗖 Water balance between cells and their surroundings is crucial to organisms

✓ plant cell immersed in

_

- hypotonic solution (
 - turgid, plant is healthiest
- hypertonic solution
 - loses water (gains solutes), shrivels, may die
- 87 Figure 8.12 The water balance of living cells (Campbell & Reece)
- 88 Figure 8.13 The contractile vacuole of *Paramecium* an evolutionary adaptation for osmoregulation (Campbell & Reece)
- 89 Figure 8.13x Paramecium (Campbell & Reece)
- ⁹⁰ Specific proteins facilitate diffusion across membranes
 - ✓ Many substances do not diffuse freely across biological membranes
 - due to

•

- size
- charge
- can cross by **special mechanisms**

91 🗖 Specific proteins facilitate diffusion across membranes

- ✓ Special mechanisms
 - transport proteins
 - · located in the membrane
 - aid in facilitated diffusion
- ⁹² Specific proteins facilitate diffusion across membranes

✓ facilitated diffusion

- passive
- higher to lower conc.
- facilitated by transport proteins
 - ٠
- 93 🗷
- 94 Figure 8.14 Two models for facilitated diffusion (Campbell & Reece)
- 95 Cells expend energy for active transport

✓ Substances **can** be moved across a membrane <u>against</u> its concentration

- process called active transport
 - · requires cell to expend energy
 - involves transport protein
- 96 🗖 Cells expend energy for active transport

_

_

- ✓ Active transport systems often <u>couple</u> passage of two solutes
- _ 97 🖃 98 🖃 99 Figure 8.15 The sodium-potassium pump: a specific case of active transport (Campbell & Reece) 100
 Review: Passive and Active Transport Compared ✓ passive transport - diffusion osmosis - facilitated diffusion ✓ active transport 101 Tigure 8.16 Review: passive and active transport compared (Campbell & Reece) 102 C Active Transport ✓ electrogenic pump - a transport protein that generates voltage across a membrane - examples sodium-potassium pump - major electrogenic pump of animal cells proton pump - main electrogenic pump of plants, bacteria and fungi

- 103 Figure 8.17 An electrogenic pump (Campbell & Reece)
- 104 🗖 Exocytosis and endocytosis transport large molecules

✓ bulk transport

- process used to move large & polar molecules into and out of cell
- exocytosis
 - bulk transport out of cell
- endocytosis
 - bulk transport into cell

¹⁰⁵ Exocytosis and endocytosis transport large molecules

✓ bulk transport

- exocytosis
 - bulk transport out of cell
 - •
 - •

 - •

106 🗷

- ¹⁰⁷ Exocytosis and endocytosis transport large molecules
 - ✓ bulk transport
 - endocytosis
 - bulk transport into cell
 - three types
 - phagocytosis
 - pinocytosis
 - receptor-mediate endocytosis

¹⁰⁸ Exocytosis and endocytosis transport large molecules

✓ bulk transport

- endocytosis
 - bulk transport into cell
 - •
 - •
 - •
- 109 🗖 Exocytosis and endocytosis transport large molecules
 - ✓ bulk transport
 - endocytosis
 - phagocytosis
 - "cellular eating"

- material cell takes in iisparticulate
 - » made up of discrete particles
- 110 Exocytosis and endocytosis transport large molecules

✓ bulk transport

endocytosis

- pinocytosis
 - "cellular drinking"
 - material the cell takes in is liquid
 - » not specific, takes in all solutes dissolved in liquid

111 🗷

112 🗖 Exocytosis and endocytosis transport large molecules

✓ bulk transport

- endocytosis

• receptor-mediated endocytosis

- indented pits in outer plasma membrane
 - » coated w/ receptor proteins which pick up particular molecules

»

113 T
114 T
Figure 8.19 The three types of endocytosis in animal cells (Campbell & Reece)
115

The End