1 🗖

Plants, Fungi and the Colonization of Land

Bio 103

Dr. Largen

² What is a plant?

✓ Plants

- classification
 - Domain Eukarya
 - Kingdom Plantae
- mutlicellular, photosynthetic autotrophs
- examples include trees, grasses, herbs
- multicellular green algae might be moved into this kingdom

³ What is a plant?

✓ How are multicellular green algae different from plants?

- multicellular green algae
 - · adapted for aquatic life
 - · supported by surrounding water
 - · anchored by holdfast
 - · generally has no rigid supporting tissues
 - · entire body has direct access to water to obtain carbon dioxide & minerals from it
 - almost all parts of the organism are photosynthetic

4 🗖 What is a plant?

✓ How are multicellular green algae different from plants?

- multicellular green algae

- reproduction and development
 - water surrounds algae
 - » ensures that gametes and offspring remain moist
 - » provides a means for dispersal of gametes and offspring
 - many produce gametes in gametangia

5 🗖 What is a plant?

✓ How are multicellular green algae different from plants?

- plants
 - adapted for terrestrial life
 - waxy cuticle to minimize water loss to air
 - gas exchange occurs through opening, called stomata, in leaf surface,
 - holds itself upright, no support from air
 - obtains chemicals from both air and the soil

6 • What is a plant?

✓ How are multicellular green algae different from plants?

- plants
 - · have true vascular tissue for conducting
 - water upward from roots to plant parts via
 - » xylem
 - sugars throughout plant via
 - » phloem

7 D What is a plant?

- ✓ How are multicellular green algae different from plants?
 - Plants
 - reproduction and development
 - gametes and developing embryos must be protected from drying out
 - produce gametes in gametangia
 - most rely on wind or animals for dispersal of offspring
- 8 🗷

9 Plants probably evolved from green algae called charophytes

- \checkmark Plants and green algae have several homologous features
 - which support the theory that plants evolved from green algae
 - chloroplasts
 - certain photosynthetic pigments
 - · cell walls of cellulose
 - store carbohydrates as starch
 - · cytokinesis via cell plate
- 10 Plants probably evolved from green algae called charophytes
 - ✓ Algal ancestors of plants
 - may have carpeted moist fringes of lakes and coastal marshes as early as 500 MYA
 - at a time when continents were relatively flat and periodically flooded
 - as a result, natural selection would have favored algae that could survive periodic droughts
 - » over time, some species may have accumulated adaptations that enabled them to survive above the water line
- ¹¹ Plants probably evolved from green algae called charophytes

✓ Algal ancestors of plants

- charophytes
 - a modern group of green algae
 - may resemble an early plant ancestor
 - grow at edges of lakes
 - has disk-like multicellular colonies
 - » that resemble plants in that they have jacketed zygotes
- 12 🔄 Figure Charophytes: Chara (top), Coleochaete orbicularis (bottom)
- 13 🔄 Figure : Chara
- ¹⁴ Plants probably evolved from green algae called charophytes
 - ✓ Earliest plants

- would have thrived on land
- earliest known terrestrial organism
 - represented only by 415 MYO fossils
 - simple plants called Cooksonia
 - grew along lake shores
 - upright stem w/ primitive vascular tissues
 - lacked leaves
 - tips of some branches bore a **sporangium** that produced reproductive cells called **spores**

15 🗷

- Plant diversity provides clues to the evolutionary history of the plant kingdom
 ✓Two main lineages arose early from ancestral plants
- 17 💵
- 18 💵

✓ One lineage gave rise to bryophytes

- 19 🗷
- 20 🗷
- 21 🗷

22 🗷

✓ A major step in plant evolution was the appearance of seed plants

23 🗷

- ✓ Gymnosperms, such as pines, are called naked seed plants
- ²⁴ Plant diversity provides clues to the evolution history of plants
 - \checkmark Major events in history of the plant kingdom
 - origin of plants from aquatic ancestors
 - evolution of vascular plants (seedless) from earliest plants
 - evolution of seed plants (vascular) from earliest vascular plants
 - evolution of the flowering plants (vascular seed) from the earliest seed plants

25 Figure :Some highlights of plant evolution

²⁶ Plant diversity provides clues to the evolution history of plants

- ✓ origin of plants from aquatic ancestors
 - most likely from green algae called charophytes
 - about 400 MYA
 - giving rise to a group of plants called bryophytes
 - · resemble modern plants in that they have
 - a cuticle
 - embryos that develop in gametangia
 - unlike modern plants they

- lack vascular tissues
- have flagellated sperm
- lack internal support
- ²⁷ Plant diversity provides clues to the evolution history of plants
 - ✓ evolution of first **vascular plants** from original plants
 - resemble modern plants in that they have
 - a cuticle
 - embryos that develop in gametangia
 - vascular tissues
 - internal support
 - unlike later vascular plants they
 - · have flagellated sperm
 - lack seeds
- ²⁸ Plant diversity provides clues to the evolution history of plants
 - ✓ evolution of vascular seed plants from earliest seedless vascular plants
 - they have
 - a cuticle
 - · embryos that develop in gametangia
 - vascular tissues
 - internal support
 - unflagellated sperm
 - seeds
 - don't have
 - flowers
- ²⁹ Plant diversity provides clues to the evolution history of plants
 - ✓ evolution of vascular seed plants from earliest seedless vascular plants
 - key adaptations
 - make seeds
 - survival packets for life on land
 - don't require water layer for fertilization
 - pollen transfers nonflagellated sperm-forming cells to female parts of the plant
 - gymnoperms were earliest seed plants to appear
 - said to have "naked seed" because seed is not enclosed in fruit
- ³⁰ Plant diversity provides clues to the evolution history of plants
 - ✓ evolution of the **flowering plants** from the earliest seed plants
 - they have
 - a cuticle
 - embryos that develop in gametangia
 - vascular tissues
 - internal support
 - unflagellated sperm
 - seeds
 - flowers

31 Plant diversity provides clues to the evolution history of plants

- ✓ evolution of the **flowering plants** from the earliest seed plants
 - called angiosperms
 - have seed enclosed in fruit
 - have flowers
 - complex reproductive structure s
 - develop seeds within protective chambers
 - majority of modern plants fall into this group

³² Plant diversity provides clues to the evolution history of plants

- ✓ Four key adaptations of plants to life on land
 - gametagnia
 - vascular tissue
 - seeds
 - flowers
- 33 Plant diversity provides clues to the evolution history of plants
 - \checkmark Four key adaptations of plants to life on land
 - gametagnia
 - · present in all plants
 - · protect gametes, zygotes embryos from drying out
 - vascular tissue
 - transport water and nutrients through plant body
 - provide internal support for upright stems
- ³⁴ Plant diversity provides clues to the evolution history of plants
 - ✓ Four key adaptations of plants to life on land
 - seeds
 - · protects embryoes and provides nourishment
 - · aids in dispersal
 - flowers
 - · develop seeds within protective chambers
 - · attracts pollinators
- ³⁵ Haploid and diploid generations alternate in plant life cycles
 - ✓ Plants have alternating generations
 - sporophyte (sporophyte generation)
 - is diploid (2n)
 - · produces 1 type of haploid spore by meiosis
 - a spore develops by mitosis into a multicellular haploid gametophyte
 - gametophyte (gametophyte generation)
 - is haploid (n)
 - each sex produces haploid gametes by mitosis
 - two gametes join to produce a diploid zygote

³⁷ Mosses have a dominant gametophyte

✓ Nonvascular, nonseed plants

- generally referred to as bryophytes
- represented by the mosses
 - gametophyte stage is dominant
 - · sporophyte stage is dependent on gametophyte stage
 - · lack vascular tissue
 - have flagellated sperm
- 38 Figure : Bryophytes
- 39 Figure: Hornwort
- 40 Figure: Quillwort
- 41 🗷

42 🗖 Ferns, like most plants, have a dominant sporophyte

✓ Vascular, nonseed plants

- represented by ferns
 - sporophyte stage is dominant
 - · gametophyte stage is independent of the sporophyte stage
 - · has vascular tissue
 - · has flagellated sperm
 - · lacks seeds
- 43 🖃
- 44 🔄 Figure : The stem of *Polypodium*, a fern (a pteridophyte)
- 45 🔄 Figure: Xylem and phloem in the stem of *Polypodium* , a fern (a pteridophyte)

46 🗷

- 47 Figure : Fern sporophyll, a leaf specialized for spore production
- 48 Figure 29.23x2 Life cycle of a fern: sorus
- ⁴⁹ Seedless plants formed vast "coal forests"
 - ✓ Ferns and other seedless plants once dominated ancient forests
 - Their remains formed coal
 - ✓ Gymnosperms that produce cones, the conifers, largely replaced the ancient forests of seedless plants
 - These plants remain the dominant gymnosperms today

50 🗷

- 51 🗖 A pine tree is a sporophyte with tiny gametophytes in its cones
 - ✓ Vascular, seed plants
 - represented by the pine tree
 - sporophyte stage is dominant
 - gametophyte stage is dependent on the sporophyte stage

- has vascular tissue
- · has nonflagellated sperm
 - pollen grain delivers sperm producing cells to female gametophyte
- has seeds

⁵² A pine tree is a sporophyte with tiny gametophytes in its cones

✓ Vascular, seed plants

- represented by the pine tree
 - cones are a significant adaptation to land
 - microscopic stages that grow inside them are the gametophyte generation
 - two types are produced
 - » female cone
 - » male cone

⁵³ A pine tree is a sporophyte with tiny gametophytes in its cones

✓ Vascular, seed plants

- pine tree produces two types of cones
 - female cone
 - larger, woody, persistent
 - has radiating scales, each bearing a pair of ovules
 - » after pollination, ovule undergoes meiosis to produce haploid spore cells

⁵⁴ A pine tree is a sporophyte with tiny gametophytes in its cones

✓ Vascular, seed plants

- pine tree produces two types of cones
 - male cone
 - smaller, softer, short-lived
 - scales produce many sporangia, which make many haploid spores by meiosis
 » male gametophytes (pollen grain) develop from these spores
 - pollination occurs when a pollen grain lands on and enters an ovule
 - » it takes months for sperm to develop in the pollen grain
- 55 🔄 Figure: Phylum Coniferophyta: Douglas fir

56 🗷

- 57 Figure: Sequoias
- 58 Figure : Phylum Coniferophyta: Cypress
- 59 Figure : Phylum Coniferophyta: Pacific yew
- 60 🔄 Figure: Phylum Coniferophyta: Common juniper
- 61 Figure: Phylum Coniferophyta: A pine farm
- 62 Figure: Phylum Coniferophyta: Wollemia pine
- 63 Figure : Bristlecone Pine
- 64 Figure: Frasier fir
- 65 I Angiosperms dominate most landscapes today

✓ Flowering plants also called angiosperms

- dominate most land areas
 - gymnosperms dominate in northern areas

- constitute nearly 80% of all plants
- supply nearly all our food, much fiber for textiles
- several unique adaptations account for their success
 - broad, flat leaves that are very effective collectors of solar energy
 - thick, strong cell walls
 - flowers
- 66 🔄 Figure 30.11 Representatives of major angiosperm clades
- 67 The flower is the centerpiece of angiosperm reproduction
 - ✓ Angiosperms make a showy display of their sex life
 - the flowers of angiosperms
 - expose the plant's male and female parts
 - are the sites of pollination and fertilization
 - · generate fruits
 - which contain the angiosperm's seeds
- 68 The flower is the centerpiece of angiosperm reproduction
 - ✓ Anatomy of a flower
 - a flower is a short stem with four kinds of modified leaves
 - sepals
 - · petals
 - stamens
 - carpels

⁶⁹ The flower is the centerpiece of angiosperm reproduction

✓ Anatomy of a flower

- sepals
 - occur at bottom of flower
 - are usually green
 - enclose the flower before it opens (flower bud)
- ⁷⁰ The flower is the centerpiece of angiosperm reproduction
 - ✓ Anatomy of a flower
 - petals
 - occur above the sepals
 - usually the most striking part of the flower
 have a variety of shapes and colors
 - are often important in attracting pollinators
- ⁷¹ The flower is the centerpiece of angiosperm reproduction
 - ✓ Anatomy of a flower
 - stamens
 - male reproductive structures
 - many are present on each flower
 - consists of a stalk bearing a sac called an anther

- the male organ in which pollen grains develop
- 72 The flower is the centerpiece of angiosperm reproduction
 - ✓ Anatomy of a flower
 - carpels
 - female reproductive structures
 - one or more occur on each flower
 - each one consists of a stalk with
 - a sticky tip (stigma) which traps pollen
 - a swollen base called an ovary
 - » a protective chamber that contains one or more ovules that develop into eggs

73 🖃

✓ Flowering plants

- sporophyte stage is dominant
- gametophyte stage is dependent on the sporophyte stage
- has vascular tissue
- has nonflagellated sperm
 - pollen grain delivers sperm producing cells to female gametophyte
- has seeds
- has flowers

75 The angiosperm plant is a sporophyte with gametophytes in its flowers

✓ Flowering plants

- meiosis in the anthers produces haploid spores
 - which undergo mitosis to form the male gametophytes, the pollen grains
- meiosis in the ovules produces haploid spores
 - which undergo mitosis to form the female gametophyte, the ovule, which produces an egg
- ⁷⁶ The angiosperm plant is a sporophyte with gametophytes in its flowers

✓ Flowering plants

- pollination
 - occurs when a pollen grain lands on the stigma
 - · a tube grows from the pollen grain to the egg and produces sperm cells
- fertilization
 - occurs when a sperm fuses with an egg to form a zygote
- a seed develops from each ovule
- a fruit forms to enclose the seeds

77 🗷

78 The angiosperm plant is a sporophyte with gametophytes in its flowers

- ✓ Several features have contributed to the success of angiosperms
 - packaging seeds inside fruits
 - evolution of mutually dependent relationships with animals
 - ability to produce seed rapidly
 - fertilization occurs about 12 hours after pollination and seeds are produced within a few days to weeks
 - compared to gymnosperms which typically take over a year to produce seeds

79 🗖 Fungi and plants moved onto land together

- ✓ Associations of plant roots with fungi helped make the colonization of land possible
 - these associations are called mycorrhizae
 - prior to the colonization of land by plants
 - fungi may have thrived only in aquatic environments
 - the first fungi on land may have been the mycorrhizal partners of early plants

⁸⁰ Fungi and plants moved onto land together

✓ Fungi

- are found everywhere
 - in soil and all types of aquatic environments
 - · parasites of plants and other organisms
 - predators of small animals
 - decomposers
- 81 Figure: Painting of indigo milk cap (Lactarius indigo) fungus as an example of the variety in color and types of fungi
- 82 Figure: Decomposers
- 83 Figure 31.1 Fungal mycelia
- 84 Figure 31.2 Examples of fungal hyphae
- 85 🔄 Figure Septate hyphae (left) and nonseptate hyphae (right)
- ⁸⁶ Fungi absorb food after digesting it outside their bodies

✓ Fungi

- classification
 - Domain Eukarya
 - Kingdom Fungi
- nutrition
 - heterotrophs
 - digest their food externally
 - absorb the nutrient molecules that result
- most are multicellular
 - yeasts are unicellular
- 87 Figure 31.4 Phylogeny of fungi
- 88 🔄 Table 31.1 Review of Fungal Phyla
- ⁸⁹ Tungi absorb food after digesting it outside their bodies

✓ Fungi

- structure
 - consists of a net-like mass of filaments called hyphae
 - which may exists as

- » a single mass of cytoplasm with multiple nuclei
- » chains of cells
- surrounded by a plasma membrane covered by a cell wall
 - » most are made with chitin
- ⁹⁰ Tungi absorb food after digesting it outside their bodies

✓ Fungi

- structure
 - hyphae
 - start as single filaments (or chain of cells) and then branch repeatedly
 - » forming a mycelium
- motility
 - most are nonmotile
 - do not move about in search of food, mates
 - lack of mobility is made up for by phenomenal growth rate of the mycelium

91 🗷

92 D Many fungi have three distinct phases in their life cycle

✓ Fungal life cycles range from simple to complex

- yeasts reproduce only by mitotic cell division
- many other fungi have three distinct phases in their life cycles
 - · diploid phase
 - haploid phase
 - · dikaryotic phase
 - in which cells contain two haploid nuclei
- 93 🗖 Many fungi have three distinct phases in their life cycle
 - ✓ Life cycle of a mushroom
 - mushroom is the fruiting body
 - zygotes develop in specialized cells on underside of cap
 - zygote is the only diploid life stage in life cycle
 - a diploid nucleus resulting from fertilization
 - » the fusion of the two haploid nuclei
 - zygote undergoes meiosis to form haploid spores
 - fruiting body releases huge numbers of spores
 - when spores land in favorable environment, they germinate to become haploid mycelia
- ⁹⁴ Many fungi have three distinct phases in their life cycle
 - ✓ Life cycle of a mushroom
 - zygotes develop in special cells underside of cap
 - zygote is the only diploid life stage in life cycle
 - a diploid nucleus resulting from fertilization
 - » the fusion of the two haploid nuclei
 - zygote undergoes meiosis to form haploid spores
 - fruiting body releases huge numbers of spores
 - spores germinate to become haploid mycelia
 - occur in 2 distinct mating types
 - dikaryotic stage begins when 2 compatible mycelia grow together, but nuclei don't fuse
 - · fruiting body is extension of dikaryotic mycelium
- 95 🔄 Figure Basidiomycetes (club fungi): Greville's bolete (top left), turkey tail (bottom left), stinkhorn (right)

96 🗷	Figure: Coprinus comatus, Shaggy Mane
97 🗷	Figure: Geastrum triplex
98 🗷	Figure: Tremella messenterica, Witch's Butter
99 🖃	Figure: Stinkhorn
100 🗷	Figure: Amanita
101 🗷	
102 🗷	Figure 31.12 The life cycle of a mushroom-forming basidiomycete
103 🗷	Figure: Gills
104 🗷	Figure: A fairy ring
105 🗾	Figure: A moldy orange (left), Penicillium (right)
106 🗷	Figure: Budding yeast
107 🗖	Lichens consist of fungi living mutualistically with photosynthetic organisms
	✓ Lichens are mutualistic associations of
	 photosynthetic organisms
	 provides food it produces by photosynthesis
	– green algae (Kingdom Protista)
	– cyanobacteria (Kingdom Eubacteria)
	 receives water, housing, minerals
	– fungus
	 provides water, housing minerals
	receives food
108 🖃	Figure Linkage
	Figure Lichens
109 🖃	

- 110 T Figure Anatomy of a lichen 111 F Figure Anatomy of a lichen